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The lectures

organized according to different machine learning
models/methods

1.

oo

supervised learning
* non-parametric: decision tree, nearest neighbors
e parametric
« discriminative: linear/logistic regression, SVM, NN
* generative: Naive Bayes, Bayesian networks
unsupervised learning: clustering*, dimension reduction
reinforcement learning
other settings: ensemble, active, semi-supervised

iIntertwined with experimental methodologies, theory, etc.

1.
2.
3.

evaluation of learning algorithms

learning theory: PAC, bias-variance, mistake-bound
feature selection



Goals for this lecture

you should understand the following concepts
» the decision tree representation
» the standard top-down approach to learning a tree
 Occam’s razor
« entropy and information gain



- Decision Tree
Representation




A decision tree to predict heart disease

fixed_defect reversible defect

# major_vessels >0 present present

true false

Each internal node tests one feature x.

l

chest_pain_type absent

Each branch from an internal node
represents one outcome of the test

Each leaf predicts y or P(y | x)

absent absent absent present




Decision tree exercise

Suppose X, ... X; are Boolean features, and Y is also Boolean

How would you represent the following with decision trees?

Y =X, X, (ie.,Y = X, A X,)
Y =X, v X,

Y = X, X, v X=X,
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History of decision tree learning @

a = -
A < < g many DT variants have been
< E LI) 6 a developed since CART and ID3
| | | |
| | | o
1963 1973 1980 1984 1986
dates of seminal publications: work on these
2 was contemporaneous
CART developed by Leo Breiman, Jerome ID3, C4.5, C5.0 developed by Ross Quinlan

Friedman, Charles Olshen, R.A. Stone
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Top-down decision tree learning

MakeSubtree(set of training instances D)
C = DetermineCandidateSplits(D)
If stopping criteria met
make a leaf node N
determine class label/probabilities for N
else
make an internal node N
S = FindBestSplit(D, C)
for each outcome £ of S
D, = subset of instances that have outcome %
k™ child of N = MakeSubtree(D,)

return subtree rooted at N



Candidate splits in ID3, C4.5

« splits on nominal features have one branch per value

thal

normal fixed defect reversible defect

« splits on numeric features use a threshold

weight < 35

truNse




Candidate splits on numeric features

given a set of training instances D and a specific feature X;
« sort the values of X; in D

« evaluate split thresholds in intervals between instances of
different classes

weight (—0—0—0+0 ® ® ® >

17 35

weight < 35

truNse

« could use midpoint of each considered interval as the threshold

« CA4.5 instead picks the largest value of X; in the entire training set that does not
exceed the midpoint




Candidate splits on numeric features
(In more detall)

// Run this subroutine for each numeric feature at each node of DT induction
DetermineCandidateNumericSplits(set of training instances D, feature X;)
C={} I/ initialize set of candidate splits for feature x;

S = partition instances in D into sets s, ... s, where the instances in each
set have the same value for X

let v; denote the value of X for set s,
sort the sets in S using v; as the key for each s;
for each pair of adjacent sets s, s;,; In sorted S
if s, and s,,, contain a pair of instances with different class labels
/[ assume we’re using midpoints for splits
add candidate split X; < (v;+v,,)2to C

return C

o



Candidate splits (]

* instead of using i-way splits for 4-valued features, could
require binary splits on all discrete features (CART does this)

thal
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Finding the best split

« How should we select the best feature to split on at each step?

» Key hypothesis: the simplest tree that classifies the training instances
accurately will work well on previously unseen instances



Occam’s razor (]

« attributed to 14" century William of Ockham

“Nunguam ponenda est pluralitis sin necesitate”

“Entities should not be multiplied beyond necessity” |« 2.

“when you have two competing theories that make exactly the same
predictions, the simpler one is the better”



o

But a thousand years earlier,
| said, “WWe consider it a good
principle to explain the
phenomena by the simplest
hypothesis possible.”



Occam’s razor and decision trees [0 £7)

Why is Occam’s razor a reasonable heuristic for
decision tree learning?

* there are fewer short models (i.e. small trees) than
long ones

 a short model is unlikely to fit the training data well
by chance

« a long model is more likely to fit the training data well
coincidentally




Finding the best splits

« Can we find and return the smallest possible decision tree
that accurately classifies the training set?

