Introduction to Learning Theory

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

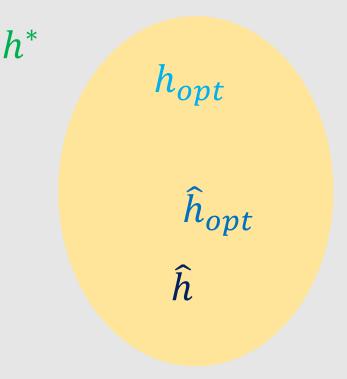
- error decomposition
- bias-variance tradeoff
- PAC learnability
- consistent learners and version spaces
- sample complexity

Error Decomposition

How to analyze the generalization?

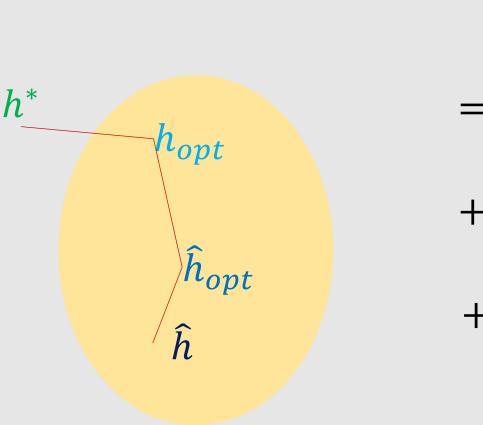
- Key quantity we care in machine learning: the error on the future data points (i.e., the expected error on the whole distribution)
- Divide the analysis of the expected error into steps:
 - What if full information (i.e., infinite data) and full computational power (i.e., can do optimization optimally)?
 - What if finite data but full computational power?
 - What if finite data and finite computational power?
- Example: error decomposition for prediction in supervised learning

Bottou, Léon, and Olivier Bousquet. "The tradeoffs of large scale learning." *Advances in neural information processing systems*. 2008.

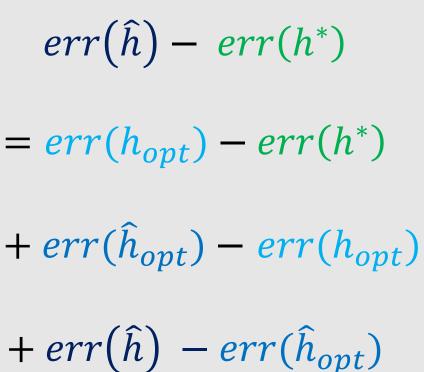


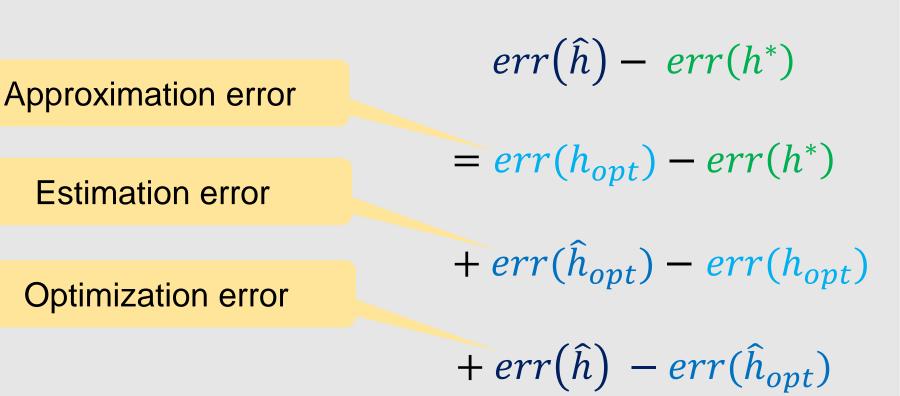
Hypothesis class *H*

- *h**: the optimal function (Bayes classifier)
- *h_{opt}*: the optimal hypothesis on the data distribution
- \hat{h}_{opt} : the optimal hypothesis on the training data
- \hat{h} : the hypothesis found by the learning algorithm



