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Goals for the lecture (]

you should understand the following concepts
 the relationship between logistic regression and Naive Bayes
 the relationship between discriminative and generative learning

« when discriminative/generative is likely to learn more accurate
models
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Discriminative vs. Generative

Discriminative approach:
* hypothesis h € H directly predicts the label given the features
y = h(x) or more generally, p(y|x) = h(x)
* then define a loss function L(h) and find hypothesis with min. loss

Generative approach:

 hypothesis h € H specifies a generative story for how the data was
created:
p(x,y) = h(x,y)

* then pick a hypothesis by maximum likelihood estimation (MLE) or
Maximum A Posteriori (MAP)



Summary:. generative approach

 Step 1: specify the joint data distribution (generative story)
» Step 2: use MLE or MAP for training
« Step 3: use Bayes’ rule for inference on test instances

« Example: Naive Bayes (conditional independence)

p(y) = PO ly) =0 | [pCuly)



Summary: discriminative approach

 Step 1: specify the hypothesis class
 Step 2: specify the loss
 Step 3: design optimization algorithm for training

How to design the hypotheses and the loss? Can design by a
generative approach!

 Step 0: specify p(x|y) and p(y)
« Step 1: compute hypotheses p(y|x) using Bayes’ rule

 Step 2: use conditional MLE to derive the negative log-
likelihood loss (or use MAP to derive the loss)

 Step 3: design optimization algorithm for training

« Example: logistic regression



Logistic regression

» Suppose the class-conditional densities p(x|y) is normal

1 1
p(xly) = p(xlY = y) = N(x|uy, I) = (2m)arz &P {_E“x - “YHZ}

* Then conditional probability by Bayes’ rule:

px|Y =y)p(Y =y) _ exp(ay)
L px|Y =k)p(Y =k) X exp(ag)

p(Y =y|x) =

where
T

1
a, =1In[px|Y = k)p(Y = k)] = —ExTx + (Wk) x + bk
with
1

W=, b= =S +Inp(Y = k) +1n

(2n)d/2



Logistic regression

» Suppose the class-conditional densities p(x|y) is normal

1 1
p(xly) = p(xlY = y) = N(x|uy, I) = (2m)arz &P {_E“x - “YHZ}

1
« Cancel out _ExTx’ we have

exp(a,) T
Y = ylx) = , a, = (wk) x + b
L e
where
= bk——lT +Inp(Y =k) +1
w= = Uy, — 7 Ui Uk np - n (27T)d/2



Logistic regression: summary

» Suppose the class-conditional densities p(x|y) is normal

1 1
p(xly) = p(x|Y = y) = N(x|uy, 1) = (2m)arz &P {‘E“x N ”‘y”z}

* Then
exp( W) x + bY)

p(Y =yl|x) = 3 exp( (wK)Tx + bk)
which is the hypothesis class for multiclass logistic regression

» Training: find parameters {w’”, b} that minimize the negative
log-likelihood loss

m
1 . .
R — v |4 U)
m ;:1: logp(y y |x )
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Connecting Naive Bayes and logistic regression@

* Interesting observation: logistic regression is derived from the
generative story

1 1 2
plxly) = pGlY = y) = N(xluy, 1) = 5 ~az exp ~3 |l =] }

1 1
- g | o3’

which is a special case of Naive Bayes!

* |s the general Naive Bayes assumption enough to get logistic
regression? (Instead of the more special Normal distribution
assumption)

* Yes, with an additional linearity assumption



Nalve Bayes revisited @

consider Naive Bayes for a binary classification task
n
P(Y = 1)H P(x |Y =1)
( 19" n)

expanding denominator P(Y = 1)1_[ P(X Y =1)

P(YY =1|X,..,.X )=

P(Y 1)HP(X Y =1)+ P(Y = O)HP(X Y =0)

dividing everything by numerator

1
P(Y = O)ﬁ P(x. |Y =0)

1+

P(Y = 1)f[ P(x. |Y =1)



Nalve Bayes revisited

applying exp(In(a)) =a

applying In(a/b) = -In(b/a)

1

1+

P(Y = O)f[ P(x.|Y =0)

P(Y = 1)f[ P(x. |Y =1)

1

1+exp

7

In

(v - O)f[ PO 1Y =0).

