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Zoo of machine learning models

Figure from scikit-learn.org

Note: only a subset of ML methods



Even a subarea has its own collection

Figure from asimovinstitute.org



The lectures

organized according to different machine learning 

models/methods
1. supervised learning

• non-parametric: decision tree, nearest neighbors

• parametric

• discriminative: linear/logistic regression, SVM, NN

• generative: Naïve Bayes, Bayesian networks

2. unsupervised learning: clustering*, dimension reduction

3. reinforcement learning

4. other settings: ensemble, active, semi-supervised*

intertwined with experimental methodologies, theory, etc.
1. evaluation of learning algorithms

2. learning theory: PAC, bias-variance, mistake-bound

3. feature selection

*: if time permits



Goals for this lecture

you should understand the following concepts

• the decision tree representation

• the standard top-down approach to learning a tree

• Occam’s razor

• entropy and information gain



Decision Tree 
Representation



A decision tree to predict heart disease 

thal

#_major_vessels > 0 present

normal fixed_defect

true false

1 2

present

reversible_defect

chest_pain_type absent

absentabsentabsent present

3 4

Each internal node tests one feature xi

Each branch from an internal node 

represents one outcome of the test

Each leaf predicts y or P(y | x)



Decision tree exercise

Suppose X1 … X5 are Boolean features, and Y is also Boolean

How would you represent the following with decision trees?

) (i.e.,   5252 XXYXXY ==

52 XXY =

1352 XXXXY =



Decision Tree Learning



History of decision tree learning

dates of seminal publications: work on these 

2 was contemporaneous

many DT variants have been 

developed since CART and ID3
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CART developed by Leo Breiman, Jerome 

Friedman, Charles Olshen, R.A. Stone
ID3, C4.5, C5.0 developed by Ross Quinlan



Top-down decision tree learning

MakeSubtree(set of training instances D)

C = DetermineCandidateSplits(D)

if stopping criteria met

make a leaf node N

determine class label/probabilities for N

else

make an internal node N

S = FindBestSplit(D, C)

for each outcome k of S

Dk = subset of instances that have outcome k

kth child of N = MakeSubtree(Dk)

return subtree rooted at N



Candidate splits in ID3, C4.5

• splits on nominal features have one branch per value

• splits on numeric features use a threshold

thal

normal fixed_defect reversible_defect

weight ≤ 35

true false



Candidate splits on numeric features

weight ≤ 35

true false

weight

17 35

given a set of training instances D and a specific feature Xi

• sort the values of Xi in D

• evaluate split thresholds in intervals between instances of 
different classes

• could use midpoint of each considered interval as the threshold

• C4.5 instead picks the largest value of Xi in the entire training set that does not 

exceed the midpoint



Candidate splits on numeric features
(in more detail)

// Run this subroutine for each numeric feature at each node of DT induction

DetermineCandidateNumericSplits(set of training instances D, feature Xi)

C = {} // initialize set of candidate splits for feature Xi

S = partition instances in D into sets s1 … sV where the instances in each    

set have the same value for Xi

let vj denote the value of Xi for set sj

sort the sets in S using vj as the key for each sj

for each pair of adjacent sets sj, sj+1 in sorted S

if sj and sj+1 contain a pair of instances with different class labels

// assume we’re using midpoints for splits

add candidate split Xi ≤ (vj + vj+1)/2 to C

return C



Candidate splits

• instead of using k-way splits for k-valued features, could 
require binary splits on all discrete features (CART does this)

thal

normal reversible_defect∨ fixed_defect

color

red ∨blue green ∨ yellow



Finding The Best Splits



Finding the best split

• How should we select the best feature to split on at each step?

• Key hypothesis: the simplest tree that classifies the training instances 
accurately will work well on previously unseen instances



Occam’s razor

• attributed to 14th century William of Ockham

• “Nunquam ponenda est pluralitis sin necesitate”

• “Entities should not be multiplied beyond necessity”

• “when you have two competing theories that make exactly the same 

predictions, the simpler one is the better”



But a thousand years earlier, 

I said, “We consider it a good

principle to explain the 

phenomena by the simplest 

hypothesis possible.”



Occam’s razor and decision trees

• there are fewer short models (i.e. small trees) than 
long ones

• a short model is unlikely to fit the training data well 
by chance

• a long model is more likely to fit the training data well 
coincidentally

Why is Occam’s razor a reasonable heuristic for 

decision tree learning?



Finding the best splits

• Can we find and return the smallest possible decision tree 
that accurately classifies the training set?

• Instead, we’ll use an information-theoretic heuristic to 

greedily choose splits

NO! This is an NP-hard problem

[Hyafil & Rivest, Information Processing Letters, 1976]



Information theory background

• consider a problem in which you are using a code to communicate 
information to a receiver

• example: as bikes go past, you are communicating the manufacturer 
of each bike 



Information theory background

• suppose there are only four types of bikes

• we could use the following code

11

10

01

00

• expected number of bits we have to communicate:  
2 bits/bike

Trek

Specialized

Cervelo

Serrota

type code



Information theory background

• we can do better if the bike types aren’t equiprobable

• optimal code uses                    bits for event with 
probability

- log2 P(y)
P(y)

1

  

   

P(Trek) = 0.5

P(Specialized) = 0.25

P(Cervelo) = 0.125

P(Serrota) = 0.125
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Type/probability # bits code

• expected number of bits we have to communicate:  
1.75 bits/bike
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Entropy

• entropy is a measure of uncertainty associated with a 
random variable

• defined as the expected number of bits required to 
communicate the value of the variable

entropy function for

binary variable
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Conditional entropy

• What’s the entropy of Y if we condition on some other 
variable X?

where

𝐻(𝑌|𝑋) = ෍

𝑥∈values(𝑋)

𝑃(𝑋 = 𝑥)𝐻(𝑌|𝑋 = 𝑥)

𝐻(𝑌|𝑋 = 𝑥) = − ෍

𝑦∈values(𝑌)

𝑃(𝑌 = 𝑦|𝑋 = 𝑥) log2 𝑃 (𝑌 = 𝑦|𝑋 = 𝑥)



Information gain (a.k.a. mutual information)

• choosing splits in ID3: select the split S that most reduces 
the conditional entropy of Y for training set D

 InfoGain(D,S) = HD(Y )-HD(Y | S)

D indicates that we’re calculating probabilities 

using the specific sample D



Relations between the concepts

Figure from wikipedia.org



Information gain example 



Information gain example 

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• What’s the information gain of splitting on Humidity?
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Information gain example 

Humidity

high normal

D: [3+, 4-]

D: [9+, 5-]

D: [6+, 1-]

• Is it better to split on Humidity or Wind?

 HD(Y | weak) = 0.811

Wind

weak strong

D: [6+, 2-]

D: [9+, 5-]

D: [3+, 3-]

 HD(Y |strong) =1.0

✔
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One limitation of information gain

• information gain is biased towards tests with many 
outcomes

• e.g. consider a feature that uniquely identifies each 
training instance

• splitting on this feature would result in many branches, each of 
which is “pure” (has instances of only one class)

• maximal information gain!



Gain ratio

• to address this limitation, C4.5 uses a splitting criterion 
called gain ratio

• gain ratio normalizes the information gain by the entropy of 
the split being considered

GainRatio(D,S) =
InfoGain(D,S)

HD(S)
=
HD(Y )-HD(Y | S)

HD(S)



THANK YOU
Some of the slides in these lectures have been adapted/borrowed 

from materials developed by Mark Craven, David Page, Jude 
Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich, 

and Pedro Domingos. 


