~ Support Vector Machines
Part 1
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Goals for the lecture

you should understand the following concepts
« the margin
 the linear support vector machine
 the primal and dual formulations of SVM learning
* support vectors

» Optional: variants of SVM
« Optional: Lagrange Multiplier
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Linear classification

Class +1

Class -1

Assume perfect separation between the two
classes



Attempt

 Given training data {(x;, y;): 1 < i < n} i.i.d. from distribution D

 Hypothesis y = sign(f,,(x)) = sign(w!x)
cy=+1ifwlx>0
cy=—-1ifwlix<0

* Let’'s assume that we can optimize to find w



Multiple optimal solutions?

Class -1

Same on empirical loss;
Different on test/expected loss



What about w,? @




What about w;? @
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Most confident: w, @

Class +1




Intuition: margin

O
Class +1



’3;*3__,»-

e

‘__,.,-;:3..\'&

S
%‘

——

SR
cﬁ. "—r




Margin @

We are going to prove the following math expression for margin
using a geometric argument

| fw (2|

 Lemma 1: x has distance T

to the hyperplane f,,(x) =
wlix =0
|fw,b(x)|

llwl|

* Lemma 2: x has distance
wlix+b=0

to the hyperplane f,, ,(x) =

Need two geometric facts:
- w is orthogonal to the hyperplane f,, ,(x) = w'x+b =0

 Let v be a direction (i.e., unit vector). Then the length of the
projection of x on v is v’ x



Margin @

* Lemma 1: x has distance lj;TV\(;T|)| to the hyperplane f,,(x) =
wlix =0
Proof:

* w Is orthogonal to the hyperplane

« The unit direction is ﬁ

T
* The projection of x is (L) X =

[Iwl|




Margin: with bias

* Lemma 2: x has distance lfvlvlb(u o the hyperplane f,, ,(x) =
wix+b=0
Proof:

e Let x = x, + r——, then |r| is the distance

|I 1k
 Multiply both sides by w’ and add b

* Left hand side: w'x +b = f,, ,(x)

wlw

 Right hand side: w xl+‘r Z4+b=0+r||w||



Margin: with bias @

y <0 R1 The notation here is:

y(x) = wlhx + w,

E |

Figure from Pattern Recognition
and Machine Learning, Bishop
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SVM: objective

» Absolute margin over all training data points:

» Since only want correct f,, ,, and recall y; € {+1, —1}, we define
the margin to be

i |lwl
- If 1, , Incorrect on some x;, the margin is negative



SVM: objective

« Maximize margin over all training data points:

Yifwp(xi) _ yiw'x; +b)

maxy = max min = max min
w,b w,b i ||W|| w,b i

A bit complicated ...



SVM: simplified objective

« Observation: when (w, b) scaled by a factor c, the margin
unchanged
vi(ew"x; +¢cb)  y;(w'x; +b)

|[ew|] [[w]

» Let’s consider a fixed scale such that

yir(W'x;» +b) =1
where x;- Is the point closest to the hyperplane



SVM: simplified objective

» Let’s consider a fixed scale such that

yir(W'x;» +b) =1
where x;- is the point closet to the hyperplane

« Now we have for all data
yiwlx; +b) > 1

and at least for one i the equality holds

« Then the margin over all training points is i



SVM: simplified objective

« Optimization simplified to ,
1
e 2 e

yi(wlx; + b) = 1,Vi

* How to find the optimum w*?
« Solved by Lagrange multiplier method
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SVM: optimization

* Optimization (Quadratic Programming):

1,
e 2 e

yiwlx; + b) = 1,Vi

« Generalized Lagrangian:

1 2
Lw,b,@) =5 |Iwl| - 2 o[y, (wTx; + b) — 1]
[

where a Is the Lagrange multiplier



SVM: optimization

« KKT conditions:

0L
—=0,2w=Y;ayx; (1)

0L
Z=0,>0=Siay (2

 Plug into L:
1
L(w,b,a) = X;a; — X a;a;y;yixi % (3)

combined with 0 = Zi a;yi,; = 0



SVM: optimization

Only depend on inner
products

* Reduces to dual problem: .
L(W, b, a) = Z a, — = a;0 yly]xlTx]

i ij

Zaiyi = O,ai >0

i

« Sincew =Y, a;y;x;, we have w'x + b =Y, a;y;x/ x + b



Support Vectors @

« final solution is a sparse linear combination of the training
instances

* those instances with a;> 0
are called support vectors

 they lie on the margin
boundary
 solution NOT changed if

delete the instances with a; =
0

| support
vectors
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Lagrangian
» Consider optimization problem:
m&}n f(w)
h(w)=0v1<i<I

