Reinforcement Learning Part 1

CS 760@UW-Madison

Goals for the lecture

you should understand the following concepts

- the reinforcement learning task
- Markov decision process
- value functions
- value iteration
- Q functions
- Q learning

Reinforcement learning (RL)

Task of an agent embedded in an environment

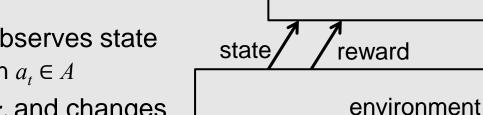
repeat forever

- 1) sense world
- 2) reason
- 3) choose an action to perform
- 4) get feedback (usually reward = 0)
- 5) learn

the environment may be the physical world or an artificial one

Reinforcement learning

- set of states S
- set of actions A
- at each time *t*, agent observes state $s_t \in S$ then chooses action $a_t \in A$
- then receives reward r_t and changes to state s_{t+1}



agent

 $s_0 \xrightarrow[r_0]{a_0} s_1 \xrightarrow[r_1]{a_1} s_2 \xrightarrow[r_2]{a_2} s_2 \xrightarrow[r_2]{a_2}$

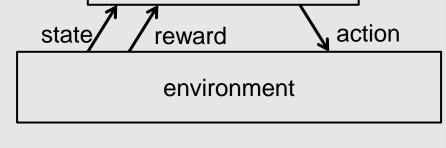
action

RL as Markov decision process (MDP)

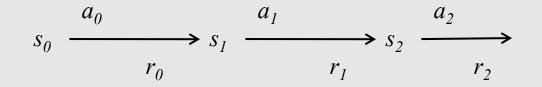
• Markov assumption

 $P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots) = P(s_{t+1}|s_t, a_t)$

• also assume reward is Markovian $P(r_t|s_t, a_t, s_{t-1}, a_{t-1}, \dots) = P(r_t|s_t, a_t)$



agent

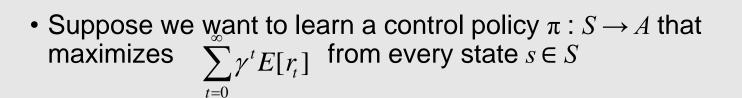


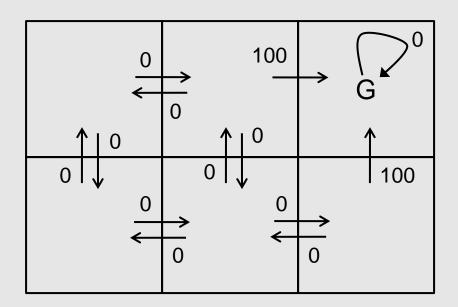
Goal: learn a policy $\pi : S \rightarrow A$ for choosing actions that maximizes

$$E[r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + ...]$$
 where $0 \le \gamma < 1$

for every possible starting state s_0

Reinforcement learning task

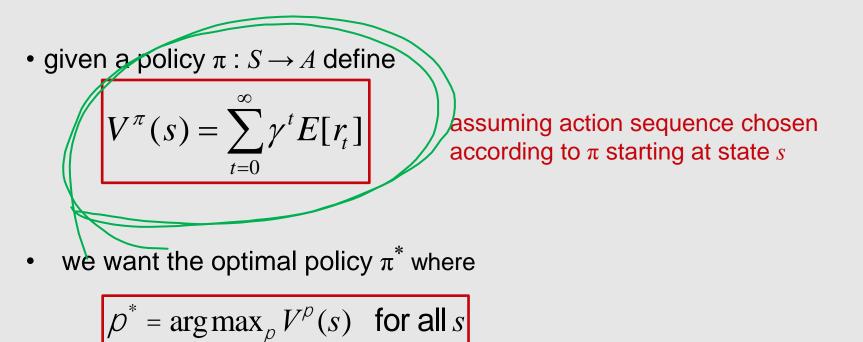




each arrow represents an action a and the associated number represents deterministic reward r(s, a)