Hypothesis class H





"the fundamental theorem of machine learning"

- approximation error: due to problem modeling (the choice of hypothesis class)
- estimation error: due to finite data
- optimization error: due to imperfect optimization

$$err(\hat{h}) - err(h^*)$$

$$= err(h_{opt}) - err(h^*)$$

 $+ err(\hat{h}_{opt}) - err(h_{opt})$

$$+ err(\hat{h}) - err(\hat{h}_{opt})$$

More on estimation error

$$= err(\hat{h}_{opt}) - \hat{err} (\hat{h}_{opt})$$

$$+ \widehat{err} (\widehat{h}_{opt}) - \underbrace{err(h_{opt})}{}$$

$$\leq err(\hat{h}_{opt}) - \hat{err}(\hat{h}_{opt})$$

$$+ \widehat{err}(h_{opt}) - err(h_{opt})$$

$$\leq 2 \sup_{h \in H} |err(h) - \widehat{err}(h)|$$

Another (simpler) decomposition

$$err(\hat{h}) = \widehat{err}(\hat{h}) + \left[err(\hat{h}) - \widehat{err}(\hat{h})\right]$$

Generalization gap
$$\leq \widehat{err}(\hat{h}) + \sup_{h \in H} \left[err(h) - \widehat{err}(h)\right]$$

- The training error $\widehat{err}(\hat{h})$ is what we can compute
- Need to control the generalization gap

Bias-Variance Tradeoff

Defining bias and variance

- consider the task of learning a regression model f(x; D)given a training set $D = \{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
- a natural measure of the error of f is

$$E\left[\left(y-f(\mathbf{x};D)\right)^2 \mid D\right]$$

 indicates the dependency of model on D

where the expectation is taken with respect to the real-world distribution of instances

Defining bias and variance

• this can be rewritten as:

$$E\left[\left(y - f(\boldsymbol{x}; D)\right)^2 | \boldsymbol{x}, D\right] = E\left[\left(y - E[y | \boldsymbol{x}]\right)^2 | \boldsymbol{x}, D\right] + \left(f(\boldsymbol{x}; D) - E[y | \boldsymbol{x}]\right)^2$$

error of *f* as a predictor of *y*
noise: variance of *y* given *x*; doesn't depend on *D* or *f*

Defining bias and variance

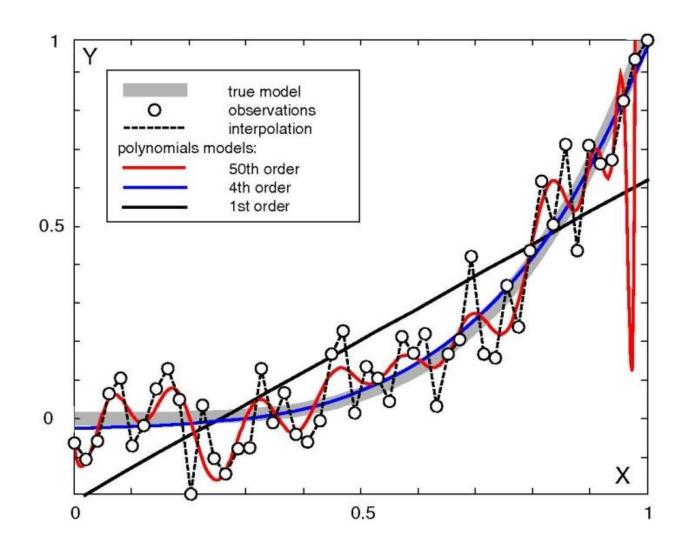
• now consider the expectation (over different data sets *D*) for the second term

$$E_{D}\left[\left(f(\boldsymbol{x}; D) - E[\boldsymbol{y} | \boldsymbol{x}]\right)^{2}\right] = \left(E_{D}\left[f(\boldsymbol{x}; D)\right] - E[\boldsymbol{y} | \boldsymbol{x}]\right)^{2} \qquad \text{bias} + E_{D}\left[\left(f(\boldsymbol{x}; D) - E_{D}\left[f(\boldsymbol{x}; D)\right]\right)^{2}\right] \qquad \text{variance}$$

