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Goals for the lecture

you should understand the following concepts

• the relationship between logistic regression and Naïve Bayes

• the relationship between discriminative and generative learning

• when discriminative/generative is likely to learn more accurate 

models



Review



Discriminative vs. Generative

Discriminative approach:

• hypothesis ℎ ∈ 𝐻 directly predicts the label given the features

𝑦 = ℎ(𝑥) or more generally, 𝑝 𝑦 𝑥 = ℎ(𝑥)

• then define a loss function 𝐿(ℎ) and find hypothesis with min. loss

Generative approach:

• hypothesis ℎ ∈ 𝐻 specifies a generative story for how the data was 
created: 

𝑝(𝑥, 𝑦) = ℎ(𝑥, 𝑦)

• then pick a hypothesis by maximum likelihood estimation (MLE) or 
Maximum A Posteriori (MAP)



Summary: generative approach

• Step 1: specify the joint data distribution (generative story)

• Step 2: use MLE or MAP for training

• Step 3: use Bayes’ rule for inference on test instances

• Example: Naïve Bayes (conditional independence) 

𝑝 𝑥, 𝑦 = 𝑝 𝑦 𝑝 𝑥 𝑦 = 𝑝 𝑦 ෑ

𝑖

𝑝(𝑥𝑖|𝑦)



Summary: discriminative approach

• Step 1: specify the hypothesis class

• Step 2: specify the loss

• Step 3: design optimization algorithm for training

How to design the hypotheses and the loss? Can design by a 
generative approach!

• Step 0: specify 𝑝 𝑥 𝑦 and 𝑝(𝑦)

• Step 1: compute hypotheses 𝑝(𝑦|𝑥) using Bayes’ rule

• Step 2: use conditional MLE to derive the negative log-
likelihood loss (or use MAP to derive the loss)

• Step 3: design optimization algorithm for training

• Example: logistic regression



Logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 is normal

𝑝 𝑥 𝑦 = 𝑝 𝑥 𝑌 = 𝑦 = 𝑁 𝑥|𝜇𝑦, 𝐼 =
1

2𝜋 𝑑/2
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𝑥 − 𝜇𝑦

2

• Then conditional probability by Bayes’ rule:

𝑝 𝑌 = 𝑦|𝑥 =
𝑝 𝑥|𝑌 = 𝑦 𝑝(𝑌 = 𝑦)

σ𝑘 𝑝 𝑥|𝑌 = 𝑘 𝑝(𝑌 = 𝑘)
=

exp(𝑎𝑦)

σ𝑘 exp(𝑎𝑘)

where

𝑎𝑘 ≔ ln 𝑝 𝑥 𝑌 = 𝑘 𝑝 𝑌 = 𝑘 = −
1
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1
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Logistic regression

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 is normal

𝑝 𝑥 𝑦 = 𝑝 𝑥 𝑌 = 𝑦 = 𝑁 𝑥|𝜇𝑦, 𝐼 =
1

2𝜋 𝑑/2
exp −

1

2
𝑥 − 𝜇𝑦

2

• Cancel out −
1

2
𝑥𝑇𝑥, we have

𝑝 𝑌 = 𝑦|𝑥 =
exp(𝑎𝑦)

σ𝑘 exp(𝑎𝑘)
, 𝑎𝑘 ≔ 𝑤𝑘 𝑇

𝑥 + 𝑏𝑘

where 

𝑤𝑘 = 𝜇𝑘, 𝑏𝑘 = −
1

2
𝜇𝑘
𝑇𝜇𝑘 + ln 𝑝 𝑌 = 𝑘 + ln

1

2𝜋 𝑑/2



Logistic regression: summary

• Suppose the class-conditional densities 𝑝 𝑥 𝑦 is normal

𝑝 𝑥 𝑦 = 𝑝 𝑥 𝑌 = 𝑦 = 𝑁 𝑥|𝜇𝑦, 𝐼 =
1

2𝜋 𝑑/2
exp −

1

2
𝑥 − 𝜇𝑦

2

• Then

𝑝 𝑌 = 𝑦|𝑥 =
exp( 𝑤𝑦 𝑇𝑥 + 𝑏𝑦)

σ𝑘 exp( 𝑤𝑘 𝑇𝑥 + 𝑏𝑘)

which is the hypothesis class for multiclass logistic regression

• Training: find parameters {𝑤𝑘, 𝑏𝑘} that minimize the negative 
log-likelihood loss

−
1

𝑚
෍

𝑗=1

𝑚

log 𝑝 𝑦 = 𝑦(𝑗) 𝑥(𝑗)



Naïve Bayes vs. Logistic Regression



Connecting Naïve Bayes and logistic regression

• Interesting observation: logistic regression is derived from the 
generative story 

𝑝 𝑥 𝑦 = 𝑝 𝑥 𝑌 = 𝑦 = 𝑁 𝑥|𝜇𝑦, 𝐼 =
1

2𝜋 𝑑/2
exp −
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2
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2

=
1

2𝜋 𝑑/2
ෑ
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exp −
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2
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2

which is a special case of Naïve Bayes!

