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Goals for the lecture

you should understand the following concepts

• the reinforcement learning task

• Markov decision process

• value functions

• value iteration

• Q functions

• Q learning
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Reinforcement learning (RL)

Task of an agent embedded in an environment

repeat forever

1) sense world

2) reason

3) choose an action to perform

4) get feedback (usually reward = 0)

5) learn

the environment may be the physical world or an artificial one
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Reinforcement learning

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• set of states S

• set of actions A

• at each time t, agent observes state 

st ∈ S then chooses action at ∈ A

• then receives reward rt and changes 

to state st+1
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RL as Markov decision process (MDP)

agent

environment

state reward action

s0 s1 s2

a0 a1 a2

r0 r1 r2

• Markov assumption

• also assume reward is Markovian

Goal: learn a policy π : S → A for choosing actions that maximizes

for every possible starting state s0 6

𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡, 𝑠𝑡−1, 𝑎𝑡−1, . . . ) = 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑃(𝑟𝑡|𝑠𝑡 , 𝑎𝑡, 𝑠𝑡−1, 𝑎𝑡−1, . . . ) = 𝑃(𝑟𝑡|𝑠𝑡 , 𝑎𝑡)

10     where...][ 2

2

1 +++ ++  ttt rrrE



Reinforcement learning task

• Suppose we want to learn a control policy π : S → A that 
maximizes                     from every state s∈ S
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each arrow represents an action a and the associated

number represents deterministic reward r(s, a)
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Value Function



Value function for a policy

• given a policy π : S → A define

assuming action sequence chosen

according to π starting at state s

• we want the optimal policy π* where

 
p * = argmaxp V

p (s)   for all s

we’ll denote the value function for this optimal policy as V*(s)
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Value function for a policy π

• Suppose π is shown by red arrows, γ = 0.9
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Value function for an optimal  policy π*

• Suppose π*  is shown by red arrows, γ = 0.9
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Using a value function

If we know V*(s), r(st, a), and P(st | st-1, at-1) we can compute π*(s)
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define a new function, closely related to V*
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Key property (Bellman equation):



Value iteration for learning V*(s)

initialize V(s) arbitrarily

loop until policy good enough

{

loop for s ∈ S

{

loop for a ∈ A

{

}

}

}
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Value iteration for learning V*(s)

• V(s) converges to V*(s)

• works even if we randomly traverse environment instead of 
looping through each state and action methodically

• but we must visit each state infinitely often

• implication: we can do online learning as an agent roams around 
its environment

• assumes we have a model of the world: i.e. know P(st | st-1, at-1) 

• What if we don’t?
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Q Function



Q learning

Review: 

if agent knows Q(s, a), it can choose optimal action without 

knowing P(s’ | s, a) 

and it can learn Q(s, a) without knowing P(s’ | s, a) 
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Q values
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Q learning update rule

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’
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Updating Q
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Q learning: incremental update

for each s, a initialize table entry

observe current state s

do forever

select an action a and execute it

receive immediate reward r

observe the new state s’

update table entry

s ← s’

 

an =
1

1+ visitsn(s,a)

where αn is a parameter dependent

on the number of visits to the given

(s, a) pair
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Convergence of Q learning

• Q learning will converge to the correct Q function

• in the deterministic case

• in the nondeterministic case (using the update rule just 
presented)

• in practice it is likely to take many, many iterations
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THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


