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Preface

It was in the middle of the 1980s, when the seminal paper by Kar-
markar opened a new epoch in nonlinear optimization. The importance
of this paper, containing a new polynomial-time algorithm for linear op-
timization problems, was not only in its complexity bound. At that time,
the most surprising feature of this algorithm was that the theoretical pre-
diction of its high efficiency was supported by excellent computational
results. This unusual fact dramatically changed the style and direc-
tions of the research in nonlinear optimization. Thereafter it became
more and more common that the new methods were provided with a
complexity analysis, which was considered a better justification of their
efficiency than computational experiments. In a new rapidly develop-
ing field, which got the name “polynomial-time interior-point methods”,
such a justification was obligatory.

After almost fifteen years of intensive research, the main results of this
development started to appear in monographs (12, 14, 16, 17, 18, 19].
Approximately at that time the author was asked to prepare a new course
on nonlinear optimization for graduate students. The idea was to create
a course which would reflect the new developments in the field. Actually,
this was a major challenge. At the time only the theory of interior-point
methods for linear optimization was polished enough to be explained to
students. The general theory of self-concordant functions had appeared
in print only once in the form of research monograph [12]. Moreover,
it was clear that the new theory of interior-point methods represented
only a part of a general theory of convex optimization, a rather involved
field with the complexity bounds, optimal methods, etc. The majority
of the latter results were published in different journals in Russian.

The book you see now is a result of an attempt to present serious
things in an elementary form. As is always the case with a one-semester
course, the most difficult problem is the selection of the material. For



X INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION

us the target notions were the complexity of the optimization problems
and a provable efficiency of numerical schemes supported by complex-
ity bounds. In view of a severe volume limitation, we had to be very
pragmatic. Any concept or fact included in the book is absolutely nec-
essary for the analysis of at least one optimization scheme. Surprisingly
enough, none of the material presented requires any facts from duality
theory. Thus, this topic is completely omitted. This does not mean, of
course, that the author neglects this fundamental concept. However, we
hope that for the first treatment of the subject such a compromise is
acceptable.

The main goal of this course is the development of a correct under-
standing of the complexity of different optimization problems. This goal
was not chosen by chance. Every year I meet Ph.D. students of different
specializations who ask me for advice on reasonable numerical schemes
for their optimization models. And very often they seem to have come
too late. In my experience, if an optimization model is created without
taking into account the abilities of numerical schemes, the chances that
it will be possible to find an acceptable numerical solution are close to
zero. In any field of human activity, if we create something, we know
in advance why we are doing so and what we are going to do with the
result. And only in numerical modelling is the situation still different.

This course was given during several years at Université Catholique de
Louvain (Louvain-la-Neuve, Belgium). The course is self-contained. It
consists of four chapters (Nonlinear optimization, Smooth convex opti-
mization, Nonsmooth convex optimization and Structural optimization
(Interior-point methods)). The chapters are essentially independent and
can be used as parts of more general courses on convex analysis or op-
timization. In our experience each chapter can be covered in three two-
hour lectures. We assume a reader to have a standard undergraduate
background in analysis and linear algebra. We provide the reader with
short bibliographical notes which should help in a closer examination of
the subject.

Y URII NESTEROV

Louvain-la-Neuve, Belgium
May, 2003.
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Introduction

Optimization problems arise naturally in different fields of applica-
tions. In many situations, at some point we get a craving to arrange
things in a best possible way. This intention, converted into a mathe-
matical form, becomes an optimization problem of a certain type. De-
pending on the field of interest, it could be an optimal design problem, an
optimal control problem, an optimal location problem, an optimal diet
problem, etc. However, the next step, finding a solution to the mathe-
matical model, is far from trivial. At first glance, everything looks very
simple: many commercial optimization packages are easily available and
any user can get a “solution” to the model just by clicking on an icon
on the screen of his/her personal computer. The question is, what do
we actually get? How much can we trust the answer?

One of the goals of this course is to show that, despite their attraction,
the proposed “solutions” of general optimization problems very often
cannot satisfy the expectations of a naive user. In our opinion, the main
fact, which should be known to any person dealing with optimization
models, is that in general optimization problems are unsolvable. This
statement, which is usually missing in standard optimization courses,
is very important for an understanding of optimization theory and its
development in the past and in the future.

In many practical applications the process of creating a model can take
a lot of time and effort. Therefore, the researchers should have a clear
understanding of the properties of the model they are constructing. At
the stage of modelling, many different tools can be used to approximate
the real situation. And it is absolutely necessary to understand the
computational consequences of each decision. Very often we have to
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choose between a “good” model, which we cannot solve,! and a “bad”
model, which can be solved for sure. What is better?

In fact, the computational practice provides us with a hint of an an-
swer to the above question. Actually, the most widespread optimization
models now are still linear optimization models. It is very unlikely that
such models can describe our nonlinear world very well. Thus, the main
reason for their popularity is that practitioners prefer to deal with solv-
able models. Of course, very often the linear approximation is poor. But
usually it is possible to predict the consequences of such a choice and
make a correction in interpretation of the obtained solution. It seems
that for them this is better than trying to solve a model without any
guarantee for success.

Another goal of this course consists in discussing numerical meth-
ods for solvable nonlinear models, namely convez optimization problems.
The development of convex optimization theory in the last years has
been very rapid and very exciting. Now it consists of several competing
branches, each of which has some strong and some weak points. We will
discuss in detail their features, taking into account the historical aspect.
More precisely, we will try to understand the internal logic of the de-
velopment of each branch of the field. Up to now, the main results of
the development can be found only in special journals and monographs.
However, in our opinion, this theory is ripe for explanation to the final
users, industrial engineers, economists and students of different special-
izations. We hope that this book will be interesting even for the experts
in optimization theory since it contains many results, which have never
been published in English.

In this book we will try to convince the reader, that in order to apply
the optimization formulations successfully, it is necessary to be aware
of some theory, which explains what we can and what we cannot do
with optimization problems. The elements of this simple theory can be
found in each lecture of the course. We will try to show that convex
optimization is an excellent example of a complete application theory,
which is simple, easy to learn and which can be very useful in practical
applications.

In this course we discuss the most efficient modern optimization sche-
mes and establish for them efficiency bounds. This course is self-contai-
ned; we prove all necessary results. Nevertheless, the proofs and the
reasoning should not be a problem even for graduate students.

! More precisely, which we can try to solve
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The structure of the book is as follows. It consists of four relatively in-
dependent chapters. Each chapter includes three sections, each of which
corresponds approximately to a two-hour lecture. Thus, the contents of
the book can be directly used for a standard one-semester course.

Chapter 1 is devoted to general optimization problems. In Sec-
tion 1.1 we introduce the terminology, the notions of oracle, black box,
functional model of an optimization problem and the complexity of gen-
eral iterative schemes. We prove that global optimization problems are
“unsolvable” and discuss the main features of different fields of opti-
mization theory. In Section 1.2 we discuss two main local unconstrained
minimization schemes: the gradient method and the Newton method.
We establish their local rates of convergence and discuss the possible dif-
ficulties (divergence, convergence to a saddle point). In Section 1.3 we
compare the formal structures of the gradient and the Newton method.
This analysis leads to the idea of a variable metric. We describe quasi-
Newton methods and conjugate gradients schemes. We conclude this sec-
tion with an analysis of sequential unconstrained minimization schemes.

In Chapter 2 we consider smooth convez optimization methods. In
Section 2.1 we analyze the main reason for the difficulties encountered
in the previous chapter and from this analysis derive two good func-
tional classes, the class of smooth convex functions and that of smooth
strongly convex functions. For corresponding unconstrained minimiza-
tion problems we establish the lower complexity bounds. We conclude
this section with an analysis of a gradient scheme, which demonstrates
that this method is not optimal. The optimal schemes for smooth con-
vex minimization problems are discussed in Section 2.2. We start from
the unconstrained minimization problem. After that we introduce con-
vex sets and define a notion of gradient mapping for a minimization
problem with simple constraints. We show that the gradient mapping
can formally replace a gradient step in the optimization schemes. In
Section 2.3 we discuss more complicated problems, which involve sev-
eral smooth convex functions, namely, the minimax problem and the
constrained minimization problem. For both problems we introduce the
notion of gradient mapping and present the optimal schemes.

Chapter 3 is devoted to the theory of nonsmooth conver optimiza-
tion. Since we do not assume that the reader has a background in convex
analysis, the chapter is started by Section 3.1, which contains a compact
presentation of all necessary facts. The final goal of this section is to
justify the rules for computing the subgradients of a convex function.
The next Section 3.2 starts from the lower complexity bounds for non-
smooth optimization problems. After that we present a general scheme
for the complexity analysis of the corresponding methods. We use this
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scheme to establish the convergence rate of the subgradient method, the
center-of-gravity method and the ellipsoid method. We also discuss some
other cutting plane schemes. Section 3.3 is devoted to the minimization
schemes, which employ a piece-wise linear model of a convex function.
We describe Kelley’s method and show that it can be extremely slow. Af-
ter that we introduce the so-called level method. We justify its efficiency
estimates for unconstrained and constrained minimization problems.
Chapter 4 is devoted to convex minimization problems with explicit
structure. In Section 4.1 we discuss a certain contradiction in the black
box concept as applied to a convex optimization model. We introduce a
barrier model of an optimization problem, which is based on the notion
of self-concordant function. For such functions the second-order oracle
is not local and they can be easily minimized by the Newton method.
We study the properties of these functions and establish the rate of
convergence of the Newton method. In Section 4.2 we introduce self-
concordant barriers, the subclass of self-concordant functions, which is
suitable for sequential unconstrained minimization schemes. We study
the properties of such barriers and prove the efficiency estimate of the
path-following scheme. In Section 4.3 we consider several examples of
optimization problems, for which we can construct a self-concordant bar-
rier, and, consequently, these problems can be solved by a path-following
scheme. We consider linear and quadratic optimization problems, prob-
lems of semidefinite optimization, separable optimization and geomet-
rical optimization, problems with extremal ellipsoids, and problems of
approximation in [,-norms. We conclude this chapter and the whole
course by a comparison of an interior-point scheme with a nonsmooth
optimization method as applied to a particular problem instance.



Chapter 1

NONLINEAR OPTIMIZATION

1.1  World of nonlinear optimization

(General formulation of the problem; Important ezamples; Black boz and iter-
ative methods; Analytical and arithmetical complerity; Uniform grid method;
Lower complezity bounds; Lower bounds for global optimization; Rules of the
game.)

1.1.1 General formulation of the problem

Let us start by fixing the mathematical form of our main problem and
the standard terminology. Let z be an n-dimensional real vector:

z=(zW,..., 27T e R,

S be a subset of R", and fy(z),..., fm(z) be some real-valued functions
of z. In the entire book we deal with different variants of the following
general minimization problem:

min fﬂ(z)s
st. fi(z) &0, j=1...m, (1.1.1)

€S,

where the sign & could be <, > or =.
We call fo(z) the objective function of our problem, the vector function

f(z) = (fi@),-- -, fm(@))T

is called the vector of functional constraints, the set S is called the basic
Jeasible set, and the set

RQ={zeS]| fi(z) L0, j=1...m}
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is called the feasible set of problem (1.1.1). That is just a convention
to consider a minimization problem. Instead, we could consider a max-
imization problem with the objective function — fy(z).

There is a natural classification of the types of minimization problems:

m Constrained problems: Q C R".
» Unconstrained problems: QQ = R™.

Smooth problems: all f;(z) are differentiable.

Nonsmooth problems: there is a nondifferentiable component fi(z).

Linearly constrained problems: all functional constraints are linear:
n ) .
filz) = Zﬂy)ﬂim +b; = (a;,z) +b;, j=1...m,
i=1

(here (-, ) stands for the inner product in R"), and S is a polyhedron.

If fo(z) is also linear, then (1.1.1) is a linear optimization problem. If
fo(z) is quadratic, then (1.1.1) is a quadratic optimization problem. If
all f; are quadratic, then this is a quadratically constrained quadratic

problem.

There is also a classification based on the properties of feasible set.

» Problem (1.1.1) is called feasible if @ # 0.

» Problem (1.1.1) is called sérictly feasible if there exists z € int @ such
that f;(z) < 0 (or > 0) for all inequality constraints and f;(z) = 0
for all equality constraints. (Slater condition.)

Finally, we distinguish different types of solutions to (1.1.1):

m z* is called the optimal global solution to (1.1.1) if fy(z*) < fo(z) for
all z € Q (global minimum). In this case fy(z*) is called the (global)
optimal value of the problem.

m z* is called a local solution to (1.1.1) if fo(z*) < fo(z) for all z €
int Q@ C @ (local minimum).

Let us consider now several examples demonstrating the origin of the
optimization problems.

ExAMPLE 1.1.1 Let z("), ..., z(™® be our design variables. Then we can
fix some functional characteristics of our decision: fo(z),..., fin(z). For
example, we can consider a price of the project, amount of required
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resources, reliability of the system, etc. We fix the most important
characteristics, fo(z), as our objective. For all others we impose some
bounds: a; < f;(x) < b;. Thus, we come up with the problem:

min fo(z),
s.t: a; < fi(z) <by, j=1...m,

T €S,

where S stands for the siructural constraints, like nonnegativity or boun-
dedness of some variables. ]

EXAMPLE 1.1.2 Let our initial problem be as follows:
Find z € R" such that f;j(z) =a;, j=1...m. (1.1.2)

Then we can consider the problem:
m
min Y(f5(z) - a)%,
j=1

perhaps even with some additional constraints on z. If the optimal value
of the latter problem is zero, we conclude that our initial problem (1.1.2)

has a solution.

Note that the problem (1.1.2) is almost universal. It covers ordinary
differential equations, partial differential equations, problems arising in
Game Theory, and many others. a

EXAMPLE 1.1.3 Sometimes our decision variables z(1), ..., z(®) must be
integer. This can be described by the following constraint:

sin(rz@)y =0, i=1...n.
Thus, we can also treat integer optimization problems:

min fo(z),
st a; < fJ(CB) < by y=1,, m,
T €S,

sin(rz®) =0, i=1...n.
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Looking at these examples, a reader can understand the optimism
of the pioneers of nonlinear optimization, which can be easily seen in
the papers of the 1950’s and 1960’s. Our first impression should be, of
course, as follows:

Nonlinear optimization is a very important and promising
application theory. It covers almost all needs of opera-
tions research and numerical analysis.

However, just by looking at the same examples, especially at Examples
1.1.2 and 1.1.3, a more suspicious (or more experienced) reader could
come to the following conjecture:

In general, optimization problems are unsolvable

Indeed, the real life is too complicated to believe in a universal tool,
which can solve all problems at once.

However, such suspicions are not so important in science; that is a
question of personal taste how much we trust them. Therefore it was
definitely one of the most important events in optimization, when in the
middle of the 1970s this conjecture was proved in some strict mathemat-
ical sense. The proof is so simple and remarkable, that we cannot avoid
it in our course. But first of all, we should introduce a special language,
which is necessary to speak about such things.

1.1.2 Performance of numerical methods

Let us imagine the following situation: We have a problem P, which
we are going to solve. We know that there are different numerical meth-
ods for doing so, and of course, we want to find a scheme that is the
best for our P. However, it turns out that we are looking for something
that does not exist. In fact, maybe it does, but it is definitely not rec-
ommended to ask the winner for help. Indeed, consider a method for
solving problem (1.1.1), which is doing nothing except reporting that
z* = 0. Of course, this method does not work for all problems ezcept
those for which the solution is indeed the origin. And for the latter
problems the “performance” of such a scheme is unbeatable.

Thus, we cannot speak about the best method for a particular problem
P, but we can do so for a class of problems F D P. Indeed, usually the
numerical methods are developed for solving many different problems
with similar characteristics. Thus, a performance of method M on the
whole class F is a natural characteristic of its efficiency.
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Since we are going to speak about the performance of M on a class
F, we should assume that M does not have complete information about
a particular problem P.

A known (for numerical scheme) “part” of problem P is
called the model of the problem.

We denote the model by ¥. Usually the model consists of problem
formulation, description of classes of functional components, etc.

In order to recognize the problem P (and solve it), the method should
be able to collect specific information about P. It is convenient to de-
scribe the process of collecting the data by the notion of an oracle. An
oracle @ is just a unit, which answers the successive questions of the
method. The method M is trying to solve the problem P by collecting
and handling the answers.

In general, each problem can be described by different models. More-
over, for each problem we can develop different types of oracles. But let
us fix ¥ and O. In this case, it is natural to define the performance of
M on (Z,0) as its performance on the worst Py, from (X, ). Note that
this Py can be bad only for M.

Further, what is the performance of M on P? Let us start from the
intuitive definition:

Performance of M on P is the total amount of computa-
tional efforts that is required by method M to solve the
problem P.

In this definition there are two additional notions to be specified. First of
all, what does it mean: to solve the problem? In some situations it could
mean finding an ezact solution. However, in many areas of numerical
analysis that is impossible (and optimization is definitely such a case).
Therefore,

To solve the problem means to find an approzimate solu-
tion to M with an accuracy € > 0.

The meaning of the words with an accuracy € > 0 is very important for
our definitions. However, it is too early to speak about that now. We
just introduce notation 7, for a stopping criterion; its meaning will be
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always precise for particular problem classes. Now we can give a formal
definition of the problem class:

F=(50,T).

In order to solve a problem P € F we can apply an iterative process,
which naturally describes any method M working with the oracle.

General Iterative Scheme.

Input: A starting point 2y and an accuracy € > 0.
Initialization. Set k = 0, I_; = B. Here k is iteration
counter and I is accumulated information set.

(1.1.3)

Main loop:
1. Call oracle O at zj.
2. Update the information set: Iy = Iy U(zk, O(zk)).
3. Apply rules of method M to I} and form point zx,.
4. Check criterion 7.. If yes then form an output Z.
Otherwise set k := k + 1 and go to Step 1.

Now we can specify the term computational efforts in our definition of
performance. In the scheme (1.1.3) we can easily find two most expensive
steps. The first one is Step 1, where we call the oracle, and the second
one is Step 3, where we form the next test point. Thus, we can introduce
two measures of complezity of problem P for method M:

Analytical complezity: The number of calls of oracle,
which is required to solve problem P up to accuracy e.
Arithmetical complezity: The total number of arithmetic
operations (including the work of oracle and work of
method), which is required to solve problem P up to ac-
curacy €.