 Lagrangian:

Low,B) = FW)+ ) fihi(w)

where [;’s are called Lagrange multipliers



Lagrangian

» Consider optimization problem:
min f(w)
w

h(w)=0,V1<i<I
» Solved by setting derivatives of Lagrangian to 0

oL  or

0; —=0
aWi ’ (’),BL




Generalized Lagrangian

» Consider optimization problem:
min f(w)
w

hiw) =0,v1<j<I
« Generalized Lagrangian:

Low, @ B) = fW) + ) aigs(w) + ) Bihy(w)
i J

where «;, [;'s are called Lagrange multipliers



Generalized Lagrangian

» Consider the quantity:

Op(w) := max L(w,a,p)

af:a;=0
* Why?
8, (w) = {f (w), iIf w satisfies all the constraints
P +oo, if w does not satisfy the constraints

« SO0 minimizing f(w) is the same as minimizing 6, (w)

min f(w) = min 8p(w) = min max L(w,a, B)
w w w af:a;=0



Lagrange duality

* The primal problem

p* — mln f(W) = mln max L(W; a, ﬁ)
w w af:a;=0

* The dual problem

d* := max minL(w,a,
af:a;=20 w ( ﬁ)

* Always true:
d* <p"



Lagrange duality

* The primal problem

p* ‘= min f(W) = min max L(W; Qa, ﬁ)
w w af:a;=0
* The dual problem
d* = max minL(w,a, )

af:ai=0 w

* Interesting case: when do we have
d* =p*?



Lagrange duality

« Theorem: under proper conditions, there exists (w*, a*, B*)
such that

d* — L(W*, a*,ﬁ*) — p*

Moreover, (w*, a*, B*) satisfy Karush-Kuhn-Tucker (KKT)

conditions:
0L
= 0, a;gi(w) =0

an'
gi(w) <0, hj (w) =0, a; =0



Lagrange duality

» Theorem: under proper conditions, there exists (w*, a*, B*)
such that

complementarity

Moreover, (w*, a*, B*) satisfy Karush-Kuhn-Tucker (KKT)
conditions:
0L
=0, a;gi(w) =0

an'
gi(w) <0, hj (w) =0, a; =0



Lagrange duality @

» Theorem: under proper conditions, there exists (w*, a*, B*)
such that

=L(w*, a*,B*) =p*

satisfy Karush-Kuhn-T

dual constraints

primal constraints




Lagrange duality

« What are the proper conditions?

* A set of conditions (Slater conditions):
* f,g; convex, h; affine, and exists w satisfying all g;(w) < 0

* There exist other sets of conditions

» Check textbooks, e.g., Convex Optimization by Boyd and
Vandenberghe



of SVM

lants

Var

Optional

< g
d=

By g



Hard-margin SVM

* Optimization (Quadratic Programming):

1,
e 2 e

yiwlx; + b) = 1,Vi



SOft'marg | n SVM [Cortes & Vapnik, Machine Learning 1995] @

« if the training instances are not linearly separable, the previous
formulation will fail

« we can adjust our approach by using slack variables (denoted
by (;) to tolerate errors

1 2
vrg}g%iEIIWII + CZG
l

yiwlx; +b) =1—;,{; = 0,Vi

* C determines the relative importance of maximizing margin vs.
minimizing slack



The effect of C In soft-margin SVM
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Figure from Ben-Hur & Weston,
Methods in Molecular Biology 2010



Hinge loss

« when we covered neural nets, we talked about minimizing
squared loss and cross-entropy loss

« SVMs minimize hinge loss

4

. squared loss

loss (error)
when y =1 3\

- 0O/1loss

~ hinge loss

model output h(x)



Support Vector Regression

» the SVM idea can also be
applied in regression tasks Wx+b)—y=¢€

 an e-insensitive error
function specifies that a
training instance is well
explained if the model’s

iction is withi —W'x +b) =
prediction is within € of y; y—(WwW'x+b)=¢€

v



Support Vector Regression @

« Regression using slack variables (denoted by ¢;, ¢;) to tolerate
errors

min —||W|| +CZ{1+€l

w,b,{;, l

wlx; +b) —y; < e+,
yi — (wlx; +b) < e+ ¢

51,6 2 0. \

slack variables allow predictions
for some training instances to be
off by more than ¢



THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
i

W} and Pedro Domingos.
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