NO! This is an NP-hard problem
[Hyafil & Rivest, Information Processing Letters, 1976]

 |nstead, we’ll use an information-theoretic heuristic to
greedily choose splits



Information theory background @

* consider a problem in which you are using a code to communicate
information to a receiver

« example: as bikes go past, you are communicating the manufacturer
of each bike

[




Information theory background

 suppose there are only four types of bikes
« we could use the following code

type code
Trek 11
Specialized 10
Cervelo 01
Serrota 00

« expected number of bits we have to communicate:
2 bits/bike



Information theory background

« we can do better if the bike types aren’t equiprobable

- optimal code uses -1o0g, P(y) bits for event with
probability P(y)

Type/probability # bits code
P(Trek)=0.5 1 1
P(Specialized) =0.25 2 01
P(Cervelo) =0.125 3 001
P(Serrota) =0.125 3 000

« expected number of bits we have to communicate:
1.75 bits/bike

- Y P(y)log, P(y)

yevalues(Y)



Entropy

 entropy Is a measure of uncertainty associated with a
random variable

« defined as the expected number of bits required to
communicate the value of the variable

H (Y) - Z P(Y) |092 P(Y) entropy function for

yevalues(Y) \ binary variable

1.0

0 0.5 1.0
Pr(X = 1)



Conditional entropy @

* What's the entropy of Y if we condition on some other
variable X7

H(Y|X) = Z P(X = x)H(Y|X = x)

xevalues(x)

where

HY|X = x) = — z P(Y = y|X = x)log, P (Y = y|X = x)
yevalues(y)



Information gain (a.k.a. mutual information) @

 choosing splits in ID3: select the split S that most reduces
the conditional entropy of Y for training set D

InfoGain(D,S)=H,(Y)-H,(Y |S)

~./

D indicates that we’re calculating probabilities
using the specific sample D




Relations between the concepts @

H(X) H(Y)

H(X,Y)

Figure from wikipedia.org



Information gain example

PlayTennis: training examples

Day Outlook Temperature =~ Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes

D12 Overcast Mild High Strong Yes

D13 Overcast Hot Normal Weak Yes

D14 Rain Mild High Strong No




Information gain example ]

« What'’s the information gain of splitting on Humidity?

D: [9+, 5-]
Humidity Hp(Y) = —%l 92(194) %I gz( 54) 0.940
hMmal
D: [3+, 4-] D: [6+, 1-]
H, (Y |high) = —g |og2($j - ; Iogz(gj Hp (Y [normal) = —g logz(gj - % Iog{%}
—0.985 = ket

InfoGain(D, Humidity) = H (Y ) — H (Y | Humidity)
_0.940— [l (0.985) + 1(0.592)}
14 14

=0.151



Information gain example ]

 Is it better to split on Humidity or Wind?

D: [9+, 5-] D: [9+, 5-]
Humidity wind

hmmal We/\()ng

D: [3+, 4] D: [6+, 1-] D: [6+, 2-] D: [3+, 3]

H, (Y |weak)=0.811 H (Y |strong) =1.0

InfoGain(D, Humidity) = 0.940 — & (0.985) + % (0.592)}
_0.151
InfoGain(D, Wind) = 0.940 - {i (0.811) + 6 (1.0)}
14 14

=0.048



One limitation of information gain

« Information gain is biased towards tests with many
outcomes

* e.g. consider a feature that uniquely identifies each
training instance

« splitting on this feature would result in many branches, each of
which is “pure” (has instances of only one class)

« maximal information gain!



Gain ratio @

* to address this limitation, C4.5 uses a splitting criterion
called gain ratio

* gain ratio normalizes the information gain by the entropy of
the split being considered

InfoGain(D, S) _ H,(Y)-H,(Y|S)

GainRatio(D, S) =
H ), (S) H,(S)




THANK YOU

Some of the slides in these lectures have been adapted/borrowed
2 from materials developed by Mark Craven, David Rage, Jude
@b‘ Shavlik, Tom Mitchell, Nina Balcan, Elad Hazan, Tom Dietterich,
i

W} and Pedro Domingos.
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