Comparing the notions of analytical and arithmetical complexity, we
can see that the second one is more realistic. However, for a particu-
lar method M as applied to a problem P, the arithmetical complexity
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usually can be easily obtained from the analytical complexity and the
complexity of the oracle. Therefore, in this course we will speak mainly
about bounds on the analytical complexity for some problem classes.

There is one standard assumption on the oracle, which allows us to
obtain the majority of the results on the analytical complexity of opti-
mization problems. This assumption is called the local black box concept
and it looks as follows:

Local black box

1. The only information available for the numerical
scheme is the answer of the oracle.

2. The oracle is local: A small variation of the problem
far enough from the test point & does not change the
answer at .

This concept is very useful in numerical analysis. Of course, its first
part looks like an artificial wall between the method and the oracle. It
seems natural to give the method an access to internal structure of the
problem. However, we will see that for problems with rather complicated
structure this access is almost useless. For more simple problems it could
help. We will see that in the last chapter of the book.

To conclude the section, let us mention that the standard formulation
(1.1.1) is called a functional model of optimization problems. Usually,
for such models the standard assumptions are related to the smoothness
of functional components. In accordance to degree of smoothness we can
apply different types of oracle:

m Zero-order oracle: returns the value f(z).
» First-order oracle: returns f(z) and the gradient f'(z).

» Second-order oracle: returns f(z), f'(z) and the Hessian f"(z).

1.1.3  Complexity bounds for global optimization
Let us try to apply the formal language, introduced in the previous
section, to a particular problem class. Consider, for example, the fol-

lowing problem:
min f(z). (1.1.4)
.’L‘EBn

In our terminology, this is a constrained minimization problem without
functional constraints. The basic feasible set of this problem is B,, an
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n-dimensional box in R"™:

Bo={zeR"|0<zW<1,i=1...n}.
Let us measure distances in R" using l,,-norm:

= ®
Izlleo = max 7).

Assume that, with respect to this norm,

the objective function f(x) is Lipschitz continuous on By:

| fle) = fWISLllz-yllw Vz,y € Bn, (1.1.5)

with some constant L (Lipschitz constant).

Consider a very simple method for solving (1.1.4), which is called the
uniform grid method. This method G(p) has one integer input parameter
p. Its scheme is as follows.

Method G(p)

1. Form (p + 1)" points

w

)

where (7;,...,1,) € {0,...,p}". (1.1.6)

o = (R
T(iy,sin) = (ps FEERRE

2. Among all points z(;, ;.) find a point Z, which has
the minimal value of objective function.

3. Return the pair (Z, f(Z)) as a result.

Thus, this method forms a uniform grid of the test points inside the
box B, computes the minimum value of the objective over this grid and
returns this value as an approximate solution to problem (1.1.4). In our
terminology, this is a zero-order iterative method without any influence
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of the accumulated information on the sequence of test points. Let us
find its efficiency estimate.

THEOREM 1.1.1 Let f* be the global optimal value of problem (1.1.4).
Then
F@) - fr< £
Proof: Let z. be a global minimum of our problem. Then there exist
coordinates (iy,14g,...,4,) such that
= m(il,iz,---,inJ S z* S m(f1+1,i2+l,...,in+l] =y

(here and in the sequel we write z < y for z,y € R" if and only if
@ < 4@ for alli =1...n). Note that y® —z) = -;; fori =1...n,
and )

z) € z®,4@), i=1...n

Denote Z = (z + y)/2. Let us form a point Z as follows:
y(i), lf .T(:) 2 i(i),
7 =

2 otherwise.

It is clear that | 0 — :rs';) < 51;;, i1 =1...n. Therefore

|2 - 2" lloo= max |20 - 21| < .

Since Z belongs to our grid, we conclude that

f(Z) = f(2:) S f(&) = f@) SL|| & =24 oS 35
O

Let us finish the definition of our problem class. Define our goal as

follows:
Findz € B, : f(Z)— f* <e. (1.1.7)

Then we immediately get the following result.

COROLLARY 1.1.1 Analytical complezity of the problem class (1.1.4),
(1.1.5), (1.1.7) for method G 1is at most

AQG) = (L£]+2)",
(here |a] is an integer part of a).

Proof: Take p = |_§LEJ +1. Thenp > 5[’;, and, in view of Theorem 1.1.1,
we have f(Z) — f* < TLp < e. Note that we constrict (p + 1)” points. O
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Thus, A(G) justifies an upper complexity bound for our problem class.

This result is quite informative, but we still have some questions.
Firstly, it may happen that our proof is too rough and the real perfor-
mance of G(p) is much better. Secondly, we still cannot be sure that
G(p) is a reasonable method for solving (1.1.4). There may exist other
schemes with much higher performance.

In order to answer these questions, we need to derive lower complezity
bounds for the problem class (1.1.4), (1.1.5), (1.1.7). The main features
of such bounds are as follows.

s They are based on the black boz concept.

m These bounds are valid for all reasonable iterative schemes. Thus,
they provide us with a lower estimate for analytical complezity on

the problem class.
= Very often such bounds employ the idea of the resisting oracle.

For us only the notion of the resisting oracle is new. Therefore, let us
discuss it in more detail.

A resisting oracle tries to create a worst problem for each particular
method. It starts from an “empty” function and it tries to answer each
call of the method in the worst possible way. However, the answers must
be compatible with the previous answers and with the description of the
problem class. Then, after termination of the method it is possible to
reconstruct a problem, which fits completely the final information set
accumulated by the algorithm. Moreover, if we launch this method on
this problem, it will reproduce the same sequence of the test points since
it will have the same sequence of answers from the oracle.

Let us show how that works for problem (1.1.4). Consider the class

of problems C defined as follows:

Model: Inin f(z),

f(z) is loo-Lipschitz continuous on B,,.

Oracle: Zero-order local black box.

Approximate solution: | Find z € B, : f(Z) — f* <e.
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THEOREM 1.1.2 For € < 3L the analytical complezity of C for zero-
n

order methods is at least ( ].ﬁLEJ ) ‘

Proof: Denote p = |_2—I;J (> 1). Assume that there exists a method,

which needs N < p" calls of oracle to solve any problem from C. Let us
apply this method to the following resisting strategy:

Oracle returns f(z) = 0 at any test point z.

Therefore this method can find only Z € B, with f(z) = 0. However,
note that there exists & € B,, such that

.ra+;-,eeB,,. e=(1,...,1)T e R",

and there were no test points inside thebox B={z |2 <z <z + %e}.
Denote =, = % + 5156 and consider the function

f(@) = min{0,L || z - 2« [loo —€},

Clearly, this function is lo-Lipschitz continuous with the constant L
and its global optimal value is —e. Moreover, f(z) differs from zero only
inside the box B' = {z ||| z — Z4 [|0o < 7}. Since 2p < L/e, we conclude
that

B'CB={z|lz-los &}

Thus, f(z) is equal to zero at all test points of our method. Since
the accuracy of the result of our method is €, we come to the following
conclusion: If the number of calls of the oracle is less than p", then the
accuracy of the result cannot be better than e. .

Now we can say much more about the performance of the uniform grid
method. Let us compare its efficiency estimate with the lower bound:

G: (I.Q_l;J 5 2)“, Lower bound: ([Q—I;J)n

Thus, if e = O(%), the lower and upper bounds coincide up to a constant
multiplicative factor. This implies that G(p) is an optimal method for C.

At the same time, Theorem 1.1.2 supports our initial claim that the
general optimization problems are unsolvable. Let us look at the follow-
ing example.

EXAMPLE 1.1.4 Consider the problem class F defined by the following

parameters:
L=2, n=10, =0.0l.
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Note that the size of the problem is very small and we ask only for 1%
accuracy. .
The lower complexity bound for this class is (%) . Let us compute

it for our example.

Lower bound: 10%0 calls of oracle

Complexity of oracle: | at least n arithmetic operations (a.o.)
Total complexity: 102! a.o.

Work station: 108 a.o. per second

Total time: 10'° seconds

One year: less than 3.2 - 107 sec.

We need: 31 250 000 years.

This estimate is so disappointing that we cannot keep any hope that
such problems may become solvable in a future. Let us just play with
the parameters of the problem class.

= If we change n to n+1, then the estimate is multiplied by one hundred.
Thus, for n = 11 our lower bound is valid for a much more powerful
computer.

= On the contrary, if we multiply € by two, we reduce the complexity
by a factor of a thousand. For example, if ¢ = 8%, then we need only
two weeks. 0

We should note, that the lower complexity bounds for problems with
smooth functions, or for high-order methods are not much better than
those of Theorem 1.1.2. This can be proved using the same arguments
and we leave the proof as an exercise for the reader. Comparison of
the above results with the upper bounds for NP-hard problems, which
are considered as a classical example of very difficult problems in com-
binatorial optimization, is also quite disappointing. Hard combinatorial
problems need 2" a.o. only!

To conclude this section, let us compare our situation with one in some
other fields of numerical analysis. It is well known, that the uniform grid
approach is a standard tool in many domains. For example, if we need
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to compute numerically the value of the integral of a univariate function

1
I= [ f(z)dz,
[

the standard way to proceed is to form a discrete sum

=

Snzﬁl‘ lf(&..":,;), xi::’%f”’izll"'N'

Il

If f(z) is Lipschitz continuous, then this value can be used as an ap-
proximation to I:

N=L/e = |I-Syl|<e

Note that in our terminology this is exactly the uniform grid approach.
Moreover, that is a standard way for approximating the integrals. The
reason why it works here lies in the dimension of problems. For inte-
gration the standard dimensions are very small (up to three), and in
optimization sometimes we need to solve problems with several millions
of variables.

1.1.4 Identity cards of the fields

After the pessimistic results of the previous section, first of all we
should understand what could be our goal in theoretical analysis of op-
timization problems. It seems, everything is clear for general global op-
timization. But maybe the goals of this field are too ambitious? Maybe
in some practical problems we would be satisfied by much less “optimal”
solution? Or, maybe there are some interesting problem classes, which
are not so dangerous as the class of general continuous functions?

In fact, each of these questions can be answered in a different way.
And this way defines the style of research (or rules of the game) in
the different fields of nonlinear optimization. If we try to classify these
fields, we can easily see that they differ one from another in the following

aspects:

= Goals of the methods.

m (Classes of functional components.
s Description of the oracle.

These aspects define in a natural way the list of desired properties of the
optimization methods. Let us present the “identity cards” of the fields,
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which we are going to consider in the book.

Name: General global optimization. (Section 1.1)

Goals: Find a global minimum.

Functional class: Continuous functions.

Oracle: 0 — 1 — 2 order black box.

Desired properties: Convergence to a global minimum.
Features: From theoretical point of view, this game is too
short. We always lose it.

Problem sizes: There are examples of solving problems
with thousands of variables. However, no guarantee for suc-
cess even for very small problems.

History: Starts from 1955. Several local peaks of interest
related to new heuristic ideas (simulated annealing, neural
networks, genetic algorithms).

Name: Nonlinear optimization. (Sections 1.2, 1.3)

Goals: Find a local minimum.

Functional class: Differentiable functions.

Oracle: 1 — 2 order black box.

Desired properties: Convergence to a local minimum.
Fast convergence.

Features: Variability of approaches. Most widespread soft-
ware. The goal is not always acceptable and reachable.
Problem sizes: up to 1000 variables.

History: Starts from 1955. Peak period: 1965 - 1985.
Theoretical activity now is rather low.

Name: Convex optimization. (Chapters 2, 3)

Goals: Find a global minimum.

Functional class: Convex sets and functions.

Oracle: lst-order black box.

Desired properties: Convergence to a global minimum.
Rate of convergence depends on the dimension.

Features: Very rich and interesting theory. Comprehen-
sive complexity theory. Efficient practical methods. The
problem class is sometimes restrictive.

Problem sizes: up to 1000 variables.

History: Starts from 1970. Peak period: 1975 — 1985 (ter-
minated by explosion of interior-point ideas). Theoretical
activity now is growing up.
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Name: Interior-point polynomial-time methods. (Chap-
ter 4)

Goals: Find a global minimum.

Functional class: Convex sets and functions with explicit
structure.

Oracle: 2nd-order black box oracle, which is not local.
Desired properties: Fast convergence to a global mini-
mum. Rate of convergence depends on the structure of the
problem.

Features: Very new and perspective theory. Avoid the
black box concept. The problem class is practically the same
as in convex optimization.

Problem sizes: Sometimes up to 10000000 variables.
History: Starts from 1984. Peak period: 1990 —.... Very
high theoretical activity just now.

1.2 Local methods in unconstrained minimization

(Relazation and approzimation; Necessary optimality conditions; Sufficient
optimality conditions; Class of differentiable functions; Class of twice differ-
entiable functions; Gradient method; Rate of convergence; Newton method.)

l.ﬁ.l Relaxation and approximation

The simplest goal of general nonlinear optimization is to find a local
minimum of a differentiable function. In general, the global structure of
such a function is not simpler than that one of a Lipschitz continuous
function. Therefore, even for reaching such a restricted goal, it is neces-
sary to follow some special principles, which guarantee the convergence
of a minimization process.

The majority of general nonlinear optimization methods are based on
the idea of relazation:

We call the sequence {aj}3>, a relazation sequence if

ak+1 < ax Yk 20.

In this section we consider several methods for solving the following
unconstrained minimization problem

min f(z), (1.2.1)

e R?
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where f(z) is a smooth function. In order to do so, we generate a
relaxation sequence {f(zx)}3,:

i) 2 o) k=0, L
This strategy has the following important advantages:

1. If f(z) is bounded below on R™, then the sequence {f(zx)}3, con-
verges.

2. In any case we improve the initial value of the objective function.

However, it would be impossible to implement the idea of relaxation
without employing another fundamental principle of numerical analysis,
the approzimation. In general,

To approximate means to replace an initial complex ob-
ject by a simplified one, which is close by its properties
to the original.

In nonlinear optimization we usually apply local approximations based

on derivatives of nonlinear functions. These are the first- and the second-

order approximations (or, the linear and quadratic approximations).
Let f(z) be differentiable at Z. Then for y € R* we have

f) =f@) +{f'@)y—2)+ollly—z ),
where o(r) is some function of r > 0 such that

lriﬂ)l %o(r‘) =0, o(0)=0.

In the sequel we fix the notation || - || for the standard Euclidean norm

in R™;
1/2

el = £ (+)°]

i=

The linear function f(z) + (f'(z),y — ) is called the linear approzi-
mation of f at £. Recall that the vector f'(z) is called the gradient of
function f at z. Considering the points y; = 7 + €e;, where e; is the ith
coordinate vector in R", and taking the limit in ¢ — 0, we obtain the
following coordinate representation of the gradient:

F(a) = (4,..., 24E)".
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Let us mention two important properties of the gradient. Denote by
L(a) the level set of f(z):

Li(e) ={zeR"| f(z) <a}

Consider the set of directions that are tangent to L¢(f(z)) at z:

-\ _ . —i
Sf(m)ﬂ{sER"Is— yl}_gév ]Tgﬁ—_fﬁ}

fwi)=f(2)
LEMMA 1.2.1 If s € S¢(Z), then (f'(Z),s) = 0.
Proof: Since f(yx) = f(Z), we have
flye) = [(@) + (f'(@), 96 — Z) + ol ye — 2 |) = f(2).
Therefore (f'(z),yx — Z) + o(|| yx —  ||) = 0. Dividing this equation by

Il y« — Z || and taking the limit in y; — Z, we obtain the result. O

Let s be a direction in R", || s ||= 1. Consider the local decrease of
f(z) along s:
— T L - _ o
As) = lim 4/ (@ + as) - (@)
Note that f(Z + as) — f(Z) = a(f'(Z), s) + o(a). Therefore
A(s) = (f'(2), 5).
Using the Cauchy-Schwartz inequality:
—lzll-Nlyl<zy) <llzll-lIlyl
we obtain A(s) = (f'(z),s) > — || f/(Z) ||. Let us take
s=-f@)/ I f(z.
Then
A(3) = =@, @/ I F@) =1l F'@) |l
Thus, the direction —f(Z) (the antigradient) is the direction of the
fastest local decrease of f(z) at point Z.

The next statement is probably the most fundamental fact in opti-
mization.

THEOREM 1.2.1 (First-order optimality condition.)
Let z* be a local minimum of differentiable function f(z). Then

f'(z*) =0.
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Proof: Since z* is a local minimum of f(z), then there exists r > 0
such that for all y, ||y — z*|| < r, we have f(y) > f(z*). Since f is
differentiable, this implies that
f)=f@E)+ (@) y-z)+olly—z* |I) 2 f(=%).
Thus, for all s, || s ||= 1, we have (f’(z*),s) > 0. Consider the directions
s and —s; we get
(f‘(m*)ss) =0, Vs, |s]=1

Finally, choosing s = e;, i = 1...n, where ¢; is the ith coordinate vector
in R™, we obtain f'(z*) = 0. O

COROLLARY 1.2.1 Let z* be a local minimum of a differentiable func-
tion f(x) subject to linear equality constraints

z € L= {z€R" Az = b} #0,

where A is an m x n-matriz and b € R™, m < n. Then there ezists a
vector of multipliers \* such that

f'(a*) = ATH". (1.2.2)

Proof: Consider some vectors u;, 1 = 1...k, that form a basis of the
null space of matrix A. Then any z € L can be represented as follows:

k
z=z(y) =z"+ Zy(’)ui, y € RF.
i=1
Moreover, the point ¥ = 0 is a local minimum of the function ¢(y) =
f(z(y)). In view of Theorem 1.2.1, ¢/(0) = 0. This means that

20 = (f)w) =0, i=1...k

and (1.2.2) follows. a

Note that we have proved only a necessary condition of a local min-
imum. The points satisfying this condition are called the stationary
points of function f. In order to see that such points are not always the
local minima, it is enough to look at function f(z) = z°, z € R!, at
z=0.
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Let us introduce now the second-order approximation. Let function
f(z) be twice differentiable at . Then

f)=f@ +(f'@),y-2)+ 5" @@ -2),y-2) +oll y—z )
The quadratic function
£(@) +(f'(@),y - 2) + 3(f"(@)y - 2),y - %)

is called the quadratic (or second-order) approximation of function f at
Z. Recall that the (n x n)-matrix f"(z) has the following entries:

1) — 3 f(z
(f"(2))0) = ;Lo
It is called the Hesstan of function f at z. Note that the Hessian is a

symmetric matrix:
f"(ﬂ':) oo [f"(&'.')]T.

