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1 Lazy Training of General Neural Networks

In previous lectures, we have shown many good properties of two-layer neural networks using
the NTK formulation. In this lecture, we will show the key technical lemma still holds for
more general neural networks, and the intuition is still the same. The formulation here is
usually called lazy training.

Consider n samples {(xi, yi)}
n
i=1 and y = (y1, . . . , yn)

⊤. Denote the model of the neural
network as function f(x,w) for weight w ∈ Rp, and let

f(w) = (f(x1,w), . . . , f(xn,w))⊤ ∈ Rn.

Note that the loss function

L(αf(w)) =
1

2
∥αf(w)− y∥2,

and denote L0 = L(αf(w(0))). Besides, we have

dw(t)

dt
= ẇ(t) = −∇wL(αf(w)) = −αJ⊤

t (∇L)(αf(w(t))),

where ∇w is w.r.t. w, ∇L is w.r.t. z in L(z), and the Jacobian matrix Jt is related to the
Hessian matrix introduced in our previous lectures (more precisely, JtJ

⊤
t is equivalent to the

Hessian). To be more specific, we have

Jt = Jw(t) = (∇f(x1,w(t)), . . . ,∇f(xn,w(t)))⊤ ∈ Rn×p.

We will also introduce another gradient flow, which is on a linear approximation of the
network. By the first-order Taylor expansion, we obtain

f0(u) = f(w(0)) + J0(u− u(0)), where u(0) = w(0).

Now we introduce the gradient flow for training the linear function f0(u):

du(t)

dt
= u̇(t) = −∇uL(αf0(u(t))) = −αJ⊤

0 (∇L)(αf0(u(t))).

The goal of this lecture is to show that the loss decreases exponentially fast. Remember
that in our last lecture, if we do random initialization, we showed that the spectrum of the
Hessian matrix is far away from 0, with high probability. To generalize the results to general
neural networks, we first introduce some assumption.
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Assumption 1.

rank(J0) = n, p > n,

σmin ≜ σmin(J0) =
√
λmin(J0J⊤

0 ) > 0,

σmax ≜ σmax(J0).

∃β > 0, ∥Jw − Jv∥ ≤ β∥w − v∥.

Next, we aim to show the following theorem.

Theorem 2. Under Assumption 1, if the scaling parameter α ≥ 6β
√

8σ2
maxL0

σ3
min

, we have

max {L(αf(w(t))), L(αf0(w(t)))} ≤ L0 exp

(
−t

α2σ2
min

2

)
,

max {∥w(t)−w(0)∥, ∥u(t)− u(0)∥} ≤
3
√

8σ2
maxL0

ασ2
min

.

To prove Theorem 2, we introduce the following lemmas.

Lemma 3.

d

dt
αf(w(t)) = αJtẇ(t) = −α2JtJ

⊤
t ∇L(αf(w(t)))

= −α2JtJ
⊤
t (αf(w(t))− y)

d

dt
αf0(u(t)) = −αJ0J

⊤
0 (αf0(u(t))− y).

We consider some general dynamics as follows. Once we consider this more general
setting, we can see the intuition more clearly.

Lemma 4. Suppose ż(t) = −Q(t)∇L(z(t)), ∀t ∈ [0, T ]. If λ = inft∈[0,T ] λmin(Qt) > 0, then
for t ∈ [0, T ], L(z(t)) ≤ L(z(0)) exp(−2λt).

Proof.

d

dt
L(z(t)) =

d

dt

1

2
∥z(t)− y∥2

=
1

2
⟨ż(t), z(t)− y⟩

= ⟨−Qt(z(t)− y), zt − y⟩
≤ −λmin(Qt)∥z(t)− y∥2

≤ −λ∥z(t)− y∥2

= 2λL(z(t)).

Next, we can use Grönwall’s inequality to get the final bound.
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Lemma 5. Suppose ˙v(t) = −s(t)⊤∇L(g(v(t))) where s(t) = St which is the Jacobian of g.
Let Qt = StS

⊤
t and assume ∀t ∈ [0, T ], λi(Qt) ∈ [λ, λ1]. Then ∀t ∈ [0, T ],

∥v(t)− v(0)∥2 ≤ 2λ1L(g(v(0)))

λ
.

Proof.

∥v(t)− v(0)∥ = ∥
∫ t

0

v̇(s)ds∥

≤
∫ t

0

∥v̇(s)∥ds

=

∫ t

0

∥s(s)⊤(g(v(s))− y)∥ds

≤
√
λ1

∫ t

0

∥g(v(s))− y∥ds

≤
√

λ1

∫ t

0

∥g(v(0))− y∥ exp(−λs)ds

where the last step is by applying Lemma 4 on z(t) = g(v(t)) and noting ż(t) =
−StS

⊤
t ∇L(z(t)).

By the two lemmas above, we can easily get the results for the linear function f0(u):

d

dt
αf0(u(t)) = −α2J0J

⊤
0 (αf0(u(t)− y))

L(αf0(u(t))) ≤ L0 exp(−2tα2σ2
min)

∥u(t)− u(0)∥ ≤
√
2α2σ2

maxL0

α2σmin

.

To get the results for f(w), we will need to show that Jt is bounded.

Lemma 6. If w satisfies ∥w −w(0)∥ ≤ B ≜ σmin/(2β), then

σmin(Jw) ≥
σmin

2
, σmax(Jw) ≤

3σmax

2
.

Proof. First consider σmax(Jw) = ∥Jw∥. Recall that β is the Lipschitz constant for the
Jacobian.

∥Jw∥ = ∥Jw − J0 + J0∥
≤ ∥Jw − J0∥+ ∥J0∥
= βB + σmax

≤ σmin

2
+ σmax

≤ 3σmax

2
.
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Next consider σmin(Jw). By definition,

σ2
min(Jw) = λmin(JwJ

⊤
w) = min

∥v∥=1
v⊤JwJ

⊤
wv = min

∥v∥=1
∥J⊤

wv∥2.

Let Av = (Jw − J0)
⊤v, and Bv = J⊤

0 v. Then we have

∥J⊤
wv∥2 = ∥(Jw − J0 + J0)

⊤v∥2 (1)

= ∥Av +Bv∥2

= ∥Av∥2 + 2⟨Av,Bv⟩+ ∥Bv∥2

≥ ∥Av∥2 − 2∥Av∥∥Bv∥+ ∥Bv∥2

= (∥Av∥ − ∥Bv∥)2.

Note that

∥Bv∥ = ∥J⊤
0 v∥ ≥ σmin, (2)

∥Av∥ ≤ ∥(Jw − J0)
⊤v∥ ≤ ∥Jw − J0∥∥v∥ = ∥Jw − J0∥ ≤ βB = σmin/2.

Combining equation 1 and equation 2 leads to the desired results.

With this lemma which bounds the spectrum and the other two key lemmas above, we
have

d

dt
αf(w(t)) = −α2JtJ

⊤
t (αf(w(t))− y)

λ = α2σ
2
min

4
L(αf(w(t))) ≤ L0 exp(−tα2σ2

min/2)

∥w(t)−w(0)∥ ≤

√
9σ2

min

2
α2L0

α2σ2
min/4

=
2
√
8σ2

maxL0

ασ2
min

≜ B′.

Now to complete the proof of the Theorem 2, it is sufficient to ensure B′ ≤ B. This is
guaranteed by the condition on α in the theorem.
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