
Decision Tree
Learning: Part 1

CS 760@UW-Madison

Zoo of machine learning models

Figure from scikit-learn.org

Note: only a subset of ML methods

Even a subarea has its own collection

Figure from asimovinstitute.org

The lectures

organized according to different machine learning

models/methods
1. supervised learning

• non-parametric: decision tree, nearest neighbors

• parametric

• discriminative: linear/logistic regression, SVM, NN

• generative: Naïve Bayes, Bayesian networks

2. unsupervised learning: clustering*, dimension reduction

3. reinforcement learning

4. other settings: ensemble, active, semi-supervised*

intertwined with experimental methodologies, theory, etc.
1. evaluation of learning algorithms

2. learning theory: PAC, bias-variance, mistake-bound

3. feature selection

*: if time permits

Goals for this lecture

you should understand the following concepts

• the decision tree representation

• the standard top-down approach to learning a tree

• Occam’s razor

• entropy and information gain

Decision Tree
Representation

A decision tree to predict heart disease

thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node

represents one outcome of the test

Each leaf predicts y or P(y | x)

Decision tree exercise

Suppose X1 … X5 are Boolean features, and Y is also Boolean

How would you represent the following with decision trees?

) (i.e., 5252 XXYXXY ==

52 XXY =

1352 XXXXY =

Decision Tree Learning

History of decision tree learning

dates of seminal publications: work on these

2 was contemporaneous

many DT variants have been

developed since CART and ID3

1963 1973 1980 1984 1986

A
ID

C
H

A
ID

T
H

A
ID

C
A

R
T

ID
3

CART developed by Leo Breiman, Jerome

Friedman, Charles Olshen, R.A. Stone
ID3, C4.5, C5.0 developed by Ross Quinlan

Top-down decision tree learning

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

Dk = subset of instances that have outcome k

kth child of N = MakeSubtree(Dk)

return subtree rooted at N

Candidate splits in ID3, C4.5

• splits on nominal features have one branch per value

• splits on numeric features use a threshold

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false

Candidate splits on numeric features

weight ≤ 35

true false

weight

17 35

given a set of training instances D and a specific feature Xi

• sort the values of Xi in D

• evaluate split thresholds in intervals between instances of
different classes

• could use midpoint of each considered interval as the threshold

• C4.5 instead picks the largest value of Xi in the entire training set that does not

exceed the midpoint

Candidate splits on numeric features
(in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)

C = {} // initialize set of candidate splits for feature Xi

S = partition instances in D into sets s1 … sV where the instances in each

set have the same value for Xi

let vj denote the value of Xi for set sj

sort the sets in S using vj as the key for each sj

for each pair of adjacent sets sj, sj+1 in sorted S

if sj and sj+1 contain a pair of instances with different class labels

// assume we’re using midpoints for splits

add candidate split Xi ≤ (vj + vj+1)/2 to C

return C

Candidate splits

• instead of using k-way splits for k-valued features, could
require binary splits on all discrete features (CART does this)

thal

normal reversible_defect∨ fixed_defect

color

red ∨blue green ∨ yellow

Finding The Best Splits

Finding the best split

• How should we select the best feature to split on at each step?

• Key hypothesis: the simplest tree that classifies the training instances
accurately will work well on previously unseen instances

Occam’s razor

• attributed to 14th century William of Ockham

• “Nunquam ponenda est pluralitis sin necesitate”

• “Entities should not be multiplied beyond necessity”

• “when you have two competing theories that make exactly the same

predictions, the simpler one is the better”

But a thousand years earlier,

I said, “We consider it a good

principle to explain the

phenomena by the simplest

hypothesis possible.”

Occam’s razor and decision trees

• there are fewer short models (i.e. small trees) than
long ones

• a short model is unlikely to fit the training data well
by chance

• a long model is more likely to fit the training data well
coincidentally

Why is Occam’s razor a reasonable heuristic for

decision tree learning?

Finding the best splits

• Can we find and return the smallest possible decision tree
that accurately classifies the training set?

• Instead, we’ll use an information-theoretic heuristic to

greedily choose splits

NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]

Information theory background

• consider a problem in which you are using a code to communicate
information to a receiver

• example: as bikes go past, you are communicating the manufacturer
of each bike

Information theory background

• suppose there are only four types of bikes

• we could use the following code

11

10

01

00

• expected number of bits we have to communicate:
2 bits/bike

Trek

Specialized

Cervelo

Serrota

type code

Information theory background

• we can do better if the bike types aren’t equiprobable

• optimal code uses bits for event with
probability

- log2 P(y)
P(y)

1

P(Trek) = 0.5

P(Specialized) = 0.25

P(Cervelo) = 0.125

P(Serrota) = 0.125

2

3

3

1

01

001

000

Type/probability # bits code

• expected number of bits we have to communicate:
1.75 bits/bike




−
)(values

2)(log)(
Yy

yPyP

Entropy

• entropy is a measure of uncertainty associated with a
random variable

• defined as the expected number of bits required to
communicate the value of the variable

entropy function for

binary variable




−=
)(values

2)(log)()(
Yy

yPyPYH

Conditional entropy

• What’s the entropy of Y if we condition on some other
variable X?

where

𝐻(𝑌|𝑋) = ෍

𝑥∈values(𝑋)

𝑃(𝑋 = 𝑥)𝐻(𝑌|𝑋 = 𝑥)

𝐻(𝑌|𝑋 = 𝑥) = − ෍

𝑦∈values(𝑌)

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) log2 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥)

Information gain (a.k.a. mutual information)

• choosing splits in ID3: select the split S that most reduces
the conditional entropy of Y for training set D

 InfoGain(D,S) = HD(Y)-HD(Y | S)

D indicates that we’re calculating probabilities

using the specific sample D

Relations between the concepts

Figure from wikipedia.org

Information gain example

Information gain example

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• What’s the information gain of splitting on Humidity?

940.0
14

5
log

14

5

14

9
log

14

9
)(22 =








−








−=YHD

592.0

7

1
log

7

1

7

6
log

7

6
)normal|(22

=









−








−=YHD

985.0

7

4
log

7

4

7

3
log

7

3
)high|(22

=









−








−=YHD

151.0

)592.0(
14

7
)985.0(

14

7
940.0

)Humidity|()()Humidity,(InfoGain

=









+−=

−= YHYHD DD

Information gain example

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• Is it better to split on Humidity or Wind?

 HD(Y | weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD(Y |strong) =1.0

✔

151.0

)592.0(
14

7
)985.0(

14

7
940.0)Humidity,(InfoGain

=









+−=D

048.0

)0.1(
14

6
)811.0(

14

8
940.0)Wind,(InfoGain

=









+−=D

One limitation of information gain

• information gain is biased towards tests with many
outcomes

• e.g. consider a feature that uniquely identifies each
training instance

• splitting on this feature would result in many branches, each of
which is “pure” (has instances of only one class)

• maximal information gain!

Gain ratio

• to address this limitation, C4.5 uses a splitting criterion
called gain ratio

• gain ratio normalizes the information gain by the entropy of
the split being considered

GainRatio(D,S) =
InfoGain(D,S)

HD(S)
=
HD(Y)-HD(Y | S)

HD(S)

THANK YOU
Some of the slides in these lectures have been adapted/borrowed

from materials developed by Mark Craven, David Page, Jude
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,

and Pedro Domingos.