The Hessian can be seen as a derivative of the vector function f'(z):
f'ly) =f'@+ @)y -2 +o(ly—Z ).
where o(r) is a vector function such that ]iirgx% || o(r) |l= 0 and o(0) = 0.
T

Using the second-order approximation, we can write down the second-
order optimality conditions. In what follows notation A > 0, used for a
symmetric matrix A, means that A is positive semidefinite:

(Az,z) >0 VYz€ R

Notation A >~ 0 means that A is positive definite (above inequality must
be strict for = # 0).

THEOREM 1.2.2 (Second-order optimality condition.)
Let z* be a local minimum of twice differentiable function f(x). Then

flz®)=0, [f"@z")=0.

Proof: Since z* is a local minimum of function f(z), there exists r > 0
such that for all y, ||y — z*|| < r, we have

fly) = f(z7).
In view of Theorem 1.2.1, f’(z*) = 0. Therefore, for any such y,
J) = 1)+ (") y - )y —z") +oll y - =" |*) 2 f(a).
Thus, (f"(z*)s,s) >0, for all s, || s ||= 1. D
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Again, the above theorem is a necessary (second-order) characteristic
of a local minimum. Let us prove a sufficient condition.

THEOREM 1.2.3 Let function f(x) be twice differentiable on R" and let
x* satisfy the following conditions:

f'(z*) =0, f"(z*)»0.
Then z* s a strict local minimum of f(x).

(Sometimes, instead of strict we say isolated.)
Proof: Note that in a small neighborhood of point z* function f(z) can
be represented as

fly) = f=*) + 3{f" @)y —z*)y - 2°) +o(| y — =" |?).
Since E{rﬂ — 0, there exists a value 7 such that for all r € [0, 7] we have
| o(r) < FA(f"(z*)),

where A (f”(z*)) is the smallest eigenvalue of matrix f”(z*). Recall,
that in view of our assumption, this eigenvalue is positive. Therefore,

for any y, || y — z*|| < 7 we have
fly) 2 fla@*) + (" (=) [y —z* I +o(ll y — 2 |I?)

> f(@")+ g (f"(@) Iy — z* |I*> f(z7).

1.2.2  Classes of differentiable functions

It is well known that any continuous function can be approximated by
a smooth function with arbitrarily small accuracy. Therefore, assuming
only differentiability of the objective function we cannot get any rea-
sonable properties of minimization processes. Hence, we have to impose
some additional assumptions on the magnitude of the derivatives. Tra-
ditionally, in optimization such assumptions are presented in the form
of a Lipschitz condition for a derivative of certain order.

Let @ be a subset of ™. We denote by Cf’p(Q) the class of functions
with the following properties:

= any f € Cf‘p(Q) is k times continuously differentiable on Q.

m Its pth derivative is Lipschitz continuous on @ with the constant L:

I fP(z) = fO ) IS Llz—yl
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for all z, y € Q.

Clearly, we alwa.ys have p < k. If ¢ >k, then C}*(Q) C C’f’p(Q). For
example, C Q) c C' '(Q). Note also that these classes possess the
following property: if f; € CL P(Q), fo € CL P(Q) and a, B € R!, then
for

Ly=|a| Li+|B| L2

we have af) + Bf2 € Cff(Q).

We use notation f € C*(Q) for a function f which is k times contin-
uously differentiable on Q.

For us the most important class of functions of the above type will be
C}J'I(R"), the class of functions with Lipschitz continuous gradient. By

definition, the inclusion f € Cl’l(R") implies that
I f(@) = fWiIsLiz—yll (1.2.3)
for all z, y € R™. Let us give a sufficient condition for that inclusion.

LEMMA 1.2.2 Function f(z) belongs to C (R™) C C' (R™) if and only
if

I /"(z) 1< L, Ve R (1.2.4)
Proof. Indeed, for any z,y € R™ we have

1
fily) =f'(z)+ ({f"(ﬂi +7(y - 7))y — z)dr
1
= f'(z) + (Of 'z +1(y - w))df) (y — x).

Therefore, if condition (1.2.4) is satisfied then

I f ') - fi@) | = (Ofl f(a+7(y - m))d'r) (y— )

Ny—=z|

IA

E)fl"f”(ﬂ: +71(y — z))dr

-

<fIfe+rly—2) lldrlly—z|

[=]

<L|y-=z|.
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On the other hand, if f € C2'(R™), then for any s € R* and & > 0, we

have
(/ 'z + 'rs)d'r) -8
0

Dividing this inequality by « and tending « | 0, we obtain (1.2.4). O

= f'z+as)-f(@) || <eLls].

This simple result provides us with many examples of functions with
Lipschitz continuous gradient.

EXAMPLE 1.2.1 1. Linear function f(z) = a + (a,z) € C'Gl‘l(R”) since
f'(z)=a, f"(z)=0.

2. For the quadratic function f(z) = a+(a, z)+3(Az, z) with 4 = AT

we have
fl(z) =a+ Az, f'(z)=A.

Therefore f(z) € Cp' (R™) with L =|| A |.

3. Consider the functlon of one variable f(z) = V1+x2, z € R'. We
have

! s T " e 1
f (.’L’) = \/1-{-_.'125, f (1:) = —-""—(1 +$2)3/2 < 1.
Therefore f(z) € C"'(R). a

The next statement is important for the geometric interpretation of
functions from CL (R")

LEMMA 1.2.3 Let f € CE’I(R“). Then for any z, y from R™ we have
| fy) — f(z) = (fa)y—a) <L lly—z 2. (1.2.5)

Proof: For all z, y € R™ we have

fy) = i)+ Ofl(f’(:v + oy —a)) - D)

= 1(@) + @),y = =) + [z +7ly - 2)) ~ f'(@),y ~ 2)dr.
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Therefore

1
Sufll flleatrly—-z) - @) - ly-zldr

1
S({TLIIy-:BiI?dT=%liy-:vllz-
a

Geometrically, we can draw the following picture. Consider a function
[ from C’i‘l(R"). Let us fix some o € R" and define two quadratic
functions

$1(z) = f(zo) + (f'(z0),z — za) + £ || z — 0 |I?,

$2(z) = f(@o) + (f'(z0),z —z0) — % 2~ 0 |I*.
Then graph of function f is located between the graphs of ¢; and ¢o:
¢1(z) 2 f(z) > ¢a(z), Vz € R".

Let us prove a similar result for the class of twice differentiable func-
tions. Our main class of functions of that type will be Ci,f(R"), the
class of twice differentiable functions with Lipschitz continuous Hessian.
Recall that for f € Cif(R”) we have

I f=) =" IsMz-yll (1.2.6)
for all z, y € R™.
LEMMA 1.2.4 Let f € CE’Z(R“). Then for any z, y from R"™ we have

I ') = f'(2) - @)y -2) IS HF Ny -z |, (1.2.7)

1f(y) = f(=) = (f'(2),y — z) — 3(f"(z)(y — x),y — z)|
(1.2.8)
<¥ly-=|?.
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Proof: Let us fix some z, y € R". Then

fw)=fun+jf%m+rw—zn@—zwr

=fwy+ﬂwxy—ﬂ+£uw1+ﬂy—my—ﬂmnw—an

Therefore
| f'(y) = f'(z) = f"(z)(y — ) |l

I

nju%m+rw—mn—f%@Nymmwrn

< jnuwI+rw-zn—f%mxy-mudr
< juf%z+rw—wn—f%ﬂu-ny—xndr
< jﬂwuy—dor=%ny—wW.

Inequality (1.2.8) can be proved in a similar way.

COROLLARY 1.2.2 Let f € C3F(R") and ||y — z ||=r. Then
f'(z) = Mrl, = f"(y) = f"(z) + MrIy,
where 1, is the unit matriz in R™.

(Recall that for matrices A and B we write A> Bif A— B > 0.)
Proof: Denote G = f"(y)— f"(z). Since f € Ca(R™), we have || G || <
Mr. This means that eigenvalues of the symmetric matrix G, \;(G),
satisfy the following inequality:

| M(G) S Mr, i=1...n.

Hence, —MrI, <G = f"(y) — f"(z) = MrI,. O
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1.2.3 Gradient method

Now we are completely ready for studying the convergence rate of
unconstrained minimization methods. Let us start from the simplest
scheme. We already know that antigradient is a direction of locally
steepest descent of differentiable function. Since we are going to find its
local minimum, the following scheme is the first to be tried:

Gradient method

1.2.9
Choose zy € R". ( )

Iterate zy, = zp — hif'(z4), kK =0,1,....

We will refer to this scheme as a gradient method. The scalar factor
of the gradient, hy, is called the step size. Of course, it must be positive.
There are many variants of this method, which differ one from another
by the step-size strategy. Let us consider the most important examples.

1. The sequence {hi}32, is chosen in advance. For example,

hi. = h>0, (constant step)
he = b
k VE+1'

2. Full relazation:

hi = arg I,fgf;l f(zk = hf'(zi)).

3. Goldstein-Armijo rule: Find zxy; = z¢ — hf'(z) such that

ol f'(zk), 2k — Tht1) < flok) = fF(zh41), (1.2.10)

B(f' (xk), Tk — Tie41) > £ (k) = f(@r41), (1.2.11)

where 0 < & < 3 < 1 are some fixed parameters.

Comparing these strategies, we see that the first strategy is the sim-
plest one. Indeed, it is often used, but mainly in the context of convex
optimization. In that framework the behavior of functions is much more
predictable than in the general nonlinear case.
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The second strategy is completely theoretical. It is never used in
practice since even in one-dimensional cases we cannot find an exact
minimum in finite time.

The third strategy is used in the majority of the practical algorithms.
It has the following geometric interpretation. Let us fix z € R". Con-
sider the function of one variable

$(h) = f(z - hf'(z)), h20.

Then the step-size values acceptable for this strategy belong to the part
of the graph of ¢ that is located between two linear functions:

$1(h) = f(a) —ah || f'(x) %, ¢2(h) = f(z) = BRIl f'(2) |I*.

Note that ¢(0) = ¢1(0) = ¢2(0) and ¢'(0) < ¢5(0) < ¢1(0) < 0. There-
fore, the acceptable values exist unless ¢(h) is not bounded below. There
are several very fast one-dimensional procedures for finding a point sat-
isfying the conditions of this strategy, but their description is not so
important for us now.

Let us estimate the performance of the gradient method. Consider

the problem

1)

with f € C}J’I(R"). And assume that f(z) is bounded below on R",
Let us evaluate a result of one gradient step. Consider y = z—hf'(z).
Then, in view of (1.2.5), we have

fly) € f@)+(f'@)y-2)+5lly-z]|?

]

f@) =h| f'(z) 12 +5L | f'(2) |12 (1.2.12)

= fl@)=h(1=5L) || f'(z) |12

Thus, in order to get the best estimate for possible decrease of the objec-
tive function, we have to solve the following one-dimensional problem:

A(h) = —h (1 ~ gL) ~ min.

Computing the derivative of this function, we conclude that the optimal
step size must satisfy the equation A’(h) = hL — 1 = 0. Thus, that is
h* = +, which is a minimum of A(h) since A”(h) = L > 0.

Thus, our considerations prove that one step of the gradient method
decreases the value of objective function at least as follows:

f) < f@) =5 1 f'(2) 12
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Let us check what is going on with the above step-size strategies.
Let x4, = zx —hi f'(zx). Then for the constant step strategy, hx = h,
we have

f(@e) = f(@re1) = h(1 = 3LR) || f'(zi) |1?
Therefore, if we choose hy = 3 with a € (0,1), then
f(zk) = f(@r41) = 3l —a) || f'(z) |12

Of course, the optimal choice is hy = %
For the full relaxation strategy we have

Fzx) = Flazrar) = 55 | F(ze) I

since the maximal decrease is not worse than that for hy = %
Finally, for the Goldstein-Armijo rule in view of (1.2.11) we have

Flak) = fzier) < B (mh), ok — zogr) = Bha || () 17

From (1.2.12) we obtain
Flar) = flarer) > b (1= BL) || fz) 12

Therefore hy > %(l — f3). Further, using (1.2.10) we have

fze) = f@rer) 2 o f'(zk), 2 — zi41) = b || S () 17
Combining this inequality with the previous one, we conclude that

Flazk) = fzea) = g1 =B) || (=) I? -
Thus, we have proved that in all cases we have
Fzk) = f(@ren) 2 5 1 f (i) |12, (1.2.13)

where w is some positive constant.

Now we are ready to estimate the performance of the gradient scheme.
Let us sum up the inequalities (1.2.13) for k = 0... N. We obtain

# 3 1o IP< f@n) = flowsn) € flan) = £, (1214

where f* is the optimal value of the problem (1.2.1). As a simple con-
sequence of (1.2.14) we have

| fi(z) [ 0 as k — oo.
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However, we can also say something about the convergence rate. Indeed,
denote
gn = OQ}C?N Gk,
where g =|| f'(z) ||. Then, in view of (1.2.14), we come to the following
inequality:
* 1 1 axJI/* 1.2.15)
g < 7 [BE(f (o) - )] (1.2.

The right-hand side of this inequality describes the rate of convergence
of the sequence {gy} to zero. Note that we cannot say anything about
the rate of convergence of sequences {f(zx)} and {zx}.

Recall, that in general nonlinear optimization our goal is quite moder-
ate: We want to find only a local minimum of our problem. Nevertheless,
even this goal is unreachable for a gradient method. Let us consider the

following example.

EXAMPLE 1.2.2 Let us look at the following function of two variables:
f(z) = £(z0,2D) = §a0)2 + JaD)t - §(=2)?.

The gradient of this function is f'(z) = (z1), (z@)3 — )T, Therefore
there are only three points which can pretend to be a local minimum of
this function:

f{ — (an)’ 'T; — (Oa_'l)s :C; - (0: 1)

Computing the Hessian of this function,

" 1 0
fiz) = ( 0 3®)? -1 )1

we conclude that z3 and =} are the isolated local minima!, but z} is only
a stationary point of our function. Indeed, f(z]) = 0 and f(z] + €e2) =
-‘;li - % < 0 for € small enough.

Now, let us consider the trajectory of the gradient method, which
starts from zp = (1,0). Note that the second coordinate of this point
is zero. Therefore, the second coordinate of f/(zg) is also zero. Con-
sequently, the second coordinate of z; is zero, etc. Thus, the entire
sequence of points, generated by the gradient method will have the sec-
ond coordinate equal to zero. This means that this sequence converges

*
to z7.

In fact, in our example they are the global solutions.
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To conclude our example, note that this situation is typical for all
first-order unconstrained minimization methods. Without additional
rather strict assumptions it is impossible to guarantee their global con-
vergence to a local minimum, only to a stationary point. o

Note that inequality (1.2.15) provides us with an example of a new
notion, that is the rate of convergence of minimization process. How
can we use this notion in the complexity analysis? Rate of convergence
delivers the upper complexity bounds for a problem class. These bounds
are always justified by some numerical methods. If there exists a method,
for which its upper complexity bounds are proportional to the lower
complexity bounds of the problem class, we call this method optimal.
Recall that in Section 1 we have already seen an example of optimal
method.

Let us look at an example of upper complexity bounds.

EXAMPLE 1.2.3 Consider the following problem class:

Model: 1. Unconstrained minimization.
2. feCp(R).
3. f(z) is bounded below.

(1.2.16)
Oracle: First order black box.

€ — solution: f(Z) < f(zo), Il f'(@) < e

Note, that inequality (1.2.15) can be used in order to obtain an upper
bound for the number of steps (= calls of the oracle), which is necessary
to find a point with a small norm of the gradient. For that, let us write
down the following inequality:

o < gt [BLU o) - 1) <

Therefore, if N +1 > ﬁ(f(w()) — f*), we necessarily have gy < e.
Thus, we can use the value u—fg( f(zo) — f*) as an upper complezity
bound for our problem class. Comparing this estimate with the result
of Theorem 1.1.2, we can see that it is much better; at least it does not
depend on n. The lower complexity bound for the class (1.2.16) is not

known. (]
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Let us check, what can be said about the local convergence of the
gradient method. Consider the unconstrained minimization problem

g 1)

under the following assumptions:
1. f e CH(R™).
2. There exists a local minimum of function f at which the Hessian is
positive definite.
3. We know some bounds 0 < [ < L < oo for the Hessian at z*:
I, £ f'(z*) X LI,. (1.2:17)

4. Our starting point zg is close enough to z*.
Consider the process: zp;, = xp — hef'(z)). Note that f'(z*) = 0.
Hence,
1
flze) = [flaw) - f@*) = ({f"(w* + 7(xk — 2%)) (2 — 2*)dr
= Gk(:ck = .‘17'),

1
where G = [ f"(z* + 7(z) — z*))d7. Therefore
0

Tpp1 — 2" =2 — 2° — W Gr(ak — 2*) = (I — i Gi) (2 — 2*).
There is a standard technique for analyzing processes of this type,

which is based on contracting mappings. Let sequence {ax} be defined

as follows:
a € R", apy1 = Agay,

where A, are (n x n) matrices such that || A ||< 1 — q with q € (0,1).
Then we can estimate the rate of convergence of sequence {a;} to zero:

| aks1 1€ (1 =q) || ag [|< (1= g)**! || ag || = 0.

In our case we need to estimate || I, —hiGy ||. Denote ry =|| zx—2z" ||.
In view of Corollary 1.2.2, we have

(@) = TMrpdy < f'(z* + 7(xp — 2%) < f'(z*) + M7 d,.
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Therefore, using assumption (1.2.17), we obtain
(- %M, 2 G 2 (L+FM),.

Hence, (1 - hy(L+ ZEM))I, < In —hiGi < (1= hi (I = M) I, and we
conclude that

| In = hx G ||< max{ax(hi), be(hi)}, (1.2.18)

where ay(h) =1 — h(l — % M) and b (h) = h(L + % M) - 1.
Note that ax(0) = 1 and b;(0) = —1. Therefore, if rx <7 = 277‘, then
ax(h) is a strictly decreasing function of h and we can ensure

| In — heGi ||< 1

for small enough hi. In this case we will have 7, < ry.