- bias: if on average f(x; D) differs from E [y | x] then f(x; D) is a biased estimator of E [y | x]
- variance: f(x; D) may be sensitive to D and vary a lot from its expected value

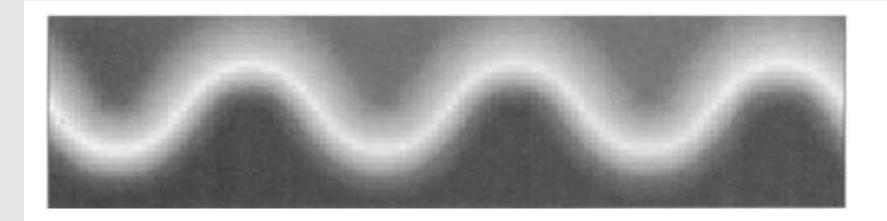
Bias/variance for polynomial interpolation

- the 1st order polynomial has high bias, low variance
- 50th order polynomial has low bias, high variance
- 4th order polynomial represents a good trade-off



Bias/variance trade-off for k-NN regression

 consider using k-NN regression to learn a model of this surface in a 2-dimensional feature space



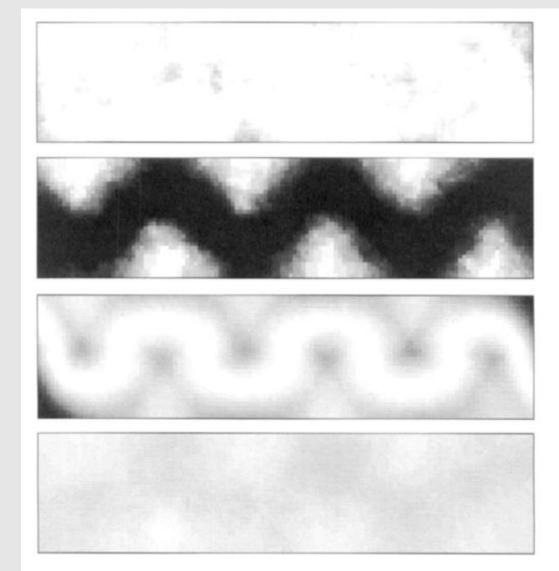
Bias/variance trade-off for k-NN regressio

