
Introduction to Learning Theory
CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

• error decomposition

• bias-variance tradeoff

• PAC learnability

• consistent learners and version spaces

• sample complexity

Error Decomposition

How to analyze the generalization?

• Key quantity we care in machine learning: the error on

the future data points (i.e., the expected error on the

whole distribution)

• Divide the analysis of the expected error into steps:

• What if full information (i.e., infinite data) and full

computational power (i.e., can do optimization

optimally)?

• What if finite data but full computational power?

• What if finite data and finite computational power?

• Example: error decomposition for prediction in

supervised learning

Bottou, Léon, and Olivier Bousquet. "The tradeoffs of large scale

learning." Advances in neural information processing systems. 2008.

Error/risk decomposition

• ℎ∗: the optimal function
(Bayes classifier)

• ℎ𝑜𝑝𝑡: the optimal hypothesis
on the data distribution

• ℎ𝑜𝑝𝑡: the optimal hypothesis
on the training data

• ℎ: the hypothesis found by
the learning algorithm

ℎ∗
ℎ𝑜𝑝𝑡

ℎ𝑜𝑝𝑡

ℎ

Hypothesis class 𝐻

Error/risk decomposition

𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟 ℎ∗

= 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟 ℎ∗

+ 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

+ 𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

ℎ∗
ℎ𝑜𝑝𝑡

ℎ𝑜𝑝𝑡

ℎ

Hypothesis class 𝐻

Error/risk decomposition

Approximation error

Estimation error

Optimization error

“the fundamental theorem of machine learning”

𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟 ℎ∗

= 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟 ℎ∗

+ 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

+ 𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

Error/risk decomposition

𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟 ℎ∗

= 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟 ℎ∗

+ 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

+ 𝑒𝑟𝑟 ℎ − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

• approximation error: due to

problem modeling (the choice of

hypothesis class)

• estimation error: due to finite

data

• optimization error: due to

imperfect optimization

More on estimation error

𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

= 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − ෞ𝑒𝑟𝑟 (ℎ𝑜𝑝𝑡)

+ ෞ𝑒𝑟𝑟 (ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

≤ 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡) − ෞ𝑒𝑟𝑟 (ℎ𝑜𝑝𝑡)

+ ෞ𝑒𝑟𝑟 (ℎ𝑜𝑝𝑡) − 𝑒𝑟𝑟(ℎ𝑜𝑝𝑡)

≤ 2 sup
ℎ∈𝐻

|𝑒𝑟𝑟(ℎ) − ෞ𝑒𝑟𝑟(ℎ)|

Another (simpler) decomposition

𝑒𝑟𝑟 ℎ = ෞ𝑒𝑟𝑟 ℎ + 𝑒𝑟𝑟 ℎ − ෞ𝑒𝑟𝑟 ℎ

≤ ෞ𝑒𝑟𝑟 ℎ + sup
ℎ∈𝐻

|𝑒𝑟𝑟(ℎ) − ෞ𝑒𝑟𝑟(ℎ)|

• The training error ෞ𝑒𝑟𝑟 ℎ is what we can compute

• Need to control the generalization gap

Generalization gap

Bias-Variance Tradeoff

Defining bias and variance

• consider the task of learning a regression model

given a training set

• a natural measure of the error of f is

() DDfyE |) ;(
2

x−

f (x; D)

where the expectation is taken with respect to the

real-world distribution of instances

indicates the

dependency of

model on D

),(),...,,()()()1()1(mm yxyxD =

Defining bias and variance

• this can be rewritten as:

E y - f (x; D)()
2

| x, D[] = E y - E[y | x]()
2

| x, D[]
 + f (x; D) - E[y | x]()

2

noise: variance of y given x;

doesn’t depend on D or f
error of f as a predictor of y

Defining bias and variance

ED f (x; D) - E[y | x]()
2[] =

 ED f (x; D)[] - E y | x[]()
2

 + ED f (x; D) - ED f (x; D)[]()
2

[] variance

bias

• bias: if on average f (x; D) differs from E [y | x] then f (x; D) is a biased

estimator of E [y | x]

• variance: f (x; D) may be sensitive to D and vary a lot from its

expected value

• now consider the expectation (over different data sets D) for the

second term

Bias/variance for polynomial interpolation

• the 1st order

polynomial has high

bias, low variance

• 50th order polynomial

has low bias, high

variance

• 4th order polynomial

represents a good

trade-off

Bias/variance trade-off for k-NN regression

• consider using k-NN regression to learn a model of this

surface in a 2-dimensional feature space

bias for 1-NN

variance for 1-NN

variance for 10-NN

bias for 10-NN

darker pixels

correspond to

higher values

Bias/variance trade-off for k-NN regression

Bias/variance trade-off

• consider k-NN applied

to digit recognition

Bias/variance discussion

• predictive error has two controllable components

• expressive/flexible learners reduce bias, but increase
variance

• for many learners we can trade-off these two components
(e.g. via our selection of k in k-NN)

• the optimal point in this trade-off depends on the particular
problem domain and training set size

• this is not necessarily a strict trade-off; e.g. with ensembles
we can often reduce bias and/or variance without increasing
the other term

Bias/variance discussion

the bias/variance analysis

• helps explain why simple learners can outperform more
complex ones

• helps understand and avoid overfitting

PAC Learning Theory

PAC learning

• Overfitting happens because training error is a poor

estimate of generalization error

→ Can we infer something about generalization error

from training error?

• Overfitting happens when the learner doesn’t see

enough training instances

→ Can we estimate how many instances are enough?

Learning setting

instance space 𝒳

+

+

+

-

-

-

• set of instances 𝒳

• set of hypotheses (models) H

• set of possible target concepts C

• unknown probability distribution 𝒟 over instances

Cc

Learning setting

• learner is given a set D of training instances 〈 x, c(x) 〉
for some target concept c in C

• each instance x is drawn from distribution 𝒟

• class label c(x) is provided for each x

• learner outputs hypothesis h modeling c

True error of a hypothesis

c h

instance space 𝒳

+

+

+

-

-

-

the true error of hypothesis h refers to how often h is wrong on future instances

drawn from 𝒟

Training error of a hypothesis

the training error of hypothesis h refers to how often h is wrong on instances in

the training set D

Can we bound error𝒟(h) in terms of errorD(h) ?

||

))()((

)]()([)(
D

xhxc

xhxcPherror Dx
DxD

=

Is approximately correct good enough?

To say that our learner L has learned a concept, should we require

error𝒟(h) = 0 ?

this is not realistic:

• unless we’ve seen every possible instance, there may be multiple

hypotheses that are consistent with the training set

• there is some chance our training sample will be unrepresentative

Probably approximately correct learning?

Instead, we’ll require that

• the error of a learned hypothesis h is bounded by some constant ε

• the probability of the learner failing to learn an accurate hypothesis is

bounded by a constant δ

Probably Approximately Correct (PAC)
learning [Valiant, CACM 1984]

• Consider a class C of possible target concepts defined over a set of
instances 𝒳 of length n, and a learner L using hypothesis space H

• C is PAC learnable by L using H if, for all

c∈ C

distributions 𝒟 over 𝒳

ε such that 0 < ε < 0.5

δ such that 0 < δ < 0.5

• learner L will, with probability at least (1-δ), output a hypothesis h ∈ H
such that error𝒟(h) ≤ ε in time that is polynomial in

1/ε

1/δ

n

size(c)

PAC learning and consistency

• Suppose we can find hypotheses that are consistent with
m training instances.

• We can analyze PAC learnability by determining whether

1. m grows polynomially in the relevant parameters

2. the processing time per training example is
polynomial

Version spaces

• A hypothesis h is consistent with a set of training examples D of
target concept if and only if h(x) = c(x) for each training example
〈 x, c(x) 〉 in D

• The version space VSH,D with respect to hypothesis space H and

training set D, is the subset of hypotheses from H consistent with all

training examples in D

)()())(,(),(xcxhDxcxDhconsistent =

)},(|{, DhconsistentHhVS DH

Exhausting the version space

• The version space VSH,D is ε-exhausted with respect to c

and D if every hypothesis h ∈ VSH,D has true error < ε

Exhausting the version space

• Suppose that every h in our version space VSH,D is consistent with m

training examples

• The probability that VSH,D is not ε-exhausted (i.e. that it contains some

hypotheses that are not accurate enough)

£ H e-em

k(1- e)m there might be k such hypotheses

H (1- e)m k is bounded by |H|

 (1- e) £ e-e when 0 £ e £1£ H e-em

(1- e)m
probability that some hypothesis with error > ε

is consistent with m training instances
Proof:

Sample complexity for finite hypothesis spaces
[Blumer et al., Information Processing Letters 1987]

• we want to reduce this probability below δ

H e-em £ d

m ³
1

e
ln H + ln

1

d

æ

èç
ö

ø÷
æ

èç
ö

ø÷

• solving for m we get

log dependence on H ε has stronger influence than δ

PAC analysis example:
learning conjunctions of Boolean literals

• each instance has n Boolean features

• learned hypotheses are of the form

How many training examples suffice to ensure that with prob ≥ 0.99, a

consistent learner will return a hypothesis with error ≤ 0.05 ?

there are 3n hypotheses (each variable can be present and unnegated, present

and negated, or absent) in H

m ³
1

.05
ln 3n() + ln

1

.01

æ

èç
ö

ø÷
æ

èç
ö

ø÷

for n=10, m ≥ 312 for n=100, m ≥ 2290

521 XXXY =

• we’ve shown that the sample complexity is polynomial in relevant

parameters: 1/ε, 1/δ, n

• to prove that Boolean conjunctions are PAC learnable, need to also

show that we can find a consistent hypothesis in polynomial time (the

FIND-S algorithm in Mitchell, Chapter 2 does this)

FIND-S:

initialize h to the most specific hypothesis x1 ∧ ¬x1 ∧ x2∧¬x2 … xn∧ ¬xn

for each positive training instance x

remove from h any literal that is not satisfied by x

output hypothesis h

PAC analysis example:
learning conjunctions of Boolean literals

PAC analysis example:
learning decision trees of depth 2

• each instance has n Boolean features

• learned hypotheses are DTs of depth 2

using only 2 variables

H =
n

2

æ

èç

ö

ø÷
´16

Xi

Xj Xj

1 0 1 1

possible split choices # possible leaf labelings

)1(816
2

)1(
−=

−
= nn

nn

• each instance has n Boolean features

• learned hypotheses are DTs of depth 2

using only 2 variables

How many training examples suffice to ensure that with prob ≥ 0.99, a

consistent learner will return a hypothesis with error ≤ 0.05 ?

m ³
1

.05
ln 8n2 - 8n() + ln

1

.01

æ

èç
ö

ø÷
æ

èç
ö

ø÷

for n=10, m ≥ 224 for n=100, m ≥ 318

Xi

Xj Xj

1 0 1 1

PAC analysis example:
learning decision trees of depth 2

PAC analysis example:
K-term DNF is not PAC learnable

• each instance has n Boolean features

• learned hypotheses are of the form where

each Ti is a conjunction of n Boolean features or their negations

|H| ≤ 3nk , so sample complexity is polynomial in the relevant parameters

m ³
1

e
nk ln(3) + ln

1

d

æ

èç
ö

ø÷
æ

èç
ö

ø÷

however, the computational complexity (time to find consistent h) is not

polynomial in m (e.g. graph 3-coloring, an NP-complete problem, can be

reduced to learning 3-term DNF)

kTTTY = ...21

Comments on PAC learning

• PAC analysis formalizes the learning task and allows for non-perfect
learning (indicated by ε and δ)

• Requires polynomial computational time

• finding a consistent hypothesis is sometimes easier for larger concept
classes

• e.g. although k-term DNF is not PAC learnable, the more general
class k-CNF is

• PAC analysis has been extended to explore a wide range of cases
• the target concept not in our hypothesis class: see optional material
• infinite hypothesis class (VC-dimension theory): see optional material
• noisy training data
• learner allowed to ask queries
• restricted distributions (e.g. uniform) over 𝒟
• etc.

• most analyses are worst case

• sample complexity bounds are generally not tight

Optional: More on PAC
Learning Theory

What if the target concept is not in our
hypothesis space?

• so far, we’ve been assuming that the target concept c is in our
hypothesis space; this is not a very realistic assumption

• agnostic learning setting
• don’t assume c ∈ H
• learner returns hypothesis h that makes fewest errors on training

data

Hoeffding bound

• we can approach the agnostic setting by using the Hoeffding bound

• let 𝑍1…𝑍𝑚 be a sequence of 𝑚 independent Bernoulli trials (e.g. coin
flips), each with probability of success 𝐸 𝑍𝑖 = 𝑝

• let 𝑆 = 𝑍1 +⋯+ 𝑍𝑚

𝑃 𝑆 < 𝑝 − 휀 𝑚 ≤ 𝑒−2𝑚𝜀2

Agnostic PAC learning

• applying the Hoeffding bound to characterize the error rate of a given
hypothesis

𝑃 𝑒𝑟𝑟𝑜𝑟𝒟 ℎ > 𝑒𝑟𝑟𝑜𝑟D ℎ + 휀 ≤ 𝑒−2𝑚𝜀2

• but our learner searches hypothesis space to find ℎ𝑏𝑒𝑠𝑡

𝑃 𝑒𝑟𝑟𝑜𝑟𝒟 ℎ𝑏𝑒𝑠𝑡 > 𝑒𝑟𝑟𝑜𝑟D ℎ𝑏𝑒𝑠𝑡 + 휀 ≤ 𝐻 𝑒−2𝑚𝜀2

• solving for the sample complexity when this probability is limited to 𝛿

𝑚 ≥
1

2휀2
𝑙𝑛 𝐻 + 𝑙𝑛

1

𝛿

What if the hypothesis space is not finite?

• Q: If H is infinite (e.g. the class of perceptrons), what measure of
hypothesis-space complexity can we use in place of |H| ?

• A: the largest subset of 𝒳 for which H can guarantee zero training
error, regardless of the target function.

this is known as the Vapnik-Chervonenkis dimension (VC-dimension)

• a set of instances D is shattered by a hypothesis space H iff for

every dichotomy of D there is a hypothesis in H consistent with

this dichotomy

• the VC dimension of H is the size of the largest set of instances

that is shattered by H

Shattering and the VC dimension

Infinite hypothesis space with a finite VC dimension

consider: H is set of lines in 2D (i.e. perceptrons in 2D feature space)

1

can find an h consistent with 1 instance

no matter how it’s labeled

1

can find an h consistent with 2

instances no matter labeling

2

consider: H is set of lines in 2D

1

can find an h consistent with 3

instances no matter labeling (assuming

they’re not colinear)

2

3

+

cannot find an h consistent with 4

instances for some labelings

-

-

+

can shatter 3 instances, but not 4, so the VC-dim(H) = 3

more generally, the VC-dim of hyperplanes in n dimensions = n+1

Infinite hypothesis space with a finite VC dimension

VC dimension for finite hypothesis spaces

for finite H, VC-dim(H) ≤ log2|H|

Proof:

suppose VC-dim(H) = d

for d instances, 2d different labelings possible

therefore H must be able to represent 2d hypotheses

2d ≤ |H|

d = VC-dim(H) ≤ log2|H|

Sample complexity and the VC dimension

• using VC-dim(H) as a measure of complexity of H, we can derive the
following bound [Blumer et al., JACM 1989]

m ³
1

e
4 log2

2

d

æ

èç
ö

ø÷
+ 8VC-dim(H)log2

13

e

æ

èç
ö

ø÷
æ

èç
ö

ø÷

can be used for both finite and infinite hypothesis spaces

m grows log × linear in ε (better than earlier bound)

Lower bound on sample complexity
[Ehrenfeucht et al., Information & Computation 1989]

• there exists a distribution 𝒟 and target concept in C such that if the
number of training instances given to L

m < max
1

e
log

1

d

æ

èç
ö

ø÷
,
VC-dim(C)-1

32e

é

ë
ê

ù

û
ú

then with probability at least δ, L outputs h such that errorD(h) > ε

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,

and Pedro Domingos.

