Introduction to Learning Theory
 CS760@UW-Madison

Goals for the lecture

you should understand the following concepts

- error decomposition
- bias-variance tradeoff
- PAC learnability
- consistent learners and version spaces
- sample complexity

Error Decomposition

How to analyze the generalization?

- Key quantity we care in machine learning: the error on the future data points (i.e., the expected error on the whole distribution)
- Divide the analysis of the expected error into steps:
- What if full information (i.e., infinite data) and full computational power (i.e., can do optimization optimally)?
- What if finite data but full computational power?
- What if finite data and finite computational power?
- Example: error decomposition for prediction in supervised learning
Bottou, Léon, and Olivier Bousquet. "The tradeoffs of large scale learning." Advances in neural information processing systems. 2008.

Error/risk decomposition

- h^{*} : the optimal function (Bayes classifier)
- $h_{\text {opt }}$: the optimal hypothesis on the data distribution
- $\hat{h}_{\text {opt }}$: the optimal hypothesis on the training data
\hat{h}
- \hat{h} : the hypothesis found by the learning algorithm

Error/risk decomposition

$$
\begin{aligned}
& \operatorname{err}(\hat{h})-\operatorname{err}\left(h^{*}\right) \\
= & \operatorname{err}\left(h_{o p t}\right)-\operatorname{err}\left(h^{*}\right) \\
+ & \operatorname{err}\left(\hat{h}_{o p t}\right)-\operatorname{err}\left(h_{o p t}\right) \\
+ & \operatorname{err}(\hat{h})-\operatorname{err}\left(\hat{h}_{o p t}\right)
\end{aligned}
$$

Hypothesis class H

Error/risk decomposition

Approximation error

$$
\operatorname{err}(\hat{h})-\operatorname{err}\left(h^{*}\right)
$$

Estimation error

$$
=\operatorname{err}\left(h_{o p t}\right)-\operatorname{err}\left(h^{*}\right)
$$

Optimization error

$$
+\operatorname{err}\left(\hat{h}_{o p t}\right)-\operatorname{err}\left(h_{o p t}\right)
$$

$$
+\operatorname{err}(\hat{h})-\operatorname{err}\left(\hat{h}_{o p t}\right)
$$

"the fundamental theorem of machine learning"

Error/risk decomposition

- approximation error: due to

$$
\begin{aligned}
& \operatorname{err}(\hat{h})-\operatorname{err}\left(h^{*}\right) \\
= & \operatorname{err}\left(h_{o p t}\right)-\operatorname{err}\left(h^{*}\right)
\end{aligned}
$$ problem modeling (the choice of hypothesis class)

- estimation error: due to finite data

$$
+\operatorname{err}\left(\hat{h}_{o p t}\right)-\operatorname{err}\left(h_{o p t}\right)
$$

- optimization error: due to imperfect optimization

$$
+\operatorname{err}(\hat{h})-\operatorname{err}\left(\hat{h}_{o p t}\right)
$$

More on estimation error

$$
\begin{aligned}
& \operatorname{err}\left(\hat{h}_{o p t}\right)-\operatorname{err}\left(h_{o p t}\right) \\
= & \operatorname{err}\left(\hat{h}_{o p t}\right)-\widehat{e r r}\left(\hat{h}_{o p t}\right) \\
& +\widehat{e r r}\left(\hat{h}_{o p t}\right)-\operatorname{err}\left(h_{o p t}\right) \\
\leq & \operatorname{err}\left(\hat{h}_{o p t}\right)-\widehat{e r r}\left(\hat{h}_{o p t}\right) \\
& +\widehat{\operatorname{err}}\left(h_{o p t}\right)-\operatorname{err}\left(h_{o p t}\right) \\
\leq & 2 \sup _{h \in H}|\operatorname{err}(h)-\widehat{\operatorname{err}}(h)|
\end{aligned}
$$