As usual, many step-size strategies are available. For example, we
can choose Ay = 71: Let us consider the “optimal” strategy consisting in
minimizing the right-hand side of (1.2.18):

max{ag(h),br(h)} — mhin :

Assume that 79 < 7. Then, if we form the sequence {z;} using the
optimal strategy, we can be sure that 7,y < r¢x < 7. Further, the
optimal step size A} can be found from the equation:

ag(h) =bg(h) <« 1-h(l-%M)=h(L+%M)-1
Hence
hy = LLH (1.2.19)
(Surprisingly enough, the optimal step does not depend on M.) Under
this choice we obtain

jL—!!rk MTE
Te+1 S S50+ IE

Let us estimate the rate of convergence of the process. Denote ¢ = %I

and ap = L—Mﬂrk (< g). Then

(1—(ax—q)?
ak+1 < (1 - q)ak + af = ax(1 + (ax - q)) =Edc(§;%_—q(§u S o

Therefore I:Jr—] > e o

= a;

1> 1= (144) (L -1).

Ak 41 @
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Hence,
&-1 2 0+t (2-1) =0+ (2h- £t - 1)
= (1+q)’°(;%—1).
Thus,

k
grg gro (_1_
ak < ro+{l+q)*(F—-r9) — T—ro (l+q) ’
This proves the following theorem.

THEOREM 1.2.4 Let function f(z) satisfy our assumptions and let the
starting point zo be close enough to a local minimum:

ro=llzo—z*||<T = %

Then the gradient method with step size (1.2.19) converges as follows:

”.’Ek—.’E* “<—T_t$6(1'-m) F

This rate of convergence is called linear.

1.2.4 Newton method

The Newton method is widely known as a technique for finding a root
of a function of one variable. Let ¢(¢) : R — R. Consider the equation

$(t*) = 0.

The Newton method is based on linear approximation. Assume that we
get some ¢ close enough to t*. Note that

Bt + At) = ¢(t) + ¢ (1) At + of] At ).

Therefore the equation ¢(t + At) = 0 can be approximated by the fol-
lowing linear equation:

$(t) + ¢'(t)At =

We can expect that the solution of this equation, the displacement At,
is a good approximation to the optimal displacement At* = t* — ¢.
Converting this idea in an algorithmic form, we get the process

t
the1 =tk — $(t’1} :
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This scheme can be naturally extended onto the problem of finding
solution to a system of nonlinear equations,

F(z) =0,

where z € R™ and F(z) : R® — R"™. In this case we have to define the
displacement Az as a solution to the following system of linear equations:

F(z) + F'(z)Az =0

(it is called the Newton system). If the Jacobian F'(x) is nondegenerate,
we can compute displacement Az = —[F'(z)]~!'F(x). The correspond-
ing iterative scheme looks as follows:

T = ok — [F'(ax)] 7 F(2p).

Finally, in view of Theorem 1.2.1, we can replace the unconstrained
minimization problem by a problem of finding roots of the nonlinear

system

f(z) =0. (1.2.20)
(This replacement is not completely equivalent, but it works in nonde-
generate situations.) Further, for solving (1.2.20) we can apply a stan-
dard Newton method for systems of nonlinear equations. In this case,
the Newton system looks as follows:

f'(z) + f"(z)Az = 0.

Hence, the Newton method for optimization problems appears to be in
the form

Thet = ok — [F"(@k)] " £ (). (1.2.21)

Note that we can obtain the process (1.2.21), using the idea of quadra-
tic approximation. Consider this approximation, computed with respect
to the point z:

¢(z) = f(zx) + (f'(zk) 2 — z8) + 3" (zk) (2 = z1), T — 1)

Assume that f”(zz) = 0. Then we can choose x4, as a point of mini-
mum of the quadratic function ¢(z). This means that

¢ (zk+1) = f'(zk) + " (zx) (@k+1 — 2x) = 0,

and we come again to the Newton process (1.2.21).
We will see that the convergence of the Newton method in a neigh-
borhood of a strict local minimum is very fast. However, this method
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has two serious drawbacks. Firstly, it can break down if f"(zy) is de-
generate. Secondly, the Newton process can diverge. Let us look at the
following example.

EXAMPLE 1.2.4 Let us apply the Newton method for finding a root of
the following function of one variable:

B(t) = k.
Clearly, t* = 0. Note that
¢'(t) = rapre-
Therefore the Newton process looks as follows:

— blte) _ t 213/2 — _43
tk+1-—tk—¢'; tr —tk—ﬁ'[l"'t’c]/ __tk'

Thus, if | tp |< 1, then this method converges and the convergence is

extremely fast. The points 1 are the oscillation points of this method.

If | to |> 1, then the method diverges. O

In order to avoid a possible divergence, in practice we can apply a
damped Newton method:

Tr41 = Tk — hi[f" (z)] 71 f (2),

where hy > 0 is a step-size parameter. At the initial stage of the method
we can use the same step size strategies as for the gradient scheme. At
the final stage it is reasonable to choose hy = 1.

Let us study the local convergence of the Newton method. Consider

the problem
min f(z)

T€ERM
under the following assumptions:

1. f e C¥(R™).

2. There exists a local minimum of function f with positive definite

Hessian:
f'(z*) =, >0 (1.2.22)

3. Our starting point zy is close enough to z*.
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Consider the process: zxy1 = zx — [f"(zx)]~'f'(zx). Then, using
the same reasoning as for the gradient method, we obtain the following
representation:

T — 2 = k= = [ (@) (@)
1

=z —z* = [["(z)] ! i)ff”(-v"—"‘ + 7(zk — 7)) (2 — 27)dr

= [f"(zx)]"' Grlax — z%),

where Gy = gl[f"(mk) — f"(z* + (2 — z*))]dT.

Denote 1y, =|| zx — z* ||. Then

1Gell = | Uf‘[f"(mk) et + 7z — =) |

IA

1
Uf I f"(zk) = f"(z* + T(z — %)) || dr

1
< [MQ-7)redr =M.
0

In view of Corollary 1.2.2, and (1.2.22), we have
F"(zk) 2 f"(z%) = Mriln > (1= Mry)In.
Therefore, if 7 < -,‘W, then f"(z;) is positive definite and
I (@]~ 1< (@ = Mry) ™

Hence, for r small enough (ry < %), we have

M 2
Th+1 < f(r_—,:;‘,—kj (< 7e)-

The rate of convergence of this type is called quadratic.
Thus, we have proved the following theorem.

THEOREM 1.2.5 Let function f(z) salisfy our assumptions. Suppose
that the initial starting point z is close enough to z*:

| zo — z* ||<F=%.

Then || zx —z* ||< T for all k and the Newton method converges quadrat-

ically:
M |2
| Teqr — 2* IS 2{1—Aﬁwkm—3'll)'
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Comparing this result with the rate of convergence of the gradient
method, we see that the Newton method is much faster. Surprisingly
enough, the region of quadratic convergence of the Newton method is
almost the same as the region of the linear convergence of the gradient
method. This justifies a standard recommendation to use the gradient
method only at the initial stage of the minimization process in order to
get close to a local minimum. The final job should be performed by the

Newton method.
In this section we have seen several examples of the convergence rate.

Let us make a correspondence between these rates and the complexity
bounds. As we have seen in Example 1.2.3, the upper bound for the
analytical complexity of a problem class is an inverse function of the
rate of convergence.

1. Sublinear rate. This rate is described in terms of a power function of

the iteration counter. For example, we can have ry < 7“; In this case
the upper complexity bound of corresponding problem class justified
by this scheme is (£)®.
Sublinear rate is rather slow. In terms of complexity, each new right
digit of the answer takes the amount of computations comparable with
the total amount of the previous work. Note also, that the constant
¢ plays a significant role in the corresponding complexity estimate.

2. Linear rate. This rate is given in terms of an exponential function of
the iteration counter. For example,

re < c(1 - q)*.

. . v 1
Note that the corresponding complexity bound is ;(Inc¢+In <)

This rate is fast: Each new right digit of the answer takes a constant
amount of computations. Moreover, the dependence of the complex-
ity estimate in constant c is very weak.

3. Quadratic rate. This rate has a form of a double exponential function
of the iteration counter. For example,

Tk+1 < CT'E.
The corresponding complexity estimate depends on a double loga-

rithm of the desired accuracy: Inln %

This rate is extremely fast: Each iteration doubles the number of
right digits in the answer. The constant ¢ is important only for the
starting moment of the quadratic convergence (cry < 1).
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1.3  First-order methods in nonlinear optimization

(Gradient method and Newton method: What is different? Idea of variable
metric; Variable metric methods; Conjugate gradient methods; Constrained
manimization: Penalty functions and penalty function methods; Barrier func-
tions and barrier function methods.)

1.3.1 Gradient method and Newton method:
What is different?
In the previous section we have considered two local methods for find-
ing a local minimum in the simplest minimization problem

min f(z),

zERM
with f € C’g’z(R“). Those are the gradient method
Tkp1 = Tk — b f'(zy), hip > 0.
and the Newton Method:
Tir1 = Tg — [ (zx)] 1 (zk).

Recall that the local rate of convergence of these methods is different.
We have seen, that the gradient method has a linear rate and the Newton
method converges quadratically. What is the reason for this difference?

If we look at the analytic form of these methods, we can see at least
the following formal difference: In the gradient method the search di-
rection is the antigradient, while in the Newton method we multiply the
antigradient by some matrix, that is the inverse Hessian. Let us try to
derive these directions using some “universal” reasoning.

Let us fix some z € R". Consider the following approximation of the
function f(x):

¢1() = f(2) +{f' (@), -2 + 5 [l 2 - Z |,

where the parameter h is positive. The first-order optimality condition
provides us with the following equation for z}, the unconstrained mini-
mum of the function ¢ (z):

¢i(2}) = f'(&) + }(zt — %) = 0.

Thus, z} = Z — hf'(Z). That is exactly the iterate of the gradient
method. Note, that if h € (0, %], then the function ¢;(z) is a global
upper approximation of f(z):

f(.I) < ¢l (33), Yz € Rn’
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(see Lemma 1.2.3). This fact is responsible for global convergence of the
gradient method.
Further, consider a quadratic approximation of function f(z):

¢2(z) = f(2) + (f'(2), 2 — 2) + 3{f"(2)(z — 7),2 — T).
We have already seen that the minimum of this function is
2 =z - [f"(®)]" f'(2),

and that is exactly the iterate of the Newton method.

Thus, we can try to use some approximations of function f(z), which
are better than ¢;(z) and which are less expensive than ¢;(z).

Let G be a positive definite n x n-matrix. Denote

¢c(z) = f(z) + (f'(2),z — &) + 3(C(z — 7),z — 7).
Computing its minimum from the equation
¢a(zg) = f'(z) + Glag — 7) =0,
we obtain
zy =z -G f'(2). (1.3.1)
The first-order methods, which form a sequence of matrices
{Gk}: Gk — f"(z")

(or {Hx} : Hp = G;' = [f"(z*)]7!), are called the variable metric
methods. (Sometimes the name quasi-Newton methods is used.) In these
methods only the gradients are involved in the process of generating the
sequences {G} or {Hi}.

The updating rule (1.3.1) is very common in optimization. Let us
provide it with one more interpretation.

Note that the gradient and the Hessian of a nonlinear function f(z)
are defined with respect to a standard Euclidean inner product on R™:

n
(z,y) = th)y(%), z,y € R"*, | z|= (37,55}1/2'
=1
Indeed, the definition of the gradient is

flz+h) = f(z) + (f'(z),h) + ol A 1)),

and from this equation we derive its coordinate representation:

Ja) = (28, 2@)".
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Let us introduce now a new inner product. Consider a symmetric posi-
tive definite n x n-matrix A. For z, y € R" denote

(z,y)a = (Az,3), |l T ||la= (Az,z)'/2.

The function || z || 4 is a new norm on R". Note that topologically this
new metric is equivalent to the old one:

Mm@z <z lag MAV |z,

where A, (A) and A|(A) are the smallest and the largest eigenvalues of
the matrix A. However, the gradient and the Hessian, computed with
respect to the new inner product are changing:

flz+h) = f(z)+(f'(z),h) + 5{f"(@)h, h) +o(ll 4 )
= f(z) + (A7 f'(2), k) a + 3(A f"(@)h, k) a + o] b 14).

Hence, f/(z) = A~!f'(z) is the new gradient and f/(z) = A~ f"(z) is
the new Hessian.

Thus, the direction used in the Newton method can be seen as a
gradient computed with respect to the metric defined by A = f"(z).
Note that the Hessian of f(z) at z computed with respect to A = f”(z)
is I,.

EXAMPLE 1.3.1 Consider quadratic function
f(z) = a+(a,z) + §(Az,z),
where A = AT » 0. Note that f'(z) = Az +a, f"(z) = A and
fl(z*)=Az"+a=0

for z* = —A~'a. Let us compute the Newton direction at some z € R™:
dy(z) = [f"(2)) ' f'(e) = A (Az +a) =z + A7 a.
Therefore for any = € R™ we have r — dy(z) = —A~'a = z*. Thus, for

a quadratic function the Newton method converges in one step. Note
also that

fle) = a+({A7la,z)a+ 523,

A7 f'(z) = dn(z),

I

falz)

fi@) = A7) = Lo
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Let us write down a general scheme of the variable metric methods.

Variable metric method

0. Choose zg € R™. Set Hy = I,.
Compute f(zg) and f'(zo).

1. kth iteration (k > 0).
a). Set px = Hif'(zx).

b) Find T4l = T — hkpk
(see Section 1.2.3 for step-size rules).

c). Compute f(zk4+1) and f'(ze41).

d). Update the matrix Hy: Hy — Hgyqi.

The variable metric schemes differ one from another only in implemen-
tation of Step 1d), which updates matrix Hy. For that, they use new
information, accumulated at Step 1lc), namely the gradient f'(zi1).
The idea is justified by the following property of a quadratic function.
Let

f(z) = a+(a,z) + §(Az,2), f'(z) = Az +a.

Then, for any z, y € R™ we have f'(z) — f'(y) = A(z —y). This identity
explains the origin of the so-called quasi-Newton rule.

Quasi-Newton rule

Choose Hy.; such that

Hi 1 (f'(@k41) = f(%k)) = Tkt — 2z

Actually, there are many ways to satisfy this relation. Below we present
several examples of the schemes that usually are recommended as the
most efficient ones.
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ExAMPLE 1.3.2 Denote
AHy = Hip1 — Hey, e = f'(zir1) = F(zk)y Ok = Thp1 — Tk

Then the quasi-Newton relation is satisfied by the following rules.
1. Rank-one correction scheme.

(8k — Hive) 0k — Heve)T
(0k — Heve, i)

AHy =

2. Davidon-Fletcher—Powell scheme (DFP).

6% Hywewe Hy
(Yes Ok)  (Hikves k)

AH =

3. Broyden-Fletcher-Goldfarb-Shanno scheme (BFGS).

AH, = Hiyi0F + 0xy! Hie B kamZ'Hk
(Heve k) (Hrves ve)

where B¢ = 1 + (i, 0k)/(Hrve, 1e)-
Clearly, there are many other possibilities. From the computational

point of view, BFGS is considered as the most stable scheme. O

Note that for quadratic functions the variable metric methods usually
terminate in n iterations. In a neighborhood of strict minimum they
have a superlinear rate of convergence: for any zp € R" there exists a
number N such that for all 5 > N we have

| k41— 2" ||< const- || zx —2* || - || Zp—n — " ||

(the proofs are very long and technical). As far as global convergence is
concerned, these methods are not better than the gradient method (at
least, from the theoretical point of view).

Note that in the variable metric schemes it is necessary to store and
update a symmetric n X n-matrix. Thus, each iteration needs O(n?)
auxiliary arithmetic operations. During many years this feature was
considered as one of the main drawbacks of the variable metric methods.
That stimulated the interest in so-called conjugate gradients schemes,
which have much lower complexity of each iteration (see Section 1.3.2).
However, in view of an amazing growth of computer power in the last
decades, these objections are not so important anymore.
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1.3.2 Conjugate gradients

The conjugate gradients methods were initially proposed for minimiz-
ing a quadratic function. Consider the problem

min f(z), (1.3.2)
with f(z) = a + (a,z) + (Az,z) and A = AT - 0. We have already
seen that the solution of this problem is z* = —A~'a. Therefore, our

objective function can be written in the following form:

Hz) = a+(a,m)+%(Az,:r:)za—(Am",z)+%(Aﬂ:,:r)

= a- %(Aa:*,m*} + %(A(z —z*), Tz — z*).

Thus, f* = a — 3(Az*,z*) and f'(z) = A(z — z*).
Suppose we are given by a starting point zg. Consider the linear
Krylov subspaces

Ek =Lin{A(:{,‘0 —:a:"),...,A"“(mg—a:‘)}, kz 1,

where AF is the kth power of matrix A. The sequence of points {zk}
generated by a conjugate gradients method is defined as follows:

zy = argmin{f(z) | z € zo + Lx}, k> L. (1.3.3)

This definition looks quite artificial. However, later we will see that
this method can be written in a pure “algorithmic” form. We need
representation (1.3.3) only for theoretical analysis.

LEMMA 1.3.1 For any k > 1 we have Ly = Lin{f'(z0),..., f'(zx-1)}.

Proof: For k = 1 the statement is true since f'(zg) = A(zg — z*).
Suppose that it is true for some k > 1. Then

T = z0 + zk: AD A (zg — z*)
i=1
with some A € RF. Therefore
F(a) = Ala - 2°) + SAOA 30— 2) = y + X0 41 (g — 27)
i=1
for certain y from £;. Thus,
Lryy = Lin{Llk, A¥(zp — 2*)} = Lin {Ls, f'(z+)}

= Lin{f'(z0),..., f'(z)}
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The next result helps to understand the behavior of the sequence {zy }.
LEMMA 1.3.2 For any k, i > 0, k # ¢ we have (f'(zx), f'(z:)) = 0.
Proof: Let k > i. Consider the function

k g
pA)=f (:L'o-l- z /\(J)f'(a:j_l}) , AERF

i=1

k g
In view of Lemma 1.3.1, for some A, we have z; = o+ 3 ,\E”f’(:c,-_l).
J=1
However, by definition, zj is the point of minimum of f(z) on L. There-
fore ¢'(A.) = 0. It remains to compute the components of the gradient:

0= 205 = (f'(zx), f'(z:))-
a

COROLLARY 1.3.1 The sequence generated by the conjugate gradients
method for (1.3.2) is finite.

Proof: The number of orthogonal directions in R™ cannot exceed n. O

COROLLARY 1.3.2 For any p € Ly we have (f'(zx),p) = 0. a

The last auxiliary result explains the name of the method. Denote
0; = zi41 — . It is clear that £y = Lin{dg,...,0k-1}

LEMMA 1.3.3 For any k # i we have (Adg,d;) = 0.