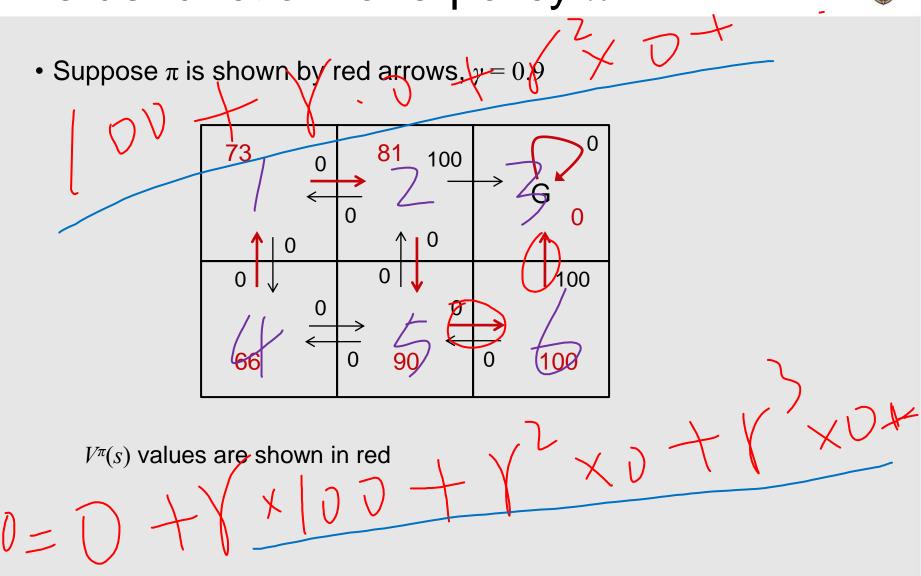
Value Function

Value function for a policy



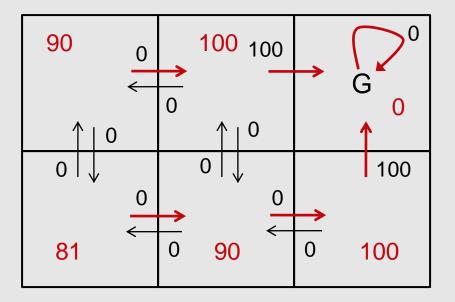
we'll denote the value function for this optimal policy as $V^*(s)$

Value function for a policy π



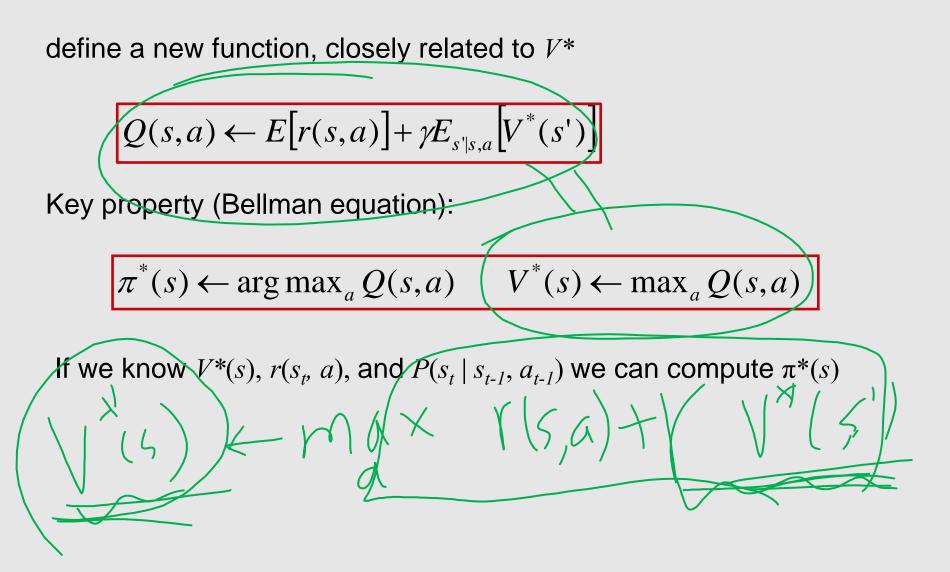
Value function for an optimal policy π^*

