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1 Continuous Setting

Consider the traditional classification task where x € R% y € R. The goal is to find a
function f: RY — R, such that:

minQ(f) = L(f) + B(f), L(f) = By [l(f(2)), y)];

where [() is defined to be the loss function and R is a regularization function. Similar
to Kernel methods, consider the two-level network given below to represent f:

Floupa) = [ o6.00u(0)0(0)d9 )

where o(,7) : R x R? — R is a known real-valued function, w(#) : R? — R is a real
value function of 6, and p(f) is a probability density over #. For regularizer, we use

R(w, p) = MERi(w, p) + AaRa(p)

where

Rifeo.p) = [ r(w(6)p(0)d8.ru(w) = |wf
Ralp) = [ ra6)0(6)d0,72(6) = |6

Next, we show a discrete NN approximates the continuous one when hidden nodes go to
infinity and then drive the evolution rule of p() and w(#) from the (noisy) GD algorithm
when the step size becomes small.

2 Discrete Setting

Consider a finite NN with the following form to approximate f(w, p, z):

F(p.0,2) = Zwr@] (2)

where © = {67},
The regularization terms are:

- %Zrl(m)ﬁ?(@) - %Z”“)j)’ (3)



and the training objective is:
@(:U’a @) = E%yuf(:u? @7 SL’), y) + Alél (/jﬁ @> + AQE?(@) (4>

We can solve it through the standard (noisy) GD, the algorithm is given by:

Step 0. Initialize p19 ~ P, 0(1), 96 ~ Pyo(0)
Step 1. Update ¢/ by

eerAt = 9{ — AtVy; [ (1, ©1) } \% €t+1a
where At is the step size and ffﬂ ~ N (0, vV 2At]d>.
Step 2. Update p/ by
Mg+At = Mg - Atvu |: :ut7 ®t i| V <t+17
where ¢/, ~ N(0,v2At).
2.1 Plain GD
We first consider the unnoisy setting where A3 = 0. We have the following Lemma.

Lemma 1.  Suppose A3 = 0. Suppose at time ¢ > 0, we have 9? ~ p;, and suppose ,u{ =
W (9? ) Assume [’ is continuous and o is twice differentiable. For all x, we have:

WlLl_{I;o f(pﬁh@tax) = f (Wi, pr, ) (5)

Furthermore, when At — 0, m — oo, we can derive,

dp;ie) = —Vo - [p:(6)g2 (¢, 0, wi(6))]
dazie) — g1 (£,0,w(0)) — Vg [wi(0)] g2 (£, 0, we(6))

where Vy- means the divergence, g; and g, satisfy:
gl(tv 87 U) = _]E:E,y [l/ (f (wt7 Pt 'T) 7y) U<97 I‘)} - Alv@ [7’1 (U)]
gQ(ta 07 U) = _Ew,y [l/ (f (wt7 Pt 'T) 7y) UV@U(‘97 SL’)] - )‘2v9 [T2<9)] .

To prove the lemma, we utilize the tool with Fokker-Planck Equation to compute the
evolution.



Background with Fokker-Planck Equation Suppose the movement of a particle in m-
dimensional space can be characterized by the stochastic differential equation given below:

dl‘t =g (I’t, t) dt + QB_IEdBt

Let x; ~ p(z,t), the evolution of p(x,t) is given by:

op(x,t)  ¥LXT

T V2p(a,t) =V - [p(x, t)g (v, 1)]

Proof of Lemma 1. Let the p,(0,v) as the joint distribution for (6, v):
(anﬂg) ~ pe(0,v) = pi6 (v = w(0))

We can rewrite f (wi, pt, ©) as:

f (wy, pr,x) = / o(0,z)p(0,v)dOdv.
Rd+1

By the Law of the Large number, when m — oo,

~

f (e, O, ) — f (Wi, pr, @) -

Now we denote
Go(t,0,0) = ~Euy [U(F (11, ©0,) ) 0900 (0, 2) | = 2oV [r2(0)]

From the update rule of GD, we have 9§+1 = 9{ + Atgs (t,@{,u{). Let At — 0, using
1} = w (67), we have

a9’ : .
d_tt = g2 (t,ei,wt (9{))
By applying Fokker-Planck equation,
dp:(0 ~
20 G, ) (1.6.04(6))]

As m — oo, and because !’ is continuous, o(f, x) and p; are also second-order smooth,
we obtain:

Vo - [pu(0)32 (1, 60,0(0))] = Vo - [0u(0)g2 (1,0,1(6))] % 0

To prove the evolution form for w;(#), we let:

G.1(t,0,0) = —E,, [z' (f(ut, O, ) ,y) (0, x)] MV ().



Then, (ignoring the superscript j since all j have the same calculation)

Wit At (‘9t+At)
dw; (9t+At)
dt

=w; (0; + G2 (t, 01, wi(0;)) At + o(Al)) +

=W (eH_At) -+ At + O(At)

dwy (9t+At)
— At At
o + o(At)

dwy (9t+At)

=wp (00) + [Vowr(00)] - Go (1, 00, i (60,)) At + ———

At + o At)
By the update rule wyia; (0rrar) = wi (0) + 91 (¢, 0, wi(0)) At, we have:

- dwy (Opar)

A g 9 bhewl)

The proof is finished by Let At — 0, and let m — oc.
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