bias for 1-NN

variance for 1-NN

bias for 10-NN

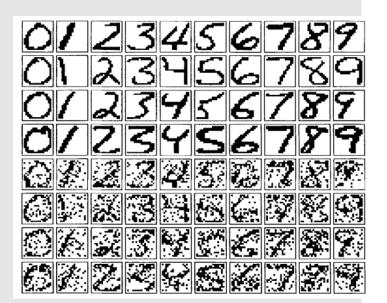
variance for 10-NN

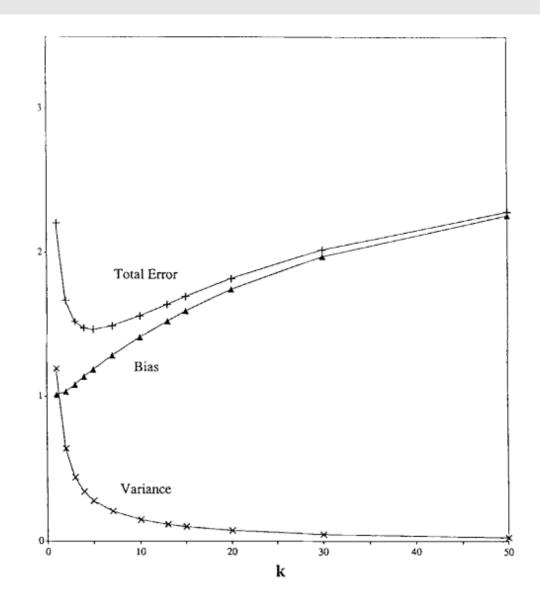


darker pixels correspond to higher values

Bias/variance trade-off

 consider k-NN applied to digit recognition





Bias/variance discussion

- predictive error has two controllable components
 - expressive/flexible learners reduce *bias*, but increase *variance*
- for many learners we can trade-off these two components (e.g. via our selection of k in k-NN)
- the optimal point in this trade-off depends on the particular problem domain and training set size
- this is not necessarily a strict trade-off; e.g. with ensembles we can often reduce bias and/or variance without increasing the other term

Bias/variance discussion

the bias/variance analysis

- helps explain why simple learners can outperform more complex ones
- helps understand and avoid overfitting

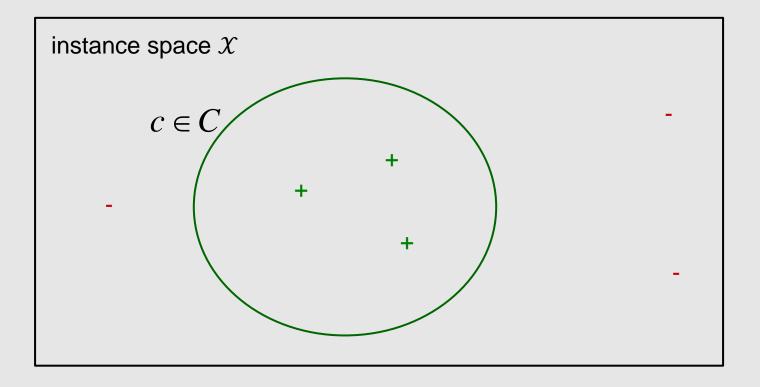
PAC Learning Theory

PAC learning

- Overfitting happens because training error is a poor estimate of generalization error
 - → Can we infer something about generalization error from training error?
- Overfitting happens when the learner doesn't see enough training instances

 \rightarrow Can we estimate how many instances are enough?

Learning setting



- set of instances x
- set of hypotheses (models) H
- set of possible target concepts *C*
- unknown probability distribution \mathcal{D} over instances

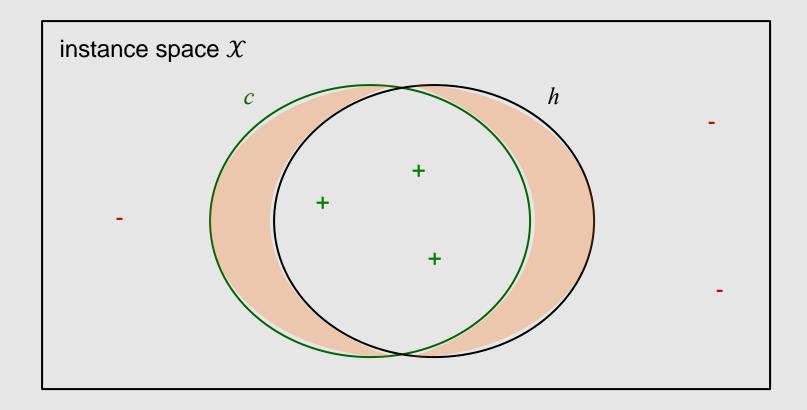
Learning setting

- learner is given a set D of training instances < x, c(x) > for some target concept c in C
 - each instance x is drawn from distribution \mathcal{D}
 - class label c(x) is provided for each x
- learner outputs hypothesis *h* modeling *c*

True error of a hypothesis

the *true error* of hypothesis *h* refers to how often *h* is wrong on future instances drawn from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv P_{x \in \mathcal{D}}[c(\mathbf{x}) \neq h(\mathbf{x})]$$



Training error of a hypothesis

the *training error* of hypothesis h refers to how often h is wrong on instances in the training set D

$$error_{D}(h) \equiv P_{x \in D}[c(x) \neq h(x)] = \frac{\sum_{x \in D} \delta(c(x) \neq h(x))}{|D|}$$

Can we bound $error_{\mathcal{D}}(h)$ in terms of $error_{\mathcal{D}}(h)$?