Another (simpler) decomposition

$$
\begin{aligned}
\operatorname{err}(\hat{h}) & =\widehat{\operatorname{err}}(\hat{h})+\underbrace{[\operatorname{err}(\hat{h})-\widehat{\operatorname{err}}(\hat{h})]}_{\text {Generalization gap }} \\
& \leq \widehat{\operatorname{err}}(\hat{h})+\sup _{h \in H}|\operatorname{err}(h)-\widehat{\operatorname{err}}(h)|
\end{aligned}
$$

- The training error $\widehat{e r r}(\hat{h})$ is what we can compute
- Need to control the generalization gap

Bias-Variance Tradeoff

0

Defining bias and variance

- consider the task of learning a regression model $f(x ; D)$ given a training set $D=\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(m)}, y^{(m)}\right)\right\}$
- a natural measure of the error of f is

$$
E\left[(y-f(\mathbf{x} ; D))^{2} \mid D\right]
$$

where the expectation is taken with respect to the real-world distribution of instances

Defining bias and variance

- this can be rewritten as:

$$
\begin{aligned}
E\left[\begin{array}{ll}
\left.\left(\begin{array}{ll}
y & f(\boldsymbol{x} ; D)
\end{array}\right)^{2} \right\rvert\, \boldsymbol{x}, D
\end{array}\right]= & E\left[\begin{array}{ll}
\left(\begin{array}{ll}
y & E[y \mid \boldsymbol{x}])^{2} \mid \boldsymbol{x}, D
\end{array}\right] \\
& +\left(\begin{array}{ll}
f(\boldsymbol{x} ; D) & E[y \mid \boldsymbol{x}]
\end{array}\right)^{2}
\end{array}\right.
\end{aligned}
$$

$\underline{\text { noise: }}$ variance of y given x; doesn't depend on D or f

Defining bias and variance

- now consider the expectation (over different data sets D) for the second term

$$
\begin{aligned}
E_{D}[(f(\boldsymbol{x} ; D) & \left.E[y \mid \boldsymbol{x}])^{2}\right]= & & \\
& \left(E_{D}[f(\boldsymbol{x} ; D)]\right. & E[y \mid \boldsymbol{x}])^{2} & \text { bias } \\
+E_{D}[(f(\boldsymbol{x} ; D) & \left.\left.E_{D}[f(\boldsymbol{x} ; D)]\right)^{2}\right] & & \text { variance }
\end{aligned}
$$

- bias: if on average $f(\boldsymbol{x} ; D)$ differs from $E[y \mid \boldsymbol{x}]$ then $f(\boldsymbol{x} ; D)$ is a biased estimator of $E[y \mid x]$
- variance: $f(\boldsymbol{x} ; D)$ may be sensitive to D and vary a lot from its expected value

Bias/variance for polynomial interpolation(1)

- the $1^{\text {st }}$ order polynomial has high bias, low variance
- $50^{\text {th }}$ order polynomial has low bias, high variance
- $4^{\text {th }}$ order polynomial represents a good trade-off

Bias/variance trade-off for k-NN regressio(1)

- consider using k-NN regression to learn a model of this surface in a 2-dimensional feature space

Bias/variance trade-off for k-NN regressio(1)

darker pixels correspond to higher values

variance for 1-NN

variance for $10-\mathrm{NN}$

Bias/variance trade-off

- consider k-NN applied to digit recognition

Bias/variance discussion

- predictive error has two controllable components
- expressive/flexible learners reduce bias, but increase variance
- for many learners we can trade-off these two components (e.g. via our selection of k in k-NN)
- the optimal point in this trade-off depends on the particular problem domain and training set size
- this is not necessarily a strict trade-off; e.g. with ensembles we can often reduce bias and/or variance without increasing the other term

Bias/variance discussion

the bias/variance analysis

- helps explain why simple learners can outperform more complex ones
- helps understand and avoid overfitting

PAC Learning Theory

PAC learning

- Overfitting happens because training error is a poor estimate of generalization error
\rightarrow Can we infer something about generalization error from training error?
- Overfitting happens when the learner doesn't see enough training instances
\rightarrow Can we estimate how many instances are enough?