(Such directions are called conjugate with respect to A.)
Proof: Without loss of generality we can assume that k > ¢. Then

(Adk, 6;) = (A(zk41 — k), i) = (f'(Th41) = f(zx),0:) =0
since §; = iy — T; € Li41 C L. O
Let us show how we can write down the conjugate gradients method in

a more algorithmic form. Since £ = Lin {dy,...,dx—1}, we can represent
Tk as follows:

k-1
Try1 = 2 — b f'(za) + Z Am&j-
=0
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In our notation that is

k-1 ;
8 = —hif'(zx) + 3 X045 (1.3.4)
3=0

Let us compute the coefficients of the representation. Multiplying (1.3.4)
by A and §;, 0 <17 < k— 1, and using Lemma 1.3.3 we obtain

0 = {AS8) = <Rl AP B 3 APl 0

J‘:U
= —hi(Af'(zx), 6;) + A (AG;, 6;)

= —he(f'(zx), f(ziv1) — F(2)) + AO (A8, 6;).

Hence, in view of Lemma 1.3.2, \; =0,¢ < k—1. For i = k£ — 1 we have

k—-1) _ hﬁ- .l"[x'gl s _ hellf! (20l
Al )= k—10k—1) (f"(lk)tf'(l-‘:—l)ﬁk-l)'

Thus, Zg+1 = Tk — hxpk, where
_ e Y L ()P Pe—1
pe = ['(zk) = {Fzx)-f ka-ljjk-lj = f'z) - f{xe)=f(Th=1)Pr—1

since 0x_1 = —hg_1pk—1 by the definition of {px}.

Note that we managed to write down a conjugate gradients scheme in
terms of the gradients of the objective function f(z). This provides us
with a possibility to apply formally this scheme for minimizing a general
nonlinear function. Of course, such extension destroys all properties of
the process, which are specific for the quadratic functions. However,
in the neighborhood of a strict local minimum the objective function is
close to quadratic. Therefore asymptotically this method can be fast.



Nonlinear Optimization 45

Let us present a general scheme of the conjugate gradients method
for minimizing a nonlinear function.

Conjugate gradient method

0. Let zg € R". Compute f(zo), f'(zq). Set po = f'(z0).

1. kth iteration (k > 0).

a). Find zp,.; = z1 + hepx (by “exact” line search).
b). Compute f(zx41) and f'(zg41).
c). Compute the coefficient .

d). Set pry1 = f'(Zks1) — BuDk-

In that scheme we did not specify yet the coefficient fx. In fact, there
are many different formulas for this coefficient. All of them give the
same result on quadratic functions, but in a general nonlinear case they
generate different sequences. Let us present three of the most popular
expressions.

el
L Bx = - fewe:

2. Fletcher-Rieves: [ = "u‘f‘n}f(:;k)ll%r‘
3. Polak-Ribbiere: f = — [ CraihLloea) =/ (z0))

Recall that in the quadratic case the conjugate gradients method
terminates in n iterations (or less). Algorithmically, this means that
Pn+1 = 0. In a nonlinear case that is not true. However, after n iter-
ation this direction loses any interpretation. Therefore, in all practical
schemes there exists a restarting strategy, which at some moment sets
Br = 0 (usually after every n iterations). This ensures a global con-
vergence of the scheme (since we have a usual gradient step just after
the restart and all other iterations decrease the function value). In a
neighborhood of a strict minimum the conjugate gradients schemes have
a local n-step quadratic convergence:

| zn+1 — 2* ||< const- || zg — z* ||2 :
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Note, that this local convergence is slower than that of the variable
metric methods. However, the conjugate gradients schemes have an
advantage of a very cheap iteration. As far as the global convergence is
concerned, the conjugate gradients, in general, are not better than the
gradient method.

1.3.3 Constrained minimization

Let us discuss briefly the main ideas underlying the methods of general
constrained minimization. The problem we deal with is as follows:

fo(z) — min,
(1.3.5)
filz) £0,s=1...m.

where fi(z) are smooth functions. For example, we can consider f;(z)
from Ci’l(R").

Since the components of the problem (1.3.5) are general nonlinear
functions, we cannot expect that this problem is easier than an uncon-
strained minimization problem. Indeed, even the standard difficulties
with stationary points, which we have in unconstrained minimization,
appear in (1.3.5) in a much stronger form. Note that a stationary point
of this problem (whatever it is) can be infeasible for the system of func-
tional constraints. Hence, any minimization scheme attracted by such a
point should accept that it fails even to find a feasible solution to (1.3.5).

Therefore, the following reasoning looks quite convincing.

1. We have efficient methods for unconstrained minimization. (?)?
2. Unconstrained minimization is simpler than the constrained one. (?)3

3. Therefore, let us try to approximate a solution to the problem (1.3.5)
by a sequence of solutions to some auxiliary unconstrained minimiza-
tion problems.

This philosophy is implemented by the schemes of Sequential Uncon-
strained Minimization. There are two main groups of such methods: the
penalty function methods and the barrier methods. Let us describe the
basic ideas of these approaches.

2In fact, that is not absolutely true. We will see, that in order to apply an unconstrained
minimization method for solving constrained problems, we need to be able to find at least
a strict local minimum. And we have already seen (Example 1.2.2), that this could pose a
problem.

3We are not going to discuss the correctness of this statement for general nonlinear problems.
We just prevent the reader from extending it onto another problem classes. In the next
chapters we will have a possibility to see that this statement is not always true.
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We start from penalty function methods.

DEFINITION 1.3.1 A continuous function ®(zx) is called a penalty func-
tion for a closed set Q if

s &(z) =0 for any x € Q,
m &(z) >0 foranyz ¢ Q.

Sometimes a penalty function is called just penalty. The main property
of the penalty functions is as follows.

If ®,(z) is a penalty for @, and ®;(z) is a penalty for Q2,
then @,(z)+ ®2(z) is a penalty for intersection Q@ Q2.

Let us give several examples of such functions.

ExAMPLE 1.3.3 Denote (a)+ = max{a,0}. Let
Q={zeR"| fi(z) <0,i=1...m}.
Then the following functions are penalties for Q:
1. Quadratic penalty: ®(z) = gl(f,-(:c))i.
=

m

2. Nonsmooth penalty: ®(z) = Y (fi(z))+.

i=1

The reader can easily continue the list. O

The general scheme of a penalty function method is as follows.

Penalty function method

0. Choose zp € R™. Choose a sequence of penalty coeffi-
cients: 0 <ty < tg4 and tx — oo.
1. kth iteration (k > 0).
Find a point zx,, = arg rg}in {fo(z) + 1, ®(z)}
T n

using zj as a starting point.
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It is easy to prove the convergence of this scheme assuming that g4
is a global minimum of the auxiliary function.? Denote

Ti(z) = fo(z) + tx®(x), Yi = :rél]itar}l Uy (z).

(7} is the global optimal value of Wi(z)). Denote by z* the global
solution to (1.3.5).

THEOREM 1.3.1 Let there exist a value t > 0 such that the set
S={z€R"| fo(z)+1t®(z) < fo(z")}

s bounded. Then
Jim f(zi) = fo(z),  lim @(zx) = 0.

Proof: Note that ¥} < Wi(z*) = fo(z*). At the same time, for any
z € R™ we have Uiy (z) > ¥i(z). Therefore Ui, , > V. Thus, there
exists a limit k]im =0 < f*If tg >t then

00

Jo(zx) + t®(z) < folzr) + tx®(zk) = Yk < folz®).

Therefore, the sequence {zrx} has limit points. Since 11m tk = 400, for
any such point z, we have ®(z,) = 0 and fo(z.) < fg(a:*) Thus z, € Q
and

U* = fo(z.) + @(z.) = fo(z.) = folz*). a

Note that this result is very general, but not too informative. There
are still many questions, which should be answered. For example, we
do not know what kind of penalty function we should use. What should
be the rules for choosing the penalty coefficients? What should be the
accuracy for solving the auxiliary problems? The main feature of these
questions is that they can be hardly addressed in the framework of gen-
eral nonlinear optimization theory. Traditionally, they are considered as
questions to be answered by computational practice.

Let us look at the barrier methods.

DEFINITION 1.3.2 Let @ be a closed set with nonempty interior. A
continuous function F(x) is called a barrier function for Q if F(z) — o
when x approaches the boundary of Q.

4If we assume that it is a strict local minimum, then the result is much weaker.
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Sometimes a barrier function is called barrier for short. Similarly to the
penalty functions, the barriers possess the following property:

If Fy(z) is a barrier for @, and F(zx) is a barrier for Q2,
then F(z) + Fy(x) is a barrier for intersection @ () Q2.

In order to apply the barrier approach, the problem (1.3.5) must sat-
isfy the Slater condition:

3z: fi(z) <0, i=1...m.
Let us look at some examples of barrier functions.

EXAMPLE 1.3.4 Let Q@ = {z € R" | fi(z) <0, i = 1...m}. Then all
functions below are barriers for Q:

m
1. Power-function barrier: F(z) = igl TZTIETW’ p &l
9. Logarithmic bartier: F(z) = - 3 In(-fi(z)).

2

Il
pit

m
. _ _ 1
3. Exponential barrier: F(z) = 2;1 exp (_ il w)).

The reader can easily extend this list. a

The scheme of a barrier method is as follows.

Barrier function method

0. Choose zp € int@. Choose a sequence of penalty
coefficients: 0 < fx < x4 and t; — o0o.
1. kth iteration (k > 0).
Find a point =y, = arg néig{fg{:c) + ZIIF("’")}
T

using r; as a starting point.

Let us prove the convergence of this method assuming that z;,, is a
global minimum of the auxiliary function. Denote

Uk(a) = fole) + £ F(z), i = min¥i(z),
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(V% is the global optimal value of Wx(z)). And let f* be the optimal
value of the problem (1.3.5).

THEOREM 1.3.2 Let barrier F(z) be bounded below on Q. Then
lim ¥ = f*.
0 Ve =
Proof: Let F(z) > F* for all £ € Q. For arbitrary Z € int () we have
i * . - L=y — =
sup klggo U < klﬂlgo [fg(:c) + F(:r,)] fo(Z).
Therefore sup klim Ui < f*. On the other hand,
:—00
e 1 s 1l _ r* 1 p=
Ut = rwr‘lslg{fg(x)+ LF()} > ;Igg{fo(m) +AF ) =4 P
: * t. =]
Thus, k}l}n;o Ur=f

The same as with the penalty functions method, there are many ques-
tions to be answered. We do not know how to find the starting point zq
and how to choose the best barrier function. We do not know the rules
for updating the penalty coefficients and the acceptable accuracy of the
solutions to the auxiliary problems. Finally, we have no idea about the
efficiency estimates of this process. And the reason is not in the lack
of the theory. Our problem (1.3.5) is just too complicated. We will see
that all of the above questions get precise answers in the framework of
convex optimization.

We have finished our brief presentation of general nonlinear optimiza-
tion. It was really very short and there are many interesting theoreti-
cal topics that we did not mention. That is because the main goal of
this book is to describe the areas of optimization in which we can ob-
tain some clear and complete results on the performance of numerical
methods. Unfortunately, the general nonlinear optimization is just too
complicated to fit the goal. However, it is impossible to skip this field
since a lot of basic ideas, underlying the convex optimization methods,
have their origin in general nonlinear optimization theory. The gradient
method and the Newton method, sequential unconstrained minimization
and barrier functions were originally developed and used for general op-
timization problems. But only the framework of convex optimization
allows these ideas to get their real power. In the next chapters of this
book we will see many examples of the second birth of these old ideas.



Chapter 2

SMOOTH CONVEX OPTIMIZATION

2.1 Minimization of smooth functions

(Smooth convez functions; Lower complezity bounds for .7-'2""(&"); Strongly
convez functions. Lower complezity bounds S:’Ll(R“); Gradient method.)

2.1.1 Smooth convex functions
In this section we deal with unconstrained minimization problem

min f(2), (2.1.1)

where the function f(z) is smooth enough. Recall that in the previous
chapter we were trying to solve this problem under very weak assump-
tions on function f. And we have seen that in this general situation we
cannot do too much: It is impossible to guarantee convergence even to a
local minimum, impossible to get acceptable bounds on the global per-
formance of minimization schemes, etc. Let us try to introduce some rea-
sonable assumptions on function f to make our problem more tractable.
For that, let us try to determine the desired properties of a class of
differentiable functions F we want to work with.

From the results of the previous chapter we can get an impression
that the main reasons of our troubles is the weakness of the first-order
optimality condition (Theorem 1.2.1). Indeed, we have seen that, in
general, the gradient method converges only to a stationary point of
function f (see inequality (1.2.15) and Example 1.2.2). Therefore the
first additional property we definitely need is as follows.

ASSUMPTION 2.1.1 For any f € F the first-order optimality condition
is sufficient for a point to be a global solution to (2.1.1).
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Further, the main feature of any tractable functional class F is the
possibility to verify inclusion f € F in a simple way. Usually that
is ensured by a set of basic elements of the class and by the list of
possible operations with elements of F, which keep the result in the
class (such operations are called invariant). An excellent example is the
class of differentiable functions: In order to check either a function is
differentiable or not, we need just to look at its analytical expression.

We do not want to restrict our class too much. Therefore, let us
introduce only one invariant operation for the hypothetical class F.

AssUMPTION 2.1.2 If fi,fos € F and ,3 > 0, then afy + Bf2 € F.

The reason for the restriction on the sign of coefficients in this assump-
tion is evident: We would like to see z2 in our class, but function —z?

is not suitable for our goals.
Finally, let us add in F some basic elements.

ASSUMPTION 2.1.3 Any linear function f(z) = a+(a, ) belongs to F.!

Note that the linear function f(z) perfectly fits Assumption 2.1.1. In-
deed, f/(x) = 0 implies that this function is constant and any point in
R" is its global minimum.

It turns out that we have assumed enough to specify our functional
class. Consider f € F. Let us fix some zo € R"™ and consider the

function
é(y) = f(y) = {f'(z0),y)-
Then ¢ € F in view of Assumptions 2.1.2 and 2.1.3. Note that
¢' () ly=zo= f'(20) = f'(z0) = 0.

Therefore, in view of Assumption 2.1.1, z¢ is the global minimum of
function ¢ and for any y € R™ we have

#(y) 2 d(xo) = (o) — (f'(z0), z0)-

Hence, f(y) > f(zq) + (f'(0), z — @0)-
This inequality is very well known in optimization. It defines the class
of differentiable convez functions.

DEFINITION 2.1.1 A continuously differentiable function f(x) is called
convex on R" (notation f € F'(R")) if for any =,y € R™ we have

fy) 2 fl@)+ (f'(2),y — ). (2.1.2)

1This is not a description of the whole set of basic elements. We just say that we want to
have linear functions in our class.
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If —f(z) is convex, we call f(z) concave.
In what follows we consider also the classes of convex functions }'f'z(Q)

with the same meaning of the indices as for the classes Cf't(Q).
Let us check our assumptions, which become now the properties of

the functional class.

THEOREM 2.1.1 If f € FY(R") and f'(z*) = 0 then z* is the global
minimum of f(z) on R".

Proof: In view of inequality (2.1.2), for any z € R" we have

f(@) 2 f(=*) +(f'(z"),2 — ") = f(2"). o

Thus, we get what we want in Assumption 2.1.1. Let us check As-
sumption 2.1.2.

LEMMA 2.1.1 If f, and f> belong to F'(R™) and o, 8 > 0 then function
f = afi + Bfa also belongs to F'(R").

Proof: For any z,y € R" we have

Nily) =2 fHlx)+ (filz),y — =),
fa(y) = fao(z) + (fao(z),y — z).

It remains to multiply the first equation by «, the second one by 3 and
add the results. ]

Thus, for differentiable functions our hypothetical class coincides with
the class of convex functions. Let us present their main properties.

The next statement significantly increases our possibilities in con-
structing the convex functions.

LEMMA 2.1.2 If f € FL(R™), b€ R™ and A : R® = R™ then

é(z) = f(Az + b) € FL(RM).
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Proof: Indeed, let =,y € R*. Denote # = Az + b, § = Ay + b. Since
¢'(z) = AT f'(Az + b), we have

oy) =f@) = f@)+({f'(2),5-73)
¢(z) + (f'(Z), A(y — z))
= ¢lz) + (AT f'(2),y — =)

¢(z) + (¢ (2),y — z).

Il

a

In order to simplify the verification of inclusion f € F!(R"), we pro-
vide this class with several equivalent definitions.

THEOREM 2.1.2 Continuously differentiable function f belongs to the
class F'(R™) if and only if for any z,y € R™ and « € [0,1] we have?

flaz + (1 - a)y) < af(z) + (1 - a)f(y). (2.1.3)

Proof: Denote z, = az + (1 — a)y. Let f € F'(R"). Then
f(@a) < fy) +{f'(za)sy —za) = fy) +a(f'(za),y — ),

f(za) < f(z)+ (f"(Iu),m —Tq) = flz) - (1- a){f'(za)iy =)

Multiplying first inequality by (1 — «), the second one by « and adding
the results, we get (2.1.3).

Let (2.1.3) be true for all z,y € R" and a € [0,1]. Let us choose some
a €[0,1). Then

fW) 2 25lf(za) - af(@)] = f(2) + 5(f (2a) — £(2)]

= [(@)+ Zlf@+ (1 -a)ly - 2)) - f(2)].
Tending a to 1, we get (2.1.2). 0

THEOREM 2.1.3 Continuously differentiable function f belongs to the
class F'(R™) if and only if for any z,y € R™ we have

(f'(z)~ fly)z—y) 20. (2.1.4)

2Note that inequality (2.1.3) without assumption on differentiability of f, serves as a defini-
tion of general conver functions. We will study these functions in detail in the next chapter.
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Proof: Let f be a convex continuously differentiable function. Then

f@) 2 f) + (' Wz -y f) 2 fl@)+{f'(2),y - =)

Adding these inequalities, we get (2.1.4).
Let (2.1.4) hold for all z,y € R™. Denote z, = z + 7(y — ). Then

fly) = f($)+f( (z+7(y — z)),y — z)dT
- f(w)+<f’(:r),y—:r)+t{1(f'(wr)—f’(w),y—w)df

= f@)+ (@) y-2) + Of L) = (), r — a)dr
S ) S,
O

Sometimes it is more convenient to work with functions from the class
F2(R") C FY(R™).
THEOREM 2.1.4 Two times continuously differentiable function f be-
longs to F2(R™) if and only for any = € R™ we have

["(z) = 0. (2.1.5)

Proof: Let f € C?(R") be convex. Denote z, = z+7s, 7 > 0. Then,
in view of (2.1.4), we have

0 < Hf'(er) - f(a),ar — o) = H{f'(zr) - f'(x),6)
= ._:.f ["(z + As)s, s)dA,
0

and we get (2.1.5) by tending 7 to zero.
Let (2.1.5) hold for all z € R"™. Then
)

fly) = f=)+{f'(z),y—x)

+f1f "z + Ay —2))(y — ),y — z)dAdT
00

v

f(z) + (f'(z),y — =).
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Let us look at some examples of differentiable convex functions.
EXAMPLE 2.1.1 1. Linear function f(z) = « + (a,z) is convex.