Is approximately correct good enough?

To say that our learner *L* has learned a concept, should we require $error_{\mathcal{D}}(h) = 0$?

this is not realistic:

- Unless we've seen every possible instance, there may be multiple hypotheses that are consistent with the training set
- there is some chance our training sample will be unrepresentative

Probably approximately correct learning?

Instead, we'll require that

- the error of a learned hypothesis h is bounded by some constant ε
- the probability of the learner failing to learn an accurate hypothesis is bounded by a constant δ

Probably Approximately Correct (PAC) (learning [Valiant, CACM 1984]

- Consider a class *C* of possible target concepts defined over a set of instances \mathcal{X} of length *n*, and a learner *L* using hypothesis space *H*
- *C* is PAC learnable by *L* using *H* if, for all

 $c \in C$ distributions \mathcal{D} over \mathcal{X} ε such that $0 < \varepsilon < 0.5$ δ such that $0 < \delta < 0.5$

• learner *L* will, with probability at least $(1-\delta)$, output a hypothesis $h \in H$ such that $error_{\mathcal{D}}(h) \leq \varepsilon$ in time that is polynomial in

 $\frac{1/\varepsilon}{1/\delta}$ nsize(c)

PAC learning and consistency

- Suppose we can find hypotheses that are consistent with *m* training instances.
- We can analyze PAC learnability by determining whether
 - *1. m* grows polynomially in the relevant parameters
 - 2. the processing time per training example is polynomial

Version spaces

 A hypothesis h is consistent with a set of training examples D of target concept if and only if h(x) = c(x) for each training example (x, c(x)) in D

$$consistent(h, D) \equiv (\forall \langle x, c(x) \rangle \in D) \ h(x) = c(x)$$

 The version space VS_{H,D} with respect to hypothesis space H and training set D, is the subset of hypotheses from H consistent with all training examples in D

$$VS_{H,D} \equiv \{h \in H \mid consistent(h, D)\}$$

Exhausting the version space

• The version space $VS_{H,D}$ is ε -exhausted with respect to cand D if every hypothesis $h \in VS_{H,D}$ has true error $< \varepsilon$

 $(\forall h \in VS_{H, D}) error_{\mathcal{D}}(h) < \varepsilon$

Exhausting the version space

- Suppose that every *h* in our version space *VS*_{*H*,D} is consistent with *m* training examples
- The probability that $VS_{H,D}$ is <u>not</u> ε -exhausted (i.e. that it contains some hypotheses that are not accurate enough)

$$\mathbb{E}|H|e^{-em}$$

Proof: $(1 - e)^m$ probability that some hypothesis with error > ε is consistent with *m* training instances

 $k(1 - e)^m$ there might be k such hypotheses

 $|H|(1-e)^m$ k is bounded by |H|

 $figle H = e^{-em}$ (1 - e) $figle e^{-e}$ when $0 figle e^{-e}$

Sample complexity for finite hypothesis spaces [Blumer et al., Information Processing Letters 1987]

- we want to reduce this probability below δ

 $|H|e^{-em} \in \mathcal{O}$

• solving for *m* we get

$$m \ge \frac{1}{e} \left(\ln|H| + \ln\left(\frac{1}{d}\right) \right)$$

log dependence on H ε has stronger influence than δ

PAC analysis example: learning conjunctions of Boolean literals

- each instance has *n* Boolean features
- learned hypotheses are of the form $Y = X_1 \wedge X_2 \wedge \neg X_5$