• Suppose π^* is shown by red arrows, $\gamma = 0.9$

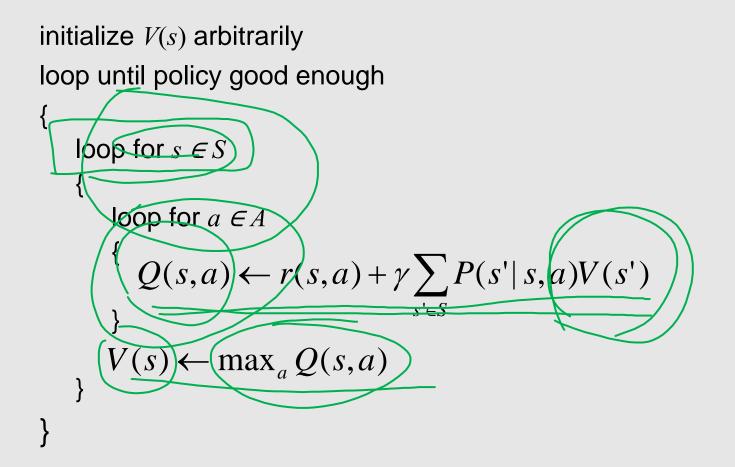


 $V^*(s)$ values are shown in red

Using a value function



Value iteration for learning $V^*(s)$



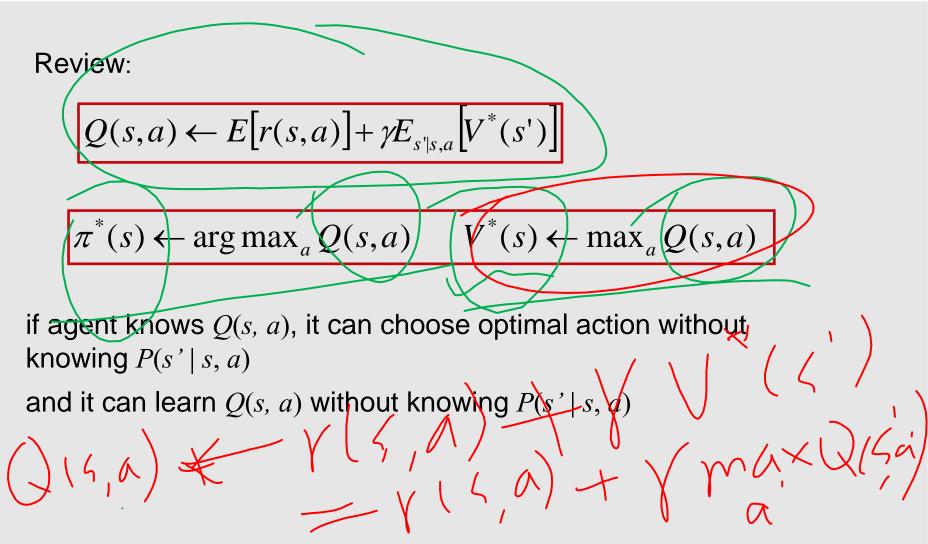
Value iteration for learning $V^*(s)$

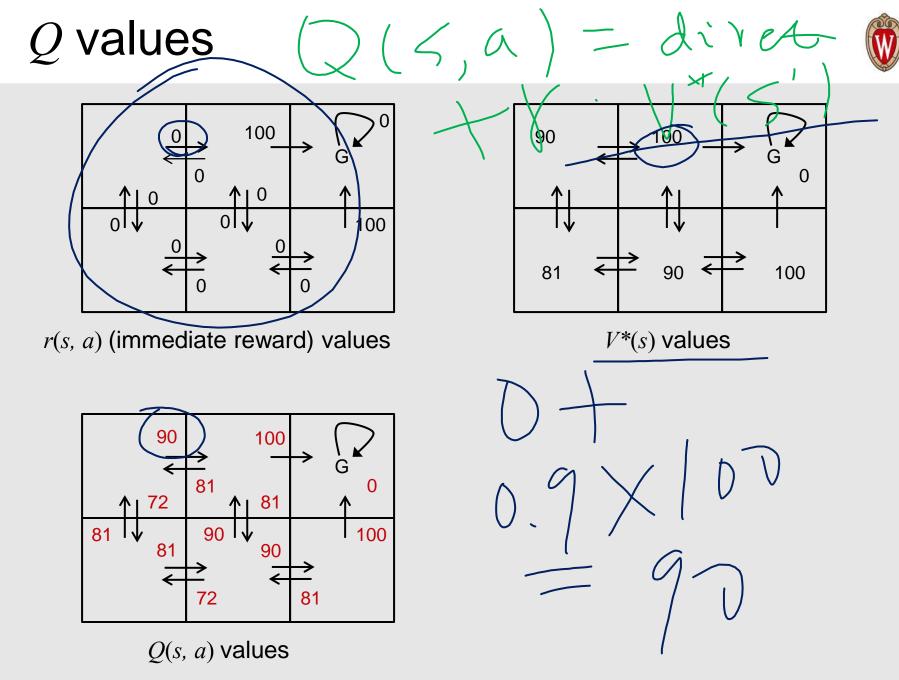
- V(s) converges to $V^*(s)$
- works even if we randomly traverse environment instead of looping through each state and action methodically
 - but we must visit each state infinitely often
- implication: we can do online learning as an agent roams around its environment

- assumes we have a model of the world: i.e. know $P(s_t | s_{t-1}, a_{t-1})$
- What if we don't?

Q Function

Q learning

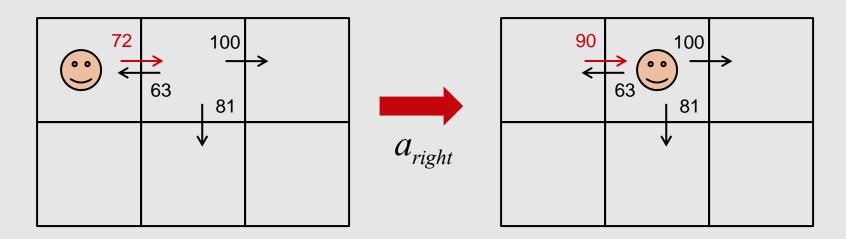




Q learning update rule

 $\hat{Q}(s,a) \leftarrow 0$ for each *s*, *a* initialize table entry observe current state s do forever select an action a and execute it receive immediate reward robserve the new state update table entry $\gamma \max_{a'} \hat{Q}(s', a')$ $\hat{Q}(s,a)$ - 5

Updating Q



$$\hat{Q}(s_1, a_{right}) \leftarrow r + \gamma \max_{a'} \hat{Q}(s_2, a')$$
$$\leftarrow 0 + 0.9 \max\{63, 81, 100\}$$
$$\leftarrow 90$$

Q learning: incremental update

for each *s*, *a* initialize table entry

do forever

select an action a and execute it

receive immediate reward r

observe the new state s'

update table entry

$$\hat{Q}_n(s,a) \leftarrow (1-\alpha_n)\hat{Q}_{n-1}(s,a) + \alpha_n \left[r + \gamma \max_{a'} \hat{Q}_{n-1}(s',a')\right]$$

$$s \leftarrow s'$$

 $\hat{Q}(s,a) \leftarrow 0$

where α_n is a parameter dependent on the number of visits to the given (*s*, *a*) pair

$$\partial_n = \frac{1}{1 + \mathsf{visits}_n(s, a)}$$

Convergence of *Q* learning

- Q learning will converge to the correct Q function
 - in the deterministic case
 - in the nondeterministic case (using the update rule just presented)
- in practice it is likely to take many, many iterations

THANK YOU

Some of the slides in these lectures have been adapted/borrowed from materials developed by Mark Craven, David Page, Jude Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, and Pedro Domingos.