2. Let a matrix A be symmetric and positive semidefinite. Then the
quadratic function

flz) =a+ (a,z)+ %(Aa:,a:)
is convex (since f”(z) = A = 0).

3. The following functions of one variable belong to F'(R):

fla) = ¢,
fl) = |lzP, p>1,
@) = g

flz) = [=|-In(l+]z]).

We can check that using Theorem 2.1.4.
Therefore, the function arising in geometric optimization,

m
fl) = 3 enetlenm),
1=1

is convex (see Lemma 2.1.2). Similarly, the function arising in [,-norm
approximation problem,

flz)=Y"|(ai,z) —b; |7,
=1

1s convex too.

As with general nonlinear functions, the differentiability itself cannot
ensure any special topological properties of convex functions. There-
fore we need to consider the problem classes with Lipschitz continuous
derivatives of a certain order. The most important class of that type is
fé'l(R“), the class of convex functions with Lipschitz continuous gradi-
ent. Let us provide it with several necessary and sufficient conditions.

THEOREM 2.1.5 All conditions below, holding for all z, y € R™ and a
from [0,1], are equivalent to inclusion f € Fi‘l(R"):

0< fly) — flz) - (f'(2)y—-2) < g llz~yl? (2.1.6)
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+{f'(z),y — ) + 3¢ || f'(2) - £'¥) IP< f(w), (2.1.7)

I F1(z) = f'(w) 1P {f'(x) = F(y),z —y), (2.1.8)
(flx)-fy)z—y)<L|z—yl? (2.1.9)
af(z)+(1-a)f(y) =2 flaz+(1-a)y)
(2.1.10)
+2022) || () - fy) |17,
af(z)+(1-a)f(y) < flaz+(1-a)y)
(2.1.11)

te(l-a)f lz-yl?.

Proof: Indeed, (2.1.6) follows from the definition of convex functions
and Lemma 1.2.3. Further, let us fix zp € R". Consider the function

éy) = f(y) = (f'(z0), ¥).
Note that ¢ € fi'l(R“) and its optimal point is y* = zo. Therefore, in
view of (2.1.6), we have
o) < dly— 18" () < dy) — 57 | '(w) 117

And we get (2.1.7) since ¢'(y) = f'(y) — f'(z0).

We obtain (2.1.8) from inequality (2.1.7) by adding two copies of it
with z and y interchanged. Applying now to (2.1.8) Cauchy-Schwartz
inequality we get || f/(z) - f'(y) < L ||z —y ||

In the same way we can obtain (2.1.9) from (2.1.6). In order to get
(2.1.6) from (2.1.9) we apply integration:

) fE)— (Pe)g—2) = ij oy —2)) — L)y - s

< 3Ly — =l

Let us prove the last two inequalities. Denote z, = az + (1 — a)y.
Then, using (2.1.7) we get

f@) =2 flza) + (f(za), (1 =) (z =) + 3¢ || f'(z) = f'(za) II%,
fW) = fl@a) +(f'(za), ly —2)) + 31 | F(y) — f'(za) |12
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Adding these inequalities multiplied by a and (1 — «) respectively, and
using inequality

allgi—ul?P+(1-a)llg2—ul*>ec(l-a)ll g —g >

we get (2.1.10). It is easy to check that we get (2.1.7) from (2.1.10) by

tending a — 1.
Similarly, from (2.1.6) we get

f(z) £ f(za) +{f'(@a), (1= )z ~y)+ 5 Il Q1 -a)(=z-y) I

fly) < flza) +{f'(za)saly —2)) + 5 [l aly —2) |I.

Adding these inequalities multiplied by « and (1 — a) respectively, we
obtain (2.1.11). And we get back to (2.1.6) as @ — 1. )

Finally, let us give a characterization of the class ff’l(R").

THEOREM 2.1.6 Two times continuously differentiable function f be-
longs to fg’l(R") if and only for any x € R™ we have

0= f"(z) < LI,. (2.1.12)

Proof: The statement follows from Theorem 2.1.4 and (2.1.9). o]

2.1.2 Lower complexity bounds for F°'(R")

Before we go forward with optimization methods, let us check our
possibilities in minimizing smooth convex functions. In this section we
obtain the lower complexiqr bounds for optimization problems with ob-
jective functions from F;>'(R") (and, consequently, F;' (R")).

Recall that our problem class is as follows.

Model: min f(z), fe€ Fpl(RM).
Oracle: First-order local black box.

Approximate solution: | Z € R", f(Z) — f* <e.
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In order to make our considerations simpler, let us introduce the follow-
ing assumption on iterative processes.

ASSUMPTION 2.1.4 An iterative method M generates a sequence of test
points {zy} such that

zx € To + Lin {f'(z0),..., f'(zk=1)}, k=1

This assumption is not absolutely necessary and it can be avoided by
a more sophisticated reasoning. However, it holds for the majority of

practical methods.

We can prove the lower complexity bounds for our problem class with-
out developing a resisting oracle. Instead, we just point out the “worst
function in the world” (that means, in .’Fz"'l(R“)). This function appears
to be difficult for all iterative schemes satisfying Assumption 2.1.4.

Let us fix some constant L > 0. Consider the following family of
quadratic functions

filz) = & {%[(sc(”)? + 5 (0 — 20)2 4 (@ 0)7] - a:m}

i=1

for k =1...n. Note that for all s € R"™ we have

(fi(z)s,s) = % [(3(1))2 +k§(s(¢-) _ 3(,-+1))2 3 (s(k))Q] > 0,
i=1

1

and

(fE(@)s,5)

IA

L) + 5 2((s)2 + (s41)2) 4 (s9)?)
i=1

< L3 (s)2.
1=1

Thus, 0 = f{/(z) < LI,. Therefore fx(z) € fgo'l(Rn), 1<k<n.
Let us compute the minimum of function fx. It is easy to see that
fi(z) = %Ak with

/ (2 -1 0 \
-1 2 -1 0
0 -1 2
k
lines J Oﬂ_k,k-
Ay &= il o ’
-1 2 -1
L 0 0 -1 2
\ On—k,k On—k,n—k /
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where O, is a (k X p) zero matrix. Therefore the equation
fi(z)=Arz—e; =0

has the following unique solution:

; 1-gh, i=1...k

—

1]
El
I

0, k+1<i1<n.

Hence, the optimal value of function fi is

£ L [L(A ) = {e1, k)| = —%(er, %)
(2.1.13)
= L (—1 s #1) .
Note also that
k 2 _ k(k+1)6(2k+1) < (lm;ll“_ (2.1.14)
i=1
Therefore
B n (i 2 . 2
Izl = (") = (1- &)
i= 1=
(2.1.15)

k k
_ L2 - 1 2
= A—k+1i§lz+—g(k+n 2;12

2 k(k+1 k+1)3 1
= k—m'—Lz—l-f' L'l'-—-—é-(k*i-l).

1
k+1)7 " 3

Denote R¥" = {z € R" | z() =0, k+ 1 < i < n}; that is a subspace
of R", in which only the first ¥ components of the point can differ from
zero. From the analytical form of the functions {f;} it is easy to see
that for all z € R¥™ we have

fo(z) = fi(z), p=k...n.
Let us fix some p, 1 <p < n.

LEMMA 2.1.3 Let zg = 0. Then for any sequence {zy}i_, satisfying
the condition

I € L = Lin {f;,(l‘o),. i 1f;;(-7;k«-l}}:

we have L C R+,
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Proof: Since zo = 0, we have f;(zo) = —Lel € R'™. Thus £, = R'"™.
Let £ C R*" for some k < p. Since A, is three-diagonal, for any

z € R5" we have f)(z) € R**1". Therefore £k+1 C RF*1n and we can

complete the proof by induction. O

COROLLARY 2.1.1 For any sequence {zx}h_, such that zo = 0 and z) €
Ly we have

fp(-’l'k) > f;:-

Proof: Indeed, z; € £; € R*™ and therefore folzk) = felze) > fi- O

Now we are ready to prove the main result of this section.

THEOREM 2.1.7 For any k, 1% s (n —1), and any zo € R" there

exists a function f € F;>'(R™) such that for any first-order method M
satisfying Assumption 2.1.4 we have

»r 2
Floe) - £+ > Yol

I ze —2* P2 g Il zo — 2* |I%,

where =* is the minimum of f(z) and f* = f(z*).

Proof: It is clear that the methods of this type are invariant with
respect to a simultaneous shift of all objects in the space of variables.
Thus, the sequence of iterates, which is generated by such a method for
function f(z) starting from zg, is just a shift of the sequence generated
for f(z) = f(z + xo) starting from the origin. Therefore, we can assume
that zp = 0.

Let us prove the first inequality. For that, let us fix £ and apply M to
minimizing f(z) = for41(x). Then z* = Zopyy and f* = f5;,,. Using
Corollary 2.1.1, we conclude that

f(zk) = fars1(zk) = filze) 2 fi-

Hence, since 2y = 0, in view of (2.1.13) and (2.1.15) we get the following
estimate:

trrt

Tg)— -1 + 2ki2) 1
|zo—x* i’ 3(2k+2) (k_‘H)T
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Let us prove the second inequality. Since zx € R®" and z¢ = 0, we
have

. 112 2k+1 (i) 2 2k+1 ;
loe-at? 2 ¥ () = ¥ (1-zh)
o Lo o wiu e 2,%1 %
— g t + e gN
i z:k+1 k) i=k+1

In view of (2.1.14), we have
2k+1

> 152 = L{(2k + 1)(2k + 2)(4k + 3) — k(k + 1)(2k + 1))
i=k+

= g(k+1)(2k + 1)(7k + 6).
1.

15) we finally obtain

(3k+2)(k+1) 4 (2k+ll(7kﬁ)

Therefore, using (2

lzx—2* > > k+1-

_ (2k+1)(Tk+6) _ k _ 2k2+Tk+6
- - 24(k+1i

24(k+1) 2

2 S
BT || 20 — Zokr P2 § | 2o —2* |12

a

v

The above theorem is valid only under assumption that the number
of steps of the iterative scheme is not too large as compared with the
dimension of the space (k < %(n —1)). The complexity bounds of that
type are called uniform in the dimension of variables. Clearly, they
are valid for very large problems, in which we cannot wait even for n
iterates of the method. However, even for problems with a moderate
dimension, these bounds also provide us with some information. Firstly,
they describe the potential performance of numerical methods on the
initial stage of the minimization process. And secondly, they warn us
that without a direct use of finite-dimensional arguments we cannot get
better complexity for any numerical scheme.

To conclude this section, let us note that the obtained lower bound for
the value of the objective function is rather optimistic. Indeed, after one
hundred iterations we could decrease the initial residual in 10* times.
However, the result on the behavior of the minimizing sequence is quite
disappointing: The convergence to the optimal point can be arbitrarily
slow. Since that is a lower bound, this conclusion is inevitable for our
problem class. The only thing we can do is to try to find problem
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classes in which the situation could be better. That is the goal of the
next section.

2.1.3  Strongly convex functions

Thus, we are looking for a restriction of the functional class F, E’l (™),
for which we can guarantee a reasonable rate of convergence to a unique
solution of the minimization problem

min f(z), feF(R").

Recall, that in Section 1.2.3 we have proved that in a small neighbor-
hood of a nondegenerate local minimum the gradient method converges
linearly. Let us try to make this non-degeneracy assumption global.
Namely, let us assume that there exists some constant g > 0 such that
for any Z with f'(Z) =0 and any z € R™ we have
f@)2f@+5ule-z|*.

Using the same reasoning as in Section 2.1.1, we obtain the class of
strongly convex functions.

DEFINITION 2.1.2 A continuously differentiable function f(z) is called
strongly convex on R™ (notation f € S,‘I‘(R“) ) if there exists a constant
p > 0 such that for any =, y € R™ we have

f) 2 f@) +{f'@y-o)+ully—z|*. (2.1.16)
Constant p is called the convexity parameter of function f.

We will also consider the classes Sﬁ:L(Q) with the same meaning of

the indices k, [ and L as for the class Cﬁ't(Q).
Let us fix some properties of strongly convex functions.

THEOREM 2.1.8 If f € S{(R") and f'(z*) = 0, then

f(z) 2 f@*)+gullz -2 |
for all z € R™.

Proof: Since f'(z*) = 0, in view of inequality (2.1.16), for any = € R"
we have

flz) 2 f@*)+(f'(&),z—-a") +ulz—a"|?

fla) +gpllz—z 2.
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The following result justifies the addition of strongly convex functions.

LEMMA 2.1.4 If fi € 8} (R"), f2 € 81,(R™) and a, 8 > 0, then
f = afl +Bf2 € Solr,ul-i—ﬁ,ug(Rn)'
Proof: For any z,y € R™ we have

A) = fAl@)+ (flz)hy-2)+3mlly—z|?

foly) 2 falz) +{file)y—a) +gu2 lly -2 |?.

It remains to add these equations multiplied respectively by a and 5. O

Note that the class Sj (R™) coincides with F!(R"). Therefore addition
of a convex function to a strongly convex function gives a strongly convex
function with the same convexity parameter.

Let us give several equivalent definitions of strongly convex functions.

THEOREM 2.1.9 Let f be continuously differentiable. Both conditions
below, holding for all z, y € R"™ and a € [0,1], are equivalent to inclusion
fE€ S;(R"):

(f@) = f'Whz-w2plz-yl? (2.1.17)

af(z)+(L-a)f(y) > flaz+(1-a)y) '
(2.1.18)

ta(l-a)fllz—yl?.

The proof of this theorem is very similar to the proof of Theorem 2.1.5
and we leave it as an exercise for the reader.
The next statement sometimes is useful.

THEOREM 2.1.10 If f € S‘E(R“), then for any z and y from R™ we have

fy) < f(@) +{f'(@),y —z) + 55 | f(z) = F'(W) II%, (2.1.19)

(f'(@) = fly)z—y <, 11 @)= F @) IP. (2.1.20)

Proof: Let us fix some z € R". Consider the function

¢(y) = f(y) — (f'(z),y) € S,(R").
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Since ¢'(z) =0, in view of (2.1.16) for any y € R™ we have that

¢(z) = ming(v) 2 min[é(y) + (¢'(v),v — v} + gullv - yll?]

= ¢(y) — 514 W7

and that is exactly (2.1.19). Adding two copies of (2.1.19) with z and y
interchanged we get (2.1.20). O

Finally, the second-order characterization of the class Sp(R") is as
follows.

THEOREM 2.1.11 Two times continuously differentiable function f be-
longs to the class S2(R™) if and only if z € R"

f(z) = pln. (2.1.21)

Proof: Apply (2.1.17). a

Note we can look at examples of strongly convex functions.
EXAMPLE 2.1.2 1. f(z) = 3 || z || belongs to S?(R™) since f"(z) = I,.
2. Let symmetric matrix A satisfy the condition: ul, < A < LI,. Then

f(z) = a+(a,z) + }(Az,z) € S (R™) € S, (R")

since f”(z) = A.
Other examples can be obtained as a sum of convex and strongly
convex functions. O

For us the most interesting functional class is S;:}‘(R“). This class is
described by the following inequalities:

'@~ f'hz-wzullz-yl? (2.1.22)

I /') - fWlIsLiiz-yl. (2.1.23)

The value Q¢ = L/ > 1 is called the condition number of function f.
It is important that the inequality (2.1.22) can be strengthened using
the additional information (2.1.23).
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THEOREM 2.1.12 If f € Sl‘l L(R"), then for any z, y € R" we have

(f'(2) - Pz —y) 2 2L e -y |2+ I @) - F0) 17
(2.1.24)

Proof: Denote ¢(z) = f(z) — 3ullz||?. Then ¢'(z) = f'(x) — pz; hence,
by (2.1.22) and (2.1.9) ¢ € F'! (R"). If u = L, then (2.1.24) is proved.
If 4 < L, then by (2.1.8) we have

(¢'(z) = ¢'(y),y — z) > £ 114 (z) — ' (WP,
and that is exactly (2.1.24). m]

2.1.4  Lower complexity bounds for S;) 1 (R™)

Let us get the lower complexity bounds for unconstramed minimiza-
tion of functions from the class S (R“) (R“) Consider the
following problem class.

Model: min f(z), f€S(RY), u>0.
TeR®
Oracle: First-order local black box.

Approximate solution: | z: f(Z) - f* <e, || T —z* ||*’<e

As in the previous section, we consider the methods satisfying Assump-
tion 2.1.4. We are going to find the lower complexity bounds for our
problem in terms of condition number Qs = L

Note that in the description of our problem class we do not say any-
thing about the dimension of the space of variables. Therefore formally,
this class includes also the infinite-dimensional problems.

We are going to give an example of some bad function defined in the
infinite-dimensional space. We could do that also in a finite dimension,
but the corresponding reasoning is more complicated.

Consider R® = I, the space of all sequences z = {z(}2, with finite

norm
0 )
le =" (29)" < oo.
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Let us choose some parameters ;2 > 0 and @y > 1, which define the
following function

- 0 2 5
fugy(z) = 49g=1 {(r“))? + El(:c(’) —zli+1)2 2:5“)} +5l=z?.
i=

Denote
2 -1 0 0
-1 2 -1 0
A=1 o 21 2
0 0

Then f"(z) = “(—Q%”A + uI, where I is the unit operator in R®. In
the previous section we have already seen that 0 < A < 4I. Therefore

ul 2 f"(x) 2 (u(Qp — 1) + u)I = pQyl.

This means that f,q, € Sﬁ;b}(R“’). Note that the condition number
of function f, g, is

— BQr _
Qfl-hQI - ﬂ_.ul - Qf

Let us find the minimum of function f,, .q,. The first-order optimality
condition

muay (2) = (MQ[I}A £ '“I) T M(Q"‘-_fi_l)el =l

can be written as
4 —
(A + Qf—l) T = ej.