How many training examples suffice to ensure that with prob \ge 0.99, a consistent learner will return a hypothesis with error \le 0.05 ?

there are 3^n hypotheses (each variable can be present and unnegated, present and negated, or absent) in H

$$m \ge \frac{1}{.05} \left(\ln\left(3^n\right) + \ln\left(\frac{1}{.01}\right) \right)$$

for n=10, $m \ge 312$ for n=100, $m \ge 2290$

PAC analysis example: learning conjunctions of Boolean literals

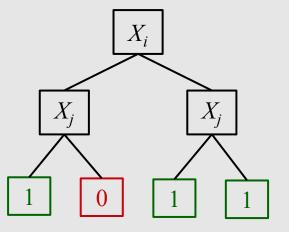
- we've shown that the sample complexity is polynomial in relevant parameters: $1/\epsilon$, $1/\delta$, *n*
- to prove that Boolean conjunctions are PAC learnable, need to also show that we can find a consistent hypothesis in polynomial time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

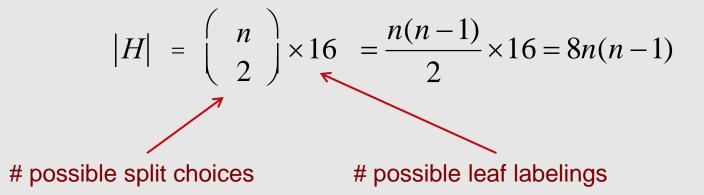
FIND-S:

initialize *h* to the most specific hypothesis $x_1 \wedge \neg x_1 \wedge x_2 \wedge \neg x_2 \dots x_n \wedge \neg x_n$ for each positive training instance *x* remove from *h* any literal that is not satisfied by *x* output hypothesis *h*

PAC analysis example: learning decision trees of depth 2

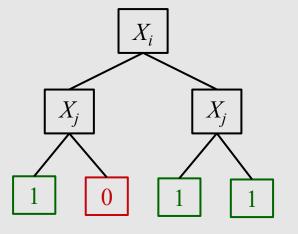
- each instance has *n* Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables





PAC analysis example: learning decision trees of depth 2

- each instance has *n* Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables



How many training examples suffice to ensure that with prob \geq 0.99, a consistent learner will return a hypothesis with error \leq 0.05 ?

$$m \ge \frac{1}{.05} \left(\ln \left(8n^2 - 8n \right) + \ln \left(\frac{1}{.01} \right) \right)$$

for $n=10, m \ge 224$ for $n=100, m \ge 318$

PAC analysis example: *K*-term DNF is not PAC learnable

- each instance has *n* Boolean features
- learned hypotheses are of the form $Y = T_1 \lor T_2 \lor \ldots \lor T_k$ where each T_i is a conjunction of *n* Boolean features or their negations

 $|H| \leq 3^{nk}$, so sample complexity is polynomial in the relevant parameters

$$m \ge \frac{1}{e} \left(nk \ln(3) + \ln\left(\frac{1}{d}\right) \right)$$

however, the computational complexity (time to find consistent h) is not polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be reduced to learning 3-term DNF)

Comments on PAC learning

- PAC analysis formalizes the learning task and allows for non-perfect learning (indicated by ε and δ)
 - Requires polynomial computational time
- finding a consistent hypothesis is sometimes easier for larger concept classes
 - e.g. although *k*-term DNF is not PAC learnable, the more general class *k*-CNF is
- PAC analysis has been extended to explore a wide range of cases
 - the target concept not in our hypothesis class: see optional material
 - infinite hypothesis class (VC-dimension theory): see optional material
 - noisy training data
 - learner allowed to ask queries
 - restricted distributions (e.g. uniform) over ${\cal D}$
 - etc.
- most analyses are worst case
- sample complexity bounds are generally not tight

Optional: More on PAC Learning Theory

What if the target concept is not in our hypothesis space?

