


Goals for the lecture

you should understand the following concepts
« the Bayesian network representation
» Inference by enumeration
* Introduce the learning tasks for Bayes nets



Bayesian network example

 Consider the following 5 binary random variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J = John calls to report the alarm
M = Mary calls to report the alarm

« Suppose Burglary or Earthquake can trigger Alarm, and Alarm
can trigger John's call or Mary’s call

* Now we want to answer queries like whatis P(B | M, J) ?
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Bayesian network example @
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Bayesian network example (different parameters) @
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Bayesian networks

« a BN consists of a Directed Acyclic Graph (DAG) and
a set of conditional probability distributions

* In the DAG
* each node denotes random a variable

» each edge from X to Y represents that X directly
Influences Y

* (formally: each variable X is independent of its non-
descendants given its parents)

e each node X has a conditional probability distribution
(CPD) representing P(X | Parents(X) )



Bayesian networks

« using the chain rule, a joint probability distribution can
always be expressed as

P(X...,X,)= P(Xl)ﬁ P(X, | X,,.... X. )

- a BN provides a compact representation of a joint
probability distribution. It corresponds to the assumption:

P(X...,X,)= P(Xl)ﬁ P(X. | Parents(X.))




Bayesian networks ]

Burglary Earthquake

P(B,E,A J,M)
=P(B)

x P(E)

x P(A|B,E)
xP(J|A)

x P(M | A)

 a standard representation of the joint distribution for the Alarm
example has 2° = 32 parameters

« the BN representation of this distribution has 20 parameters



Bayesian networks

e consider a case with 10 binary random variables

 How many parameters does a BN with the following
graph structure have?

 How many parameters does the standard table
representation of the joint distribution have?



Advantages of Bayesian network representatior@

« Captures independence and conditional independence
where they exist

* Encodes the relevant portion of the full joint among
variables where dependencies exist

» Uses a graphical representation which lends insight into
the complexity of inference
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The Iinference task in Bayesian networks @

Given: values for some variables in the network (evidence),
and a set of query variables

Do: compute the posterior distribution over the query
variables

- variables that are neither evidence variables nor query
variables are hidden variables

- the BN representation is flexible enough that any set can
be the evidence variables and any set can be the query
variables



Inference by enumeration @

* let « denote A=true, and —a denote A=false
* suppose we're given the query: P(b | ], m)

“probability the house is being burglarized given that John
and Mary both called”

« from the graph structure we can first compute:

(&) (&) Pbj,m)=2 > P(b)P(E)P(A|b,E)P(j|A)P(M|A)

e,—ea,—a

(sum over possible

values for £ and 4

o @ variables (e, —e, a, —a)



Inference by enumeration

P(b, j,m) = > P(b)P(E)P(A|b,E)P(j|A)P(m|A)
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Inference by enumeration

* now do equivalent calculation for P(—b, j, m)
- and determine P(b | j, m)

P, J,m) _ P(b, j,m)

PO =55 ) T P, um) + P(=b, j.m)



Comments on BN inference @

* inference by enumeration is an exact method (i.e. it computes the exact
answer to a given query)

* it requires summing over a joint distribution whose size is exponential in
the number of variables

* in many cases we can do exact inference efficiently in large networks
* key insight: save computation by pushing sums inward
* in general, the Bayes net inference problem is NP-hard

- there are also methods for approximate inference — these get an
answer which is “close”

* in general, the approximate inference problem is NP-hard also, but
approximate methods work well for many real-world problems
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The parameter learning task @

 Given: a set of training instances, the graph structure of a BN

Burglary Earthquake

—h =h =h | U
—-h ~ =h | [T]

* Do: infer the parameters of the CPDs



The structure learning task

 Given: a set of training instances

B E A
f f f
f t f
f f t

—_—t =l o~ |

M
f
f
t

 Do: infer the graph structure (and perhaps the parameters
of the CPDs t00)



Parameter learning and MLE

* maximum likelihood estimation (MLE)

e given a model structure (e.g. a Bayes net graph) G
and a set of data D

* set the model parameters 6 to maximize P(D | G, 0)

 |.e. make the data D look as likely as possible under the
model P(D | G, 6)




Maximum likelihood estimation review

consider trying to estimate the parameter 4 (probability of heads) of a
biased coin from a sequence of flips (1 stands for head)

x={1,110,1,0,0,1,0,1}

the likelihood function for 6 is given by:
L(Q e X{seen ,xn) = (1 _ 9)1—x1 e @ (1 _ G)I—xn
— QZXi (1 . 9)”_2)@'

What's MLE of the parameter?



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
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