The coordinate form of this equation is as follows:

2350 - 2@ =1,

k1) _ 2%;}35&) +zk-1) =0 k=2,....

(2.1.25)

Let g be the smallest root of the equation

q2—2%}}%q+120,

that is ¢ = JZ\/S?:}:—: Then the sequence (z*)*) = ¢k k = 1,2, ..., satisfies
the system (2.1.25). Thus, we come to the following result.
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THEOREM 2.1.13 For any o E R°° and any constants p > 0, Qy > 1
there ezists a function f € S, ﬂQ (R*®) such that for any first-order
method M satisfying Assumption 2 1.4, we have

2k
* —1 *
- ot 122 (YB) " a—at I
2k
-1
flze) = f* 2 %(%’1) | zo — z* |2,

where z* is the minimum of function f and f* = f(z*)

Proof: Indeed, we can assume that zo = 0. Let us choose f(z) =
fu,#Qf(:r). Then

a0 =" = S(@)9 = £ ¢* = 1L,

Since f:,qu(x) is a three-diagonal operator and fp"uQ!(O) = e, we
conclude that z; € R¥®, Therefore
oo . 2(k+1) ”
loe—at P2 § [@)0P = 5 g% =G50 = ag—a |2
i=k+

The second bound of the theorem follows from the first one and The-
orem 2.1.8. ]

2.1.5 Gradient method
Let us check how the gradient method works on the problem

min f(z)

z€ERM

with f € 7" (R"). Recall that the scheme of the gradient method is as
follows.

Gradient method

0. Choose =g € R".
1. kth iteration (k > 0).
a). Compute f(zx) and f'(zx).

b). Find zx4+) = zx — hi f'(zx) (see Section 2 for
step-size rules).
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In this section we analyze the simplest variant of the gradient scheme
with hy = h > 0. It is possible to show that for all other reasonable
step-size rules the rate of convergence of this method is similar. Denote
by z* the optimal point of our problem and f* = f(z*).

THEOREM 2.1.14 Let f € Fi'l(R") and 0 < h < % Then the gradient
method generates a sequence {x\}, which converges as follows:

. 2(f(z0)~f) llro="]
f(@6) = 1" < o= e kA@- LA o)

Proof: Denote ry =|| zx — z* ||. Then
T,E_H = || zp—a* — hf'(zs) ”2
= rp = 2h{f'(zx), 2k —2*) + B2 || f'(zk) |I?

< ri—h(F =h) I f'(=z) I?

(we use (2.1.8) and f’(a:‘) = 0). Therefore ry < rg. In view of (2.1.6)
we have

flee) < Fan) + (F'(@k)s Zer — o) + 5 || Tes1 — 2k |2
= flzx) —w | f'(zx) %
where w = h(1 — £h). Denote Ay = f(zx) — f*. Then
Ak < (f'(@k)yxk — ) <o || f'(zk) Il -
Therefore Ajy; < Ag — f’gA,% Thus,

1 B S - Loy
Ak+l2Ak+_g ka>£\ +Fg'

-~

Summing up these inequalities, we get

1 1
. v = Ao + ;wg(k + 1).

0

In order to choose the optimal step size, we need to maximize the
function ¢(h) = h(2 — Lh) with respect to h. The first-order optimality
condition ¢'(h) = 2 — 2Lh = 0 provides us with the value h* = . In
this case we get the following efficiency estimate of the gradient method:

2L(f(zo)— To—z*||?

flzi) - f* < Fplsnl) L (2.1.26)
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Further, in view of (2.1.6) we have

fzo) € fFr+{f'@)zo—2)+§ | z0—2" |2

= ["+5llzo—a"|?.

Since the right-hand side of inequality (2.1.26) is increasing in f(zo)—f",
we obtain the following result.

COROLLARY 2.1.2 Ifh =1 and f € F)''(R"), then
Flzp) = f* < lzo=z’I7 (2.1.27)

= k+4

Let us estimate the performance of the gradient method on the class
of strongly convex functions.

THEOREM 2.1.15 If f € S;:}J(R”) and 0 < h < 37, then the gradient

method generates a sequence {zy} such that
k
* 2hul *
I o= 12< (1= 2)" |z — 2 |2

If h = u_—TQ-T’ then
k

351) lzo -zl

* —1 2k *
fa) - < §(35) lwo-=" IR,

|zg —2* || <

AR

where Qp = L/p.

Proof: Denote ry =|| zx — z* |. Then

i1 = llzk—2* = hf'(zi) |I?

ri = 2h{f'(ze),zx — &%) + h* || f'(zx) |I?

< (1-2E) 2 h(h—2) I £ () 1P

(we use (2.1.24) and f'(z*) = 0). The last inequality in the theorem
follows from the previous one and (2.1.6). (]

Recall that we have seen already the step-size rule h = —-42—_5 and

the linear rate of convergence of the gradient method in Section 1.2.3,
Theorem 1.2.4. But that was only a local result.
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Comparing the rate of convergence of the gradient method with the
lower complexity bounds (Theorems 2.1.7 and 2.1.13), we can see that
the gradient method is far from being optimal for classes F, If‘l(R”} and
Si:}l(R"). We should also note that on these problem classes the stan-
dard unconstrained minimization methods (conjugate gradients, variable
metric) have a similar global efficiency bound. The optimal methods for
minimizing smooth convex and strongly convex functions will be consid-
ered in the next section.

2.2 Optimal Methods

(Optimal methods; Convez sets; Constrained mimimization problem; Gradient
mapping; Minimization methods over a simple set.)

2:2.1 Optimal methods

In this section we consider an unconstrained minimization problem

min f(z),
with f being strongly convex: f € S:;::-I(R"), i > 0. Formally, this
family of classes contains also the class of convex functions with Lipschitz
gradient (Séi(R”) = fi’l(R”)).
In the previous section we proved the following efficiency estimates
for the gradient method:
FRRY:  fla) - < BpeEl

k+4 ’

SULRY:  f(ee) - 1t < & (52) oot 2.

These estimates differ from our lower complexity bounds (Theorem 2.1.7

and Theorem 2.1.13) by an order of magnitude. Of course, in general

this does not mean that the gradient method is not optimal since the

lower bounds might be too optimistic. However, we will see that in our

case the lower bounds are exact up to a constant factor. We prove that

by constructing a method that has corresponding efficiency bounds.
Recall that the gradient method forms a relaxation sequence:

f(@k41) £ f(zp).

This fact is crucial for justification of its convergence rate (Theorem
2.1.14). However, in convex optimization the optimal methods never
rely on relaxation. Firstly, for some problem classes this property is too
expensive. Secondly, the schemes and efficiency estimates of optimal
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methods are derived from some global topological properties of convex
functions. From this point of view, relaxation is a too “miciuicopic”
property to be useful.

The schemes and efficiency bounds of optimal methods are based on
the notion of estimate sequence.

DEFINITION 2.2.1 A pair of sequences {¢x ()} oy and { Ak }i2g, Ak 20
is called an estimate sequence of function f(z) if

A — 0
and for any x € R" and all k > 0 we have

k() < (1 = M) f(z) + Apdbo(z). (2.2.1)

The next statement explains why these objects could be useful.

LEMMA 2.2.1 If for some sequence {zy} we have

f(we) < ¢; = min (), (2.2.2)

then f(zk) — f* < M[do(z*) — f*] = 0.
Proof: Indeed,

flew) < ;= min ¢() < minl(1 - M)f(z) + Medo(c)]

< (1 - Ak)f(.‘?}‘) + )\kgbo(:r;").
O

Thus, for any sequence {zy}, satisfying (2.2.2) we can derive its rate
of convergence directly from the rate of convergence of sequence {Ax}.
However, at this moment we have two serious questions. Firstly, we do
not know how to form an estimate sequence. And secondly, we do not
know how we can ensure (2.2.2). The first question is simpler, so let us
answer it.

LEMMA 2.2.2 Assume that:
1 feSy (R,
2 ¢o(z) is an arbitrary function on R",

3 {yx}2, is an arbitrary sequence in R™,
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4 {2y e €(0,1), 3 ax=oo,

k=0
§ Ag =1,
Then the pair of sequences {Pr(z)}3 g, {Ak}ow, recursively defined by t:
M1 = (1 — o)Ay,
br+1(z) = (1 — arx)d(z) (2.2.3)

+ag[f () + (F' (k) — ) + 5 | 2 = e [17),
15 an estimate sequence.

Proof: Indeed, ¢o(z) < (1 — Ag)f(z) + Aogo(z) = ¢o(x). Further, let
(2.2.1) hold for some k > 0. Then

$e1(z) £ (1 — ag)de(z) + arf(z)
= (1-=(1—a)M)f(@) + (1 = ax)(dr(z) = (1 = M) f(2))
< (1=(1-ax)X)f(z) + (1 — o) Aedo(z)

= (1= Ae41) f(z) + Aks160(2).
It remains to note that condition 4) ensures Ay — 0. ]

Thus, the above statement provides us with some rules for updating
the estimate sequence. Now we have two control sequences, which can
help to ensure inequality (2.2.2). Note that we are also free in the choice
of initial function ¢o(z). Let us choose it as a simple quadratic function.
Then we can obtain the exact description of the way ¢} varies.

LEMMA 2.2.3 Let ¢o(z) = ¢5+ 2 || —wo ||°. Then the process (2.2.3)
preserves the canonical form of functions {¢x(z)}:

Pe(z) = dp+ L ||z — v |2, (2.2.4)
where the sequences {v}, {vk} and {¢}} are defined as follows:
Ye+1 = (1 — o)k + orps,

vkrr = 5=[(1 = ex)mve + apyr — o f'(yx)),

Gy = (1= an)be + anf(ye) — 5= || f'(we) |12

+0¢§l—a_&.m.‘ : (% " Yk — Vg ”2 +(fr(yk)s Vg — yk)) '

Tk+1
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Proof: Note that ¢{j(z) = y9I,. Let us prove that ¢} (z) = v In for all
k > 0. Indeed, if that is true for some k, then

Fes1(z) = (1 — o) () + awppln = (1 — ) vk + axp) In = Yeg1In.

This justifies the canonical form (2.2.4) of functions ¢x(z).
Further,

tri1(z) = (1—ak)(dp+% | z—ve )
+ akf(ye) + (f(we)z —we) + 5 1| & — ke [1%).

Therefore the equation ¢}, (z) = 0, which is the first-order optimality
condition for function ¢ (z), looks as follows:

(1 — ak)ve(z — vg) + arf' (yk) + arp(z — yx) = 0.

From that we get the equation for the point vg.1, which is the minimum

of the function ¢g+1(x).
Finally, let us compute ¢;_ ;. In view of the recursion rule for the

sequence {¢i(z)}, we have

$re1 + B | vk — visr 1P= brtr(wr)
(2.2.5)

= (1 —ak) (g + % Il yk — vk |I?) + o f(ys)-

Note that in view of the relation for viy1,

vkt = Yk = 507 [(1 = k) vk — yx) — oS (yn)].

Therefore
LEL gy — g |2 = 27:“ (1 — o)®¥Z || ve — i |I?

=20y (1 — ce) i (f (yx), vk — k)

+aig || (k) 1I7].

It remains to substitute this relation into (2.2.5) noting that the factor
for the term || yx — vk ||? in this expression is as follows:

(1- C"Uc):ui - 2'}‘k+1 (1- Olk)2’}’g = {I _ak)%h (I - l'_YfH )

= = 7. _L&
(1 ak)z Ye+1"
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Now the situation is more clear and we are close to getting an algo-
rithmic scheme. Indeed, assume that we already have z:

br > f(zk)-
Then, in view of the previous lemma,
Grpr > (1= ) flzi) +anf(ye) — g I f(we) 112

22 (£1(y) uy — ).

Tk+1

Since f(zk) > f(yk) + (f'(yx), Tk — yx), we get the following estimate:

Sty = flue) - gww ot || () |12
+(1 = ar)(f'(yr), S (ve — yk) + T — Uk)-

Let us look at this inequality. We want to have ¢; ., > f (zk+1). Recall,
that we can ensure the inequality

Fluk) = 20 1| F/(we) 17> f(zetr)

in many different ways. The simplest one is just to take the gradient
step

Thr1 = Yk — hef'(zk)

with A = -}; (see (2.1.6)). Let us define oy as follows:

Lai = (1 —ag)vk + axpt (= Yet1)-

Then ﬁﬁ_—l = ﬁ and we can replace the previous inequality by the
following:

bhir = ferr) + (1 — ar)(f (), S (v — ve) + 2k — vi)-

Now we can use our freedom in the choice of y,. Let us find it from the
equation:

KV (g, — o =
(v — yk) + 2k — gk = 0.
That is

— QkVkVEHVk+1Tk
Yk Tetakn
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Thus, we come to the following method.

General scheme of optimal method

0. Choose zp € R™ and g > 0. Set vg = zg.

1. kth iteration (k > 0).
a). Compute o € (0, 1) from equation

Log = (1 - ag) e + agp-

Set Y41 = (1 — )y + axp.
b). Choose
— SRRV T Ve+1Tk
Yk = Vhtagp
and compute f(yx) and f'(yx).

¢). Find zj,; such that

Flzrsr) < Flye) — 5 I F (i) 112

(see Section 1.2.3 for the step-size rules).

(1—ag ) ykvi o pyr —ax f' (ye)
Yk+1 ]

d). Set vk4+) =

(2.2.6)

Note that in Step 1c) of this scheme we can choose any 4 satisfying

the inequality
flaxsr) < flue) =5 1| F(we) IIP

with some w > 0. Then the constant 5 replaces L in the equation of

Step 1a).

THEOREM 2.2.1 The scheme (2.2.6) generates a sequence {zi}5o, such

that

Flag) —F* <2 [f(2)—~*+F | 2o ~2* |IF],

where Ay = 1 and A\ = Hfgﬂl(l - a;).

Proof: Indeed, let us choose ¢o(z) = f(zg) + B || z — v [*>. Then
flzo) = ¢p and we get f(zx) < ¢; by construction of the scheme. It

remains to use Lemma 2.2.1.

O



Smooth convez optimization (&

Thus, in order to estimate the rate of convergence of (2.2.6), we need
to understand how fast Ag goes to zero.

LEMMA 2.2.4 If in the scheme (2.2.6) vo > i, then

Akgmin{(l—ﬂ)k,mﬁﬁ}. (2.2.7)

Proof: Indeed, if yx > p, then v44; = La? = (1 — ag)yvk + agp > p.
Since g > p, we conclude that this inequality is valid for all y,. Hence,

ay > \/— and we have proved the first inequality in (2.2.7).

Further, let us prove that vx > y9A. Indeed, since vy = y9Ao, we can
use induction:

Yol = (1= )y = (1 — ax)vore = Yo k+1-

Therefore La,zc = Yk41 2 YoNk+1-
Denote a; = %& Since {\;} is a decreasing sequence, we have

G, = VA= Akt Ap—Akt1
k& VA Ak 41 VAR AR £1 (VAE+ Ak 1)
> A=Akt s Ap=(1—ag)Ax - Qg > 1 /70
= 20k y/ Ak 206/ k41 2/ Mgt — 2V L
Thus, ax > 1 + %1/% and the lemma is proved. O

Let us present an exact statement on optimality of (2.2.6).

THEOREM 2.2.2 Let us take in (2.2.6) vo = L. Then this scheme gen-
erates a sequence {xx}p2 such that

flan) =1 < Lmin{ (1= \/E)" e | N0 = " 2.

This means that (2.2.6) is optimal for unconstrained minimization of
the functions from S;:E(R”), u> 0.

Proof: We get the above inequality using f(zg) — f* < % I| zg —z* |2
and Theorem 2.2.1 with Lemma 2.2.4.

Let o > 0. From the lower complexity bounds for the class (see
Theorem 2.1.13) we have

flme) - fr2b (@)% R? > Eexp (_W}_) R,
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where Q; = L/p and R =|| zo — z* ||. Therefore, the worst case bound
for finding xy satisfying f(zx) — f* < € cannot be better than

k> 3@ [ln%-!—ln% +21nR] .
For our scheme we have
k
fze) — f* < LR? (1 - \/B < LR%exp (—-7’:?—!) .

Therefore we guarantee that k < \/Q; [ln-} +InL+2In R]. Thus, the

main term in this estimate, \/?; In El, is proportional to the lower bound.
The same reasoning can be used for the class Séi(R"). O

Let us analyze a variant of the scheme (2.2.6), which uses the gradient
step for finding the point zx 1.

Constant Step Scheme, I

0. Choose zg € R™ and -y > 0. Set vy = xp.

1. kth iteration (k > 0).
a). Compute ai € (0,1) from the equation

Lod = (1 — ag)ye + axp. (2.2.8)

Set yk+1 = (1 — )k + app.

KMkt T
b). Choose y; = “AILETIELIZE,

Compute f(yx) and f'(yx).
c). Set zxy1 = Yk — ./ (yx) and

k1 = 5= [(1 = @k )vevk + arpyr — ax f'(y)].

Let us demonstrate that this scheme can be rewritten in a simpler
form. Note that

Yk = e (CkYVeVk + Ye1Zk),
Tkr1 = Yo — 5 (),
Ukr1 = =1 — ) yivr + akpyk — o f (yk)).

Tk+1
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Therefore
vepr = {52 (yk + op)yr — Yer1zk] + cknyk — o’ (ur)}
I | 1— 1—- e !
= i { ety + pye} — 1520k — 520" ()

1
= 2k + 5= (yk — ox) — 5,1.f (k)

Tk + g (Tks1 — k).

Hence,
- 1
Yk+l = SFarmip(Ok+1Vk+10k+1 + Vet2Thi1)
- k41 Vie+1 (Vkp1 —Thp1) o -
= gy + SEIELSE T+1 + P (The1 — Th),
where

B = sztn'mixgl—ﬂg;
k Cx (V41 +H0k 1) "

Thus, we managed to get rid of {v;}. Let us do the same with ;. We
have

afL = (1 = ag)ve + pok = Ye41-

Therefore

;8 - ﬂk+1‘7k+1l_1—ﬂk) - g1 k41 (l—a)
k ak(Mertarsin) — ak(Tesr+ogy, L—(1-0k+1)Ve+1)

Ter(l-ak) _ op(l-ag)
ar(Tk41+ars1L) of +ag4r

Note also that ai_H = (1 — ag41)a? + qaxyy with ¢ = p/L, and
adL = (1 — ag)yo + pao.