\

P(Y zl)ﬁ P(x |Y =1)
i=1 J

1

J

1+exp

—In

/PW:ﬂﬂﬁPUJYzb\

P(Y = O)ﬁ P(x. |Y =0)
\ i=1 J



Nalve Bayes revisited

~ 1
%) = 7 : N
PEY =D [P(x Y =1)
1+exp| —In =L
P(Y =0)] [ P(x |Y =0)
L\ i1 )

1

1+exp(— In( P(Y :1)j
P(Y =0)

Does this look familiar?

n

->'In

=1

|

P(x Y =1)

P(x |Y =0)

)



Nalve Bayes vs. logistic regression @

Nalve Bayes

1
= ) P(Y :1) - A P(Xi |Y :1)
1+exp( In(P(Y 20)j ;m(P(Xi Y :O)n

Linearity assumption:
the log-ratio is linear in x

logistic regression

1

o] [ ).

f(x)=



Nalve Bayes vs. logistic regression @

Nalve Bayes

1
(P =D) & POIY =1)
1+exp( In(P(Y 20)j ;m(P(Xi Y :O)j]

Linearity assumption:
the log-ratio is linear in x

P(Y =1|X,...,X,) =

logistic regression

1

o] [ ).

Summary: If we begin with a Naive Bayes generative story to derive a
discriminative approach (assuming linearity), we get logistic regression!

f(x)=



Nalve Bayes vs. logistic regression @

Naive Bayes Generative counterpart of logistic regression
1
P(Y =1|X,...,X,) = :
1+exp| —In P =1) ~>In POGIY =1)
P(Y=0)) = \P(q[Y=0)

logistic regression Discriminative counterpart of Naive Bayes

f(X) = :
1+ exp(— (WO + Zwi X, D

Summary: If we begin with a Naive Bayes generative story to derive a
discriminative approach (assuming linearity), we get logistic regression!




Nalve Bayes vs. logistic regression @

Conditional Independence
(Naive Bayes assumption)

Generative NQinative approach

(+ linearitysgssumption)

Naive Bayes method Logistic regression



Logistic regression as a neural net @

In[ P(Y = 1)] )
P(Y=0)) ™

In(P(red|Y =1)
P(red|Y =0)

Color=red Color=>blue Size=big Size=small

|n[ P(blu/e 1Y = 1)]
P(blue|Y =0)

The connection can give interpretation for the weights in logistic regression:
weights correspond to log ratios
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Nalve Bayes vs. logistic regression

« they have the same functional form, and thus have the same
hypothesis space bias (recall our discussion of inductive bias)
* Do they learn the same models?

In general, no. They use different methods to estimate
the model parameters.

Naive Bayes uses MLE to learn the parameters p(x;|y),
whereas LR minimizes the loss to learn the parameters w;.



Nalve Bayes vs. logistic regression
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asymptotic comparison (# training instances — ) - -

« when conditional independence assumptions made by NB are
correct, NB and LR produce identical classifiers

when conditional independence assumptions are incorrect

» logistic regression is less biased; learned weights may be able to
compensate for incorrect assumptions (e.g. what if we have two
redundant but relevant features)

» therefore LR expected to outperform NB when given lots of training
data

o



Nailve Bayes vs. logistic regression @

non-asymptotic analysis [Ng & Jordan, NIPS 2001]

« consider convergence of parameter estimates; how many training
Instances are needed to get good estimates

naive Bayes: O(log n)
logistic regression: O(n)

n = # features

* naive Bayes converges more quickly to its (perhaps less accurate)
asymptotic estimates

« therefore NB expected to outperform LR with small training sets
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Experimental comparison of NB and LR@

if = median price, continuous)
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Ng and Jordan compared learning curves for the two approaches on 15 data
sets (some w/discrete features, some w/continuous features)



Experimental comparison of NB and LR{j

lenses (predict hard vs. soft, discrete)

logistic regression

naive Bayes
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general trend supports theory
 NB has lower predictive error when training sets are small

» the error of LR approaches or is lower than NB when training sets are
large



Discussion

* NB/LR is one case of a pair of generative/discriminative approaches
for the same model class

- if modeling assumptions are valid (e.g. conditional independence of
features in NB) the two will produce identical classifiers in the limit (#
training instances — «)

* if modeling assumptions are not valid, the discriminative approach is
likely to be more accurate for large training sets

- for small training sets, the generative approach is likely to be more
accurate because parameters converge to their asymptotic values
more quickly (in terms of training set size)

 Q: How can we tell whether our training set size is more appropriate
for a generative or discriminative method?

A: Empirically compare the two.



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
i

W} and Pedro Domingos.
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