Learning setting

- set of instances X
- set of hypotheses (models) H
- set of possible target concepts C
- unknown probability distribution \mathcal{D} over instances

Learning setting

- learner is given a set D of training instances $\langle\boldsymbol{x}, c(\boldsymbol{x})\rangle$ for some target concept c in C
- each instance \boldsymbol{x} is drawn from distribution \mathcal{D}
- class label $c(\boldsymbol{x})$ is provided for each \boldsymbol{x}
- learner outputs hypothesis h modeling c

True error of a hypothesis

the true error of hypothesis h refers to how often h is wrong on future instances drawn from \mathcal{D}

$$
\operatorname{error}_{\mathcal{D}}(h) \equiv P_{x \in \mathcal{D}}[c(\boldsymbol{x}) \neq h(\boldsymbol{x})]
$$

instance space X

Training error of a hypothesis

the training error of hypothesis h refers to how often h is wrong on instances in the training set D

$$
\operatorname{error}_{D}(h) \equiv P_{x \in D}[c(x) \neq h(x)]=\frac{\sum_{x \in D} \delta(c(x) \neq h(x))}{|D|}
$$

Can we bound $\operatorname{error}_{\mathcal{D}}(h)$ in terms of $\operatorname{error}_{\mathrm{D}}(h)$?

Is approximately correct good enough?

To say that our learner L has learned a concept, should we require error $_{\mathcal{D}}(h)=0$?
this is not realistic:

- unless we've seen every possible instance, there may be multiple hypotheses that are consistent with the training set
- there is some chance our training sample will be unrepresentative

Probably approximately correct learning?

Instead, we'll require that

- the error of a learned hypothesis h is bounded by some constant ε
- the probability of the learner failing to learn an accurate hypothesis is bounded by a constant δ

Probably Approximately Correct (PAC) learning [Valiant, CACM 1984]

- Consider a class C of possible target concepts defined over a set of instances X of length n, and a learner L using hypothesis space H
- C is PAC learnable by L using H if, for all
$c \in C$
distributions \mathcal{D} over \mathcal{X}
ε such that $0<\varepsilon<0.5$
δ such that $0<\delta<0.5$
- learner L will, with probability at least (1- δ), output a hypothesis $h \in H$ such that $\operatorname{error}_{\mathcal{D}}(h) \leq \varepsilon$ in time that is polynomial in
$1 / \varepsilon$
$1 / \delta$
n
size(c)

PAC learning and consistency

- Suppose we can find hypotheses that are consistent with m training instances.
- We can analyze PAC learnability by determining whether

1. m grows polynomially in the relevant parameters
2. the processing time per training example is polynomial

Version spaces

- A hypothesis h is consistent with a set of training examples D of target concept if and only if $h(\boldsymbol{x})=c(\boldsymbol{x})$ for each training example $\langle\boldsymbol{x}, c(\boldsymbol{x})\rangle$ in D

$$
\text { consistent }(h, D) \equiv(\forall\langle x, c(x)\rangle \in D) h(x)=c(x)
$$

- The version space $V S_{H, D}$ with respect to hypothesis space H and training set \mathbf{D}, is the subset of hypotheses from H consistent with all training examples in D

$$
V S_{H, D} \equiv\{h \in H \mid \text { consistent }(h, D)\}
$$

Exhausting the version space

- The version space $V S_{H, \mathrm{D}}$ is ε-exhausted with respect to c and D if every hypothesis $h \in V S_{H, D}$ has true error $<\varepsilon$

$$
\left(\forall h \in V S_{H, \mathrm{D}}\right) \operatorname{error}_{\mathcal{D}}(h)<\varepsilon
$$

Exhausting the version space

- Suppose that every h in our version space $V S_{H, \mathrm{D}}$ is consistent with m training examples
- The probability that $V S_{H, \mathrm{D}}$ is not ε-exhausted (i.e. that it contains some hypotheses that are not accurate enough)

$$
|H| e^{m}
$$

Proof:

$$
(1 \quad)^{m}
$$

probability that some hypothesis with error $>\varepsilon$ is consistent with m training instances
$k(1 \quad)^{m} \quad$ there might be k such hypotheses
$|H|(1 \quad)^{m} \quad k$ is bounded by $|H|$

$$
|H| e^{m} \quad(1 \quad) \quad e \quad \text { when } 0 \quad 1
$$

Sample complexity for finite hypothesis spaces

[Blumer et al., Information Processing Letters 1987]

- we want to reduce this probability below δ

$$
|H| e^{m}
$$

- solving for m we get

$$
m \geq \frac{1}{-}\left(\ln |H|+\ln \left(\frac{1}{-}\right)\right)
$$

PAC analysis example: learning conjunctions of Boolean literals

- each instance has n Boolean features
- learned hypotheses are of the form $Y=X_{1} \wedge X_{2} \wedge \neg X_{5}$

How many training examples suffice to ensure that with prob ≥ 0.99, a consistent learner will return a hypothesis with error ≤ 0.05 ?
there are 3^{n} hypotheses (each variable can be present and unnegated, present and negated, or absent) in H

$$
m \geq \frac{1}{.05}\left(\ln \left(3^{n}\right)+\ln \left(\frac{1}{.01}\right)\right)
$$

for $n=10, m \geq 312 \quad$ for $n=100, m \geq 2290$

PAC analysis example: learning conjunctions of Boolean literals

- we've shown that the sample complexity is polynomial in relevant parameters: $1 / \varepsilon, 1 / \delta, n$
- to prove that Boolean conjunctions are PAC learnable, need to also show that we can find a consistent hypothesis in polynomial time (the FIND-S algorithm in Mitchell, Chapter 2 does this)

Find-S:
initialize h to the most specific hypothesis $x_{1} \wedge \neg x_{1} \wedge x_{2} \wedge \neg x_{2} \ldots x_{n} \wedge \neg x_{n}$ for each positive training instance \boldsymbol{x}
remove from h any literal that is not satisfied by \boldsymbol{x}
output hypothesis h

PAC analysis example: learning decision trees of depth 2

- each instance has n Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

$$
|H|=\binom{n}{2} \times 16=\frac{n(n-1)}{2} \times 16=8 n(n-1)
$$

\# possible split choices

PAC analysis example: learning decision trees of depth 2

- each instance has n Boolean features
- learned hypotheses are DTs of depth 2 using only 2 variables

How many training examples suffice to ensure that with prob ≥ 0.99, a consistent learner will return a hypothesis with error ≤ 0.05 ?

$$
m \geq \frac{1}{.05}\left(\ln \left(8 n^{2} \quad 8 n\right)+\ln \left(\frac{1}{.01}\right)\right)
$$

for $n=10, m \geq 224$

$$
\text { for } n=100, m \geq 318
$$

PAC analysis example: K-term DNF is not PAC learnable

- each instance has n Boolean features
- learned hypotheses are of the form $Y=T_{1} \vee T_{2} \vee \ldots \vee T_{k}$ where each T_{i} is a conjunction of n Boolean features or their negations
$|H| \leq 3^{n k}$, so sample complexity is polynomial in the relevant parameters

$$
m \geq-\frac{1}{}\left(n k \ln (3)+\ln \left(\frac{1}{-}\right)\right)
$$

however, the computational complexity (time to find consistent h) is not polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be reduced to learning 3 -term DNF)

Comments on PAC learning

- PAC analysis formalizes the learning task and allows for non-perfect learning (indicated by ε and δ)
- Requires polynomial computational time
- finding a consistent hypothesis is sometimes easier for larger concept classes
- e.g. although k-term DNF is not PAC learnable, the more general class $k-\mathrm{CNF}$ is
- PAC analysis has been extended to explore a wide range of cases
- the target concept not in our hypothesis class: see optional material
- infinite hypothesis class (VC-dimension theory): see optional material
- noisy training data
- learner allowed to ask queries
- restricted distributions (e.g. uniform) over \mathcal{D}
- etc.
- most analyses are worst case
- sample complexity bounds are generally not tight

Optional: More on PAC Learning Theory

What if the target concept is not in our hypothesis space?

- so far, we've been assuming that the target concept c is in our hypothesis space; this is not a very realistic assumption
- agnostic learning setting
- don't assume $c \in H$
- learner returns hypothesis h that makes fewest errors on training data

Hoeffding bound

- we can approach the agnostic setting by using the Hoeffding bound
- let $Z_{1} \ldots Z_{m}$ be a sequence of m independent Bernoulli trials (e.g. coin flips), each with probability of success $E\left[Z_{i}\right]=p$
- let $S=Z_{1}+\cdots+Z_{m}$

$$
P[S<(p-\varepsilon) m] \leq e^{-2 m \varepsilon^{2}}
$$

Agnostic PAC learning

- applying the Hoeffding bound to characterize the error rate of a given hypothesis

$$
P\left[\operatorname{error}_{\mathcal{D}}(h)>\operatorname{error}_{D}(h)+\varepsilon\right] \leq e^{-2 m \varepsilon^{2}}
$$

- but our learner searches hypothesis space to find $h_{\text {best }}$

$$
P\left[\operatorname{error}_{\mathcal{D}}\left(h_{\text {best }}\right)>\operatorname{error}_{D}\left(h_{\text {best }}\right)+\varepsilon\right] \leq|H| e^{-2 m \varepsilon^{2}}
$$

- solving for the sample complexity when this probability is limited to δ

$$
m \geq \frac{1}{2 \varepsilon^{2}}\left(\ln |H|+\ln \left(\frac{1}{\delta}\right)\right)
$$

What if the hypothesis space is not finite?

- Q: If H is infinite (e.g. the class of perceptrons), what measure of hypothesis-space complexity can we use in place of $|H|$?
- A: the largest subset of X for which H can guarantee zero training error, regardless of the target function.
this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

Shattering and the VC dimension

- a set of instances D is shattered by a hypothesis space H iff for every dichotomy of \mathbf{D} there is a hypothesis in H consistent with this dichotomy
- the VC dimension of H is the size of the largest set of instances that is shattered by H

Infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)
can find an h consistent with 1 instance no matter how it's labeled

can find an h consistent with 2 instances no matter labeling

Infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D
can find an h consistent with 3 instances no matter labeling (assuming they're not colinear)

cannot find an h consistent with 4 instances for some labelings

can shatter 3 instances, but not 4 , so the VC-dim $(H)=3$ more generally, the VC-dim of hyperplanes in n dimensions $=n+1$

VC dimension for finite hypothesis spaces

for finite $H, \mathrm{VC}-\operatorname{dim}(H) \leq \log _{2}|H|$

Proof:
suppose VC-dim $(H)=d$
for d instances, 2^{d} different labelings possible
therefore H must be able to represent 2^{d} hypotheses
$2^{d} \leq|H|$
$d=\mathrm{VC}-\operatorname{dim}(H) \leq \log _{2}|H|$

Sample complexity and the VC dimension (1)

- using VC-dim (H) as a measure of complexity of H, we can derive the following bound [Blumer et al., JACM 1989]

$$
m \geq \frac{1}{-}\left(4 \log _{2}\left(\frac{2}{}\right)+8 \mathrm{VC}-\operatorname{dim}(H) \log _{2}\left(\frac{13}{}\right)\right)
$$

m grows $\log \times$ linear in ε (better than earlier bound)
can be used for both finite and infinite hypothesis spaces
[Ehrenfeucht et al., Information \& Computation 1989]

- there exists a distribution \mathcal{D} and target concept in C such that if the number of training instances given to L

$$
m<\max \left[\frac{1}{-} \log \left(\frac{1}{}\right), \frac{\mathrm{VC}-\operatorname{dim}(C) \quad 1}{32}\right]
$$

then with probability at least δ, L outputs h such that error $_{\mathrm{D}}(h)>\varepsilon$

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.