The latter relation means that vy can be seen as a function of ay. Thus,
we can completely eliminate the sequence {v;}. Let us write down the
corresponding scheme.
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Constant Step Scheme, I1

0. Choose zg € R" and ap € (0,1).
Set yo = xo and q = .
1. kth iteration (k > 0).

a). Compute f(yx) and f'(yk). Set

Tes1 = Yk — 1S (x)- )

b). Compute ag4, € (0,1) from equation

2 2
@iy = (1 = agpr)ag + qagy,

and set 3 = oy(1-ag)

ak+ak+l !

Yk+1 = ZTk+1 + B (k41 — Zk)-

The rate of convergence of the above scheme can be derived from
Theorem 2.2.1 and Lemma 2.2.4. Let us write down the corresponding
statement in terms of ay.

THEOREM 2.2.3 If in scheme (2.2.9)
a0 > /%, (2.2.10)
then

fo =5 <min {(1- VD) rihn)

X [f(zo) = f*+ R || zo — =" ||*],
where v = aplagl )

l—ap
We do not need to prove this theorem since the initial scheme is not
changed. We change only notation. In Theorem 2.2.3 condition (2.2.10)
is equivalent to vy > p.
Scheme (2.2.9) becomes very simple if we choose ay = \/% (this cor-

responds to y9 = p). Then

ak=\/%, ﬁk=%§§
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for all £ > 0. Thus, we come to the following process.

Constant step scheme, ITI

0. Choose yy = x9 € R".
1. kth iteration (k > 0). (2.2.11)

Try1 = Yk — TS (W),

N
Y+l = Tg41+ \/_T_'_:%(mk+[ — Tg).

However, note that this process does not work for i = 0. The choice
~v0 = L (which changes corresponding value of ag) is safer.

2.2.2 Convex sets
Let us try to understand which constrained minimization problem we
can solve. Let us start from the simplest problem of this type, the
problem without functional constraints:
min f(z),
min /()
where @ is some subset of R®. In order to make our problem tractable,
we should impose some assumptions on the set (). And first of all, let

us answer the following question: Which sets fit naturally the class of
convex functions? From definition of convex function,

f(a:r:+ (1 - a)y) .<. (If(I) + (l - a)f(y)s Vmay € Rn# a € [0:1]7

we see that it is implicitly assumed that it is possible to check this
inequality at any point of the segment [z, y]:

[z,y] = {z = az + (1 — @)y, a € [0,1]}.

Thus, it would be natural to consider a set that contains the whole
segment [z,y] provided that the end points = and y belong to the set.
Such sets are called convez.

DEFINITION 2.2.2 Set @ is called convex if for any z, y € @ and «
from [0, 1] we have
az + (1 —a)y € Q.



82 INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION

The point ax + (1 — a)y with a € [0,1] is called a convez combination
of these two points.
In fact, we have already met some convex sets.

LEMMA 2.2.5 If f(x) is a convez function, then for any 8 € R} its level
set

Ly(B) ={z € R"| f(z) < B}
s etther convex or emply.

Proof: Indeed, let z and y belong to Lf(3). Then f(z) < f and
f(y) < B. Therefore

flaz+ (1 -a)y) < af(z)+(1-a)f(y) < B.

LEMMA 2.2.6 Let f(z) be a convez function. Then its epigraph
Er={(z,7) € R™'| f(z) <7}
1§ a convez sel.

Proof: Indeed, let 2y = (z1,7) € & and 29 = (z2,72) € ;. Then for
any « € [0, 1] we have

zZo =az1+ (1 —a)zy = (azy + (1 — @)z2,a71) + (1 — a)12),

flaz) + (1 = a)z2) < af(z1) + (1 — @) f(z2) < amy + (1 — Q)72

Thus, z4 € &;. 0O

Let us look at some properties of convex sets.

THEOREM 2.2.4 Let @1 C R" and Q2 C R™ be convez sets and A(x)
be a linear operator:

A(z) = Az +b: R* - R™.
Then all sets below are convez:
1. Intersection (m =n): Q1N Q2={z € R"| z € @1, = € Q2}.
2. 5um m=n): Qi+Q2={z=z+y| 2€ Q1 y € Q2}.
3. Direct sum: Q) x Q2 = {(z,y) € R*"*™ | z € Q,, y € @2}
4. Conic hull: K(h) ={z € R"| z=pz, z € Q1,3 > 0}.
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5. Convez hull
Conv (Q1,Q2) ={z€R"| z=az+(l-a),

Y, T € Ql} y € Q?: a € [0!1]}‘

6. Affine image: A(Q1) ={y € R™ | y = A(z), z € Q1}.
7. Inverse affine image: A™1(Q2) = {z € R" | A(z) € Q2}.

Proof: 1. If z; € Q1N Q2, z1 € @Q1[)Q2, then [z1,25] C @, and
[z1,22] C Q2. Therefore [z1,22] C Q1N Q2.

2. Ifzy =z + 29, 21 € Q1, 22 € Q2 and z3 = y1 +y2, y1 € Qn,
y2 € @9, then

az1 + (1 —a)zy = (az; + (1 — a)yy)1 + (aze + (1 — @)ys)2,

where ()1 € @ and () € Q2.
3. If z; = (z1,22), 21 € Q1, z2 € Q2 and 23 = (y1,¥2), Y1 € @1,
y2 € J9, then

az; + (1= a)zz = ((az1 + (1 = &)y1)1, (az2 + (1 = @)y2)2),

where (-); € Q, and (-)2 € Q.
4. f z; = Bz, 21 € Q1, b1 2 0, and 23 = Paxy, 72 € Q1, 2 2 0,
then for any « € [0,1] we have

az1 + (1 —a)ze = afiz) + (1 — @)foze = y(az) + (1 — &)z2),

where v = af; + (1 — a)fB2, and & = af3; /v € [0, 1].

5. If 2 = iz + (1 — Bi)z2, 21 € @, 22 € Q2, By € [0,1], and
22 = ﬂ2y1 + (1 - ﬁ2)y25 v € Qla Y2 € @2, B2 € [011]’ then for any
a € [0,1] we have

azi+ (1 —a)za = a(Biz) + (1 - Bi)z2)
+(1 = a)(Boyr + (1 — B2)y2)
= a(fz1 + (1= p)w)
+(1 = &) (Baz2 + (1 - fo)ya),
where &@ = aff; + (1 — a)Bz and B = af /&, Bo = a(l - A1)/(1 — a&).
6. If y1, y2 € A(Q1) then y; = Az, + b and y, = Az, + b for some x4,
T2 € Q1. Therefore, for y(a) = ay; + (1 — @)yz, 0 < a@ < 1, we have
y(a) = a(Azy +b) + (1 — a)(Azy + b) = A(az) + (1 — a)zs) + b.
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Thus, y(a) € A(Q1).
7. If 21, 70 € A71(Q-) then Az + b=y, and Azy + b = y» for some
Y1, y2 € Q3. Therefore, for z(a) = az; + (1 - a)zz, 0 < a < 1, we have

Alz(a)) = Alaz, + (1 —a)z) + b

=a(Az; +b) + (1 —a)(Azs + b) = ay; + (1 — @)y € Q».
O

Let us give several examples of convex sets.

EXAMPLE 2.2.1 1. Half-space {z € R" | (a,z) < B} is convex since
linear function is convex.

2. Polytope {z € R" | (a;,z) < b;, t = 1...m} is convex as an
intersection of convex sets.

3. Ellipsoid. Let A = AT = 0. Then the set {z € R" | (Az,z) <r?}is
convex since function (Az,z) is convex. a

Let us write down the optimality conditions for the problem

min f(z), f € F'(R"), (2.2.12)
T€Q
where @ is a closed convex set. It is clear that the old condition
f(z)=0

does not work here.

EXAMPLE 2.2.2 Consider the one-dimensional problem:

minzx.
x>0

Here z € B!, Q = {z : z > 0} and f(z) = z. Note that z* = 0 but
(@) =1>0. D

THEOREM 2.2.5 Let f € F'(R") and Q be a closed convezr set. The
point z* is a solution of (2.2.12) if and only if

(f'(z*),z-2") 20 (2.2.18)
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forallz € Q.
Proof: Indeed, if (2.2.13) is true, then

f(@) 2 f(z") +{f'(z"),2 — ") > f(2")

for all z € Q.
Let z* be a solution to (2.2.12). Assume that there exists some x € @

such that
(f'(z*),x = =z*) < 0.

Consider the function ¢(a) = f(z* + a(z — z*)), a € [0,1]. Note that
$(0) = f(*), ¢'(0) = (f'(z"),z —z*) <O.
Therefore, for & small enough we have
f(z" +a(z - z%) = ¢(a) < $(0) = f(z*).

That is a contradiction. a

THEOREM 2.2.6 Let f € S (R") and Q be a closed convez set. Then
there exists a unique solution z* of problem (2.2.12).

Proof: Let 29 € Q. Consider the set Q = {z € Q | f(z) < f(z0)}-
Note that problem (2.2.12) is equivalent to

min{f(z) | z € Q}. (2.2.14)
However, Q is bounded: for all z € Q we have
f(xo) = f(z) = f(zo) + {f'(zo)yz —z0) + & |z — 0 |12

Hence, || = — 20 |< 2 || f(zo) |l
Thus, the solution z* of (2.2.14) (= (2.2.12)) exists. Let us prove that
it is unique. Indeed, if z] is also a solution to (2.2.12), then

[*o=1(=) 2 fla*) +{f' ("), 2] —2*) + § | 2f — 2 |
2 +5llat—a |

(we have used Theorem 2.2.5). Therefore z} = z*. o
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2.2.3 Gradient mapping

In the constrained minimization problem the gradient of the objective
function should be treated differently as compared to the unconstrained
situation. In the previous section we have already seen that its role in
optimality conditions is changing. Moreover, we cannot use it anymore in
a gradient step since the result could be infeasible, etc. If we look at the
main properties of the gradient, which we have used for f € F E’I(R"),
we can see that two of them are of the most importance. The first
one is that the gradient step decreases the function value by an amount
comparable with the squared norm of the gradient:

fle=1f(=)) < f(z) =51 | f'(2) |17
And the second one is the inequality
(f'(2),z—a*) 2 ¢ || f(2) |7

It turns out that for constrained minimization problems we can in-
troduce an object that inherits the most important properties of the
gradient.

DEFINITION 2.2.3 Let us fix some v > 0. Denote

zq(T;y) =arg géig [f@+(f@z-2)+F -2z,

9Q(Z;7) =T — zq(Z; 7))
We call gg(v,x) the gradient mapping of f on Q.
For @ = R™ we have
2Q(#;7) =z — 2 f'(z), gq(&;7) = f'(2).

Thus, the value % can be seen as a step size for the “gradient” step

zZ = zq(Z; 7).
Note that the gradient mapping is well defined in view of Theorem

2.2.6. Moreover, it is defined for all z € R™, not necessarily from Q.
Let us write down the main property of gradient mapping.

THEOREM 2.2.7 Let f € Sy;(R"), v > L and Z € R". Then for any
T € Q we have
flz) 2 flzq(z;7)) +{90(Z;7),z — )
(2.2.15)
+3 lge@EM IP+5 llz—2 2.
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Proof: Denote zg = z¢(7,Z), 99 = 90(7, ) and let
$(z) = f(@) +(f'@),z-z)+Fllz -z .
Then ¢'(z) = f'(Z) + y(z — Z), and for any z € @ we have
(f'(z) — 9@, — zq) = (¢(zq),z — zq) 2 0.
Hence,

flz)=§llz—z|?

v

f(@) +(f(z),z - 1)

= f(@)+(f'(z),zq — 2) +{f'(Z),z — zq)
> f(Z)+(f'(Z),zq — Z) + (9@, — zq)
= ¢(zq) —§ 7@ — 2 |I* +(90, 7 — 2q)
= ¢(zq) — 35 Il 9q II* +{90, = — zq)

= ¢(zq) + 3 Il 9 II” +(9q.2 - 2),

and ¢(rq) > f(zq) since y > L. O

COROLLARY 2.2.1 Let f € Sﬁ:_‘a(R“), v> L and T € R". Then

f(zq(®7) £ f(2) - 5 | 9(Z ) 1%, (2.2.16)

(9o(@;7),z —2") 2 55 lga@mM IP +5 1z -2 |2 (2.2.17)

Proof: Indeed, using (2.2.15) with z = Z, we get (2.2.16). Using (2.2.15)
with z = z*, we get (2.2.17) since f(zg(Z;7)) > f(z*). a

2.2.4 Minimization methods for simple sets

Let us show how we can use the gradient mapping for solving the
following problem:

min.f (),
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where f € S;:}‘(R”) and @ is a closed convex set. We assume that
the set @ is simple enough, so the gradient mapping can be computed
explicitly. This assumption is valid for positive orthant, n dimensional
box, simplex, Euclidean ball and some other sets.

Let us start from the gradient method:

Gradient method for simple sets

0. Choose zp € Q. (2.2.18)
1. kth iteration (k > 0).

Tpy1 = Tk — hgg(zw; L).

The efficiency analysis of this scheme is very similar to that of the
unconstrained version. Let us give an example of such a reasoning.

THEOREM 2.2.8 Let f € S,'1 (R"). If in scheme (2.2.18) h = %, then
* k *
Iz —2* IIP< (1= §)° || 2o —2* |I2.
Proof: Denote ry =|| zx —z* ||, 90 = gg(xk; L). Then, using inequality
(2.2.17), we obtain
Terr = 2k —z* = hgq |I?= 1§ — 2h{gq, zx — ") + 1? | gq |I?

< (-hppd+h(h=1) llge 2= (1-4)rE.

Note that for the step size h = + we have

Tkl = Tk — zgq(:ck; L) = zq(zx; L).

Consider now the optimal schemes. We give only a sketch of justifi-
cation since it is very similar to that of Section 2.2.1.
First of all, we define the estimate sequence. Assume that oy € Q.

Define
do(z) = f(xo) + B || 2 — o |I?,

brr1(2z) = (1 — aw)e(z) + ak[f(zqyk; L)) + 31 |l 90 (ys; L) |I?

+oolus L),z —ye) + 5 || = — wk |?)-
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Note that the form of the recursive rule for ¢x(z) is changed. The reason
is that now we use inequality (2.2.15) instead of (2.1.16). However,
this modification does not change the analytical form of recursion and
therefore it is possible to keep all convergence results of Section 2.2.1.

Similarly, it is easy to see that the estimate sequence {¢y(z)} can be
written as

¢e(z) =+ % o — v |7
with the following recursive rules for v, vy and ¢}:
Yerr = (1 —ar)n + arp,
Vg1 = .ﬂm —[(1 — ag)ywvr + apiyr — argg(yr; L)),
$kr1 = (1—oax)de +arf(zq(yr; L))
+ (8- 25) oot L) 17

2l (& 1]y — vy |12 +(go(ur; L), vk — Ye)) -

Te+1

Further, assuming that ¢} > f(zx) and using the inequality
flzx) 2 flzqlyw; L)) + (90(y; L), zk — yk)
+aor | 9@(yks L) 11> +5 Il 2 — e I1?],
we come to the following lower bound:
$rr1 2 (1—o)f(zk) + oS (zq(yk; L))
+ (8- 5) sl D) 17

+ 2kl (g0 (445 L), v — i)

Yk+1

\Y

f(zq(yx; L)) + (ﬁ 2'm+1) I 9q(ur: L) 11

+(1 — ak)(9Q(yk; L), T4 (vk — yk) + 2k — yi)-
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Thus, again we can choose

Tk = 2Q(Yk; L),
La?2 = (1 - ox)7k + Qkpt = Yet1s

_ 1
Yk = s7arm (ke + Vk+1Zk)-

Let us write down the corresponding variant of scheme (2.2.9).

Constant Step Scheme, I1. Simple sets.

0. Choose zp € R" and o € (0,1).
Set yo = 2z and ¢ = £.

1. kth iteration (k > 0).
a). Compute f(yx) and f'(yx). Set

2.2.19
Tey1 = 2Q(yk; L) ( )

b). Compute ag41 € (0,1) from equation

2 2
ip1 = (1 = kp1)ag + qagy1,

and set G, = 25U —ak)

ap+0hyr’

Yk+1 = Tyl + Be(Te+1 — Tk)-

Clearly, the rate of convergence of this method is given by Theo-
rem 2.2.3. In this scheme only points {z;} are feasible for Q. The
sequence {yx} is used for computing the gradient mapping and may be
infeasible.

2.3 Minimization problem with smooth
components

(Minimaz problem: gradient mapping, gradient method, optimal methods; Pro-
blem with functional constraints; Methods for constrained minimization.)

2.3.1 Minimax problem

Very often the objective function of an optimization problem is com-
posed by several components. For example, the reliability of a complex
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system usually is defined as a minimal reliability of its parts. A con-
strained minimization problem with functional constraints provides us
with an example of interaction of several nonlinear functions, etc.

The simplest problem of that type is called the minimaz problem. In
this section we deal with the smooth minimax problem:

s [f (x)] , (2.3.1)

TEQ 1<1<m

where f; € S;:}J(R“), 1=1...m and @Q is a closed convex set. We call
the function f(z) maz-type function composed by the components fi(z).
We write [ € S:li(R") if all components of function f belong to that
class.

Note that, in general, f(z) is not differentiable. However, provided
that all f; are differentiable functions, we can introduce an object, which
behaves exactly as a linear approximation of a smooth function.

DEFINITION 2.3.1 Let f be a maz-type function:
[(z) = max  fi(z).

Function

ax [fi(Z) + (fi(Z),z — 7)),

m
1<i<m

f(@;z) =
is called the linearization of f(z) at z.
Compare the following result with inequalities (2.1.16) and (2.1.6).
LEMMA 2.3.1 For any = € R™ we have

fl@) 2 f(Z2)+ G llz -2 |7 (2.3.2)

f@ < f@Ga)+5llz—-2|>. (2.3.3)

Proof: Indeed,
filz) 2 fi@) + (fl@), s -+ § |z - |

(see (2.1.16)). Taking the maximum of this inequality in 7, we get (2.3.2).
For (2.3.3) we use inequality

filz) < fi®) + (fi(@),z -+ L |z -z |?
(see (2.1.6)). O
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Let us write down the optimality conditions for problem (2.3.1) (com-
pare with Theorem 2.2.5).

THEOREM 2.3