- so far, we've been assuming that the target concept *c* is in our hypothesis space; this is not a very realistic assumption
- agnostic learning setting
 - don't assume $c \in H$
 - learner returns hypothesis h that makes fewest errors on training data

Hoeffding bound

- we can approach the agnostic setting by using the Hoeffding bound
- let $Z_1...Z_m$ be a sequence of *m* independent Bernoulli trials (e.g. coin flips), each with probability of success $E[Z_i] = p$
- let $S = Z_1 + \dots + Z_m$

$$P[S < (p - \varepsilon)m] \le e^{-2m\varepsilon^2}$$

Agnostic PAC learning

 applying the Hoeffding bound to characterize the error rate of a given hypothesis

$$P[error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h) + \varepsilon] \le e^{-2m\varepsilon^2}$$

• but our learner searches hypothesis space to find h_{best}

$$P[error_{\mathcal{D}}(h_{best}) > error_{\mathcal{D}}(h_{best}) + \varepsilon] \le |H|e^{-2m\varepsilon^2}$$

- solving for the sample complexity when this probability is limited to δ

$$m \ge \frac{1}{2\varepsilon^2} \left(ln|H| + ln\left(\frac{1}{\delta}\right) \right)$$

What if the hypothesis space is not finite?

• **Q:** If *H* is infinite (e.g. the class of perceptrons), what measure of hypothesis-space complexity can we use in place of |*H*| ?

• A: the largest subset of \mathcal{X} for which H can guarantee zero training error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

Shattering and the VC dimension

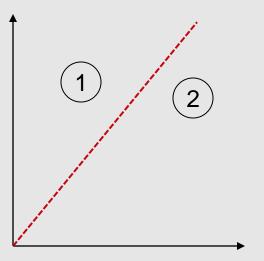
• a set of instances D is *shattered* by a hypothesis space *H* iff for every dichotomy of D there is a hypothesis in *H* consistent with this dichotomy

• the VC dimension of H is the size of the largest set of instances that is shattered by H

consider: *H* is set of lines in 2D (i.e. perceptrons in 2D feature space)

can find an h consistent with 1 instance no matter how it's labeled

can find an *h* consistent with 2 instances no matter labeling



consider: *H* is set of lines in 2D

can find an *h* consistent with 3 instances no matter labeling (assuming they're not colinear)

 $\underline{\text{cannot}}$ find an *h* consistent with 4 instances for some labelings

can shatter 3 instances, but not 4, so the VC-dim(H) = 3 more generally, the VC-dim of hyperplanes in n dimensions = n+1

for finite *H*, VC-dim(*H*) $\leq \log_2 |H|$

Proof:

suppose VC-dim(H) = d

for *d* instances, 2^d different labelings possible therefore *H* must be able to represent 2^d hypotheses $2^d \le |H|$ $d = \text{VC-dim}(H) \le \log_2|H|$

Sample complexity and the VC dimension

• using VC-dim(*H*) as a measure of complexity of *H*, we can derive the following bound [Blumer et al., *JACM* 1989]

$$m \ge \frac{1}{e} \left(4 \log_2 \left(\frac{2}{d} \right) + 8 \text{VC-dim}(H) \log_2 \left(\frac{13}{e} \right) \right)$$

m grows log \times linear in ε (better than earlier bound)

can be used for both finite and infinite hypothesis spaces

Lower bound on sample complexity [Ehrenfeucht et al., Information & Computation 1989]

• there exists a distribution \mathcal{D} and target concept in C such that if the number of training instances given to L

$$m < \max\left[\frac{1}{e}\log\left(\frac{1}{d}\right), \frac{\text{VC-dim}(C) - 1}{32e}\right]$$

then with probability at least δ , L outputs h such that $error_{D}(h) > \varepsilon$

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.