Bayesian Networks Part 1

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

- the Bayesian network representation
- inference by enumeration
- Introduce the learning tasks for Bayes nets

- Consider the following 5 binary random variables:
 - B = a burglary occurs at your house
 - E = an earthquake occurs at your house
 - A = the alarm goes off
 - J = John calls to report the alarm
 - M = Mary calls to report the alarm
- Suppose Burglary or Earthquake can trigger Alarm, and Alarm can trigger John's call or Mary's call
- Now we want to answer queries like what is $P(B \mid M, J)$?

Bayesian network example (different parameters)

- a BN consists of a Directed Acyclic Graph (DAG) and a set of conditional probability distributions
- in the DAG
 - each node denotes random a variable
 - each edge from *X* to *Y* represents that *X* directly influences *Y*
 - (formally: each variable *X* is independent of its nondescendants given its parents)
- each node X has a conditional probability distribution (CPD) representing P(X | Parents(X))

 using the chain rule, a joint probability distribution can always be expressed as

$$P(X_1,...,X_n) = P(X_1) \prod_{i=2}^n P(X_i \mid X_1,...,X_{i-1})$$

• a BN provides a compact representation of a joint probability distribution. It corresponds to the assumption:

$$P(X_1,...,X_n) = P(X_1) \prod_{i=2}^n P(X_i | Parents(X_i))$$

- a standard representation of the joint distribution for the Alarm example has 2⁵ = 32 parameters
- the BN representation of this distribution has 20 parameters

- consider a case with 10 binary random variables
- How many parameters does a BN with the following graph structure have?

How many parameters does the standard table representation of the joint distribution have?

Advantages of Bayesian network representation

- Captures independence and conditional independence where they exist
- Encodes the relevant portion of the full joint among variables where dependencies exist
- Uses a graphical representation which lends insight into the complexity of inference

Inference

0

- **Given**: values for some variables in the network (*evidence*), and a set of *query* variables
- **Do**: compute the posterior distribution over the query variables

- variables that are neither evidence variables nor query variables are *hidden* variables
- the BN representation is flexible enough that any set can be the evidence variables and any set can be the query variables

Inference by enumeration

- let *a* denote A=true, and $\neg a$ denote A=false
- suppose we're given the query: P(b | j, m)

"probability the house is being burglarized given that John and Mary both called"

• from the graph structure we can first compute:

Inference by enumeration

Inference by enumeration

- now do equivalent calculation for $P(\neg b, j, m)$
- and determine P(b | j, m)

$$P(b \mid j,m) = \frac{P(b, j,m)}{P(j,m)} = \frac{P(b, j,m)}{P(b, j,m) + P(\neg b, j,m)}$$

Comments on BN inference

- *inference by enumeration* is an *exact* method (i.e. it computes the exact answer to a given query)
- it requires summing over a joint distribution whose size is exponential in the number of variables
- in many cases we can do exact inference efficiently in large networks
 - key insight: save computation by pushing sums inward
- in general, the Bayes net inference problem is NP-hard
- there are also methods for approximate inference these get an answer which is "close"
- in general, the approximate inference problem is NP-hard also, but approximate methods work well for many real-world problems

Learning

Ø

The parameter learning task

Given: a set of training instances, the graph structure of a BN

• Do: infer the parameters of the CPDs

The structure learning task

• Given: a set of training instances

В	Е	А	J	М
f	f	f	t	f
f	t	f	f	f
f	f	t	f	t
		•••		

• Do: infer the graph structure (and perhaps the parameters of the CPDs too)

Parameter learning and MLE

- maximum likelihood estimation (MLE)
 - given a model structure (e.g. a Bayes net graph) G and a set of data D
 - set the model parameters θ to maximize $P(D \mid G, \theta)$

• i.e. make the data D look as likely as possible under the model $P(D \mid G, \theta)$

Maximum likelihood estimation review

consider trying to estimate the parameter θ (probability of heads) of a biased coin from a sequence of flips (1 stands for head)

 $\boldsymbol{x} = \{1, 1, 1, 0, 1, 0, 0, 1, 0, 1\}$

the likelihood function for θ is given by:

$$L(\theta: x_1, \dots, x_n) = \theta^{x_1} (1-\theta)^{1-x_1} \cdots \theta^{x_n} (1-\theta)^{1-x_n}$$
$$= \theta^{\sum x_i} (1-\theta)^{n-\sum x_i}$$

What's MLE of the parameter?

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.