• Is the general Naïve Bayes assumption enough to get logistic 
regression? (Instead of the more special Normal distribution 
assumption)

• Yes, with an additional linearity assumption



Naïve Bayes revisited

consider Naïve Bayes for a binary classification task

expanding denominator

dividing everything by numerator
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Naïve Bayes revisited

applying exp(ln(a)) = a

applying ln(a/b) = -ln(b/a)
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Naïve Bayes revisited

converting log of products to sum of logs

Does this look familiar?
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Naïve Bayes vs. logistic regression

Naïve Bayes

logistic regression
Linearity assumption: 

the log-ratio is linear in 𝑥
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Naïve Bayes vs. logistic regression

Naïve Bayes

logistic regression

Summary: If we begin with a Naïve Bayes generative story to derive a 

discriminative approach (assuming linearity), we get logistic regression!

Linearity assumption: 

the log-ratio is linear in 𝑥
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Naïve Bayes vs. logistic regression

Naïve Bayes

logistic regression

Summary: If we begin with a Naïve Bayes generative story to derive a 

discriminative approach (assuming linearity), we get logistic regression!

Generative counterpart of logistic regression 

Discriminative counterpart of Naïve Bayes 



Naïve Bayes vs. logistic regression

Conditional Independence 

(Naïve Bayes assumption)

Naïve Bayes method Logistic regression

Discriminative approach

(+ linearity assumption)

Generative approach



Logistic regression as a neural net

Y
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The connection can give interpretation for the weights in logistic regression: 

weights correspond to log ratios 



Which is better?



Naïve Bayes vs. logistic regression

• they have the same functional form, and thus have the same 

hypothesis space bias (recall our discussion of inductive bias)

• Do they learn the same models?

In general, no. They use different methods to estimate

the model parameters.

Naïve Bayes uses MLE to learn the parameters 𝑝(𝑥𝑖|𝑦), 
whereas LR minimizes the loss to learn the parameters 𝑤𝑖.



asymptotic comparison (# training instances → ∞)

• when conditional independence assumptions made by NB are 

correct, NB and LR produce identical classifiers

when conditional independence assumptions are incorrect

• logistic regression is less biased; learned weights may be able to 

compensate for incorrect assumptions (e.g. what if we have two 

redundant but relevant features)

• therefore LR expected to outperform NB when given lots of training 

data

Naïve Bayes vs. logistic regression



Naïve Bayes vs. logistic regression

non-asymptotic analysis [Ng & Jordan, NIPS 2001]

• consider convergence of parameter estimates; how many training 

instances are needed to get good estimates

naïve Bayes:  O(log n)

logistic regression: O(n)

• naïve Bayes converges more quickly to its (perhaps less accurate) 

asymptotic estimates

• therefore NB expected to outperform LR with small training sets

n = # features



Experimental comparison of NB and LR

naïve Bayes

logistic regression

size of training set

Ng and Jordan compared learning curves for the two approaches on 15 data 

sets (some w/discrete features, some w/continuous features)



Experimental comparison of NB and LR

naïve Bayes

logistic regression

general trend supports theory

• NB has lower predictive error when training sets are small

• the error of LR approaches or is lower than NB when training sets are 

large 



Discussion

• NB/LR is one case of a pair of generative/discriminative approaches 
for the same model class

• if modeling assumptions are valid (e.g. conditional independence of 
features in NB)  the two will produce identical classifiers in the limit (# 
training instances → ∞)

• if modeling assumptions are not valid, the discriminative approach is 
likely to be more accurate for large training sets

• for small training sets, the generative approach is likely to be more 
accurate because parameters converge to their asymptotic values 
more quickly (in terms of training set size)

• Q: How can we tell whether our training set size is more appropriate 
for a generative or discriminative method?  

A: Empirically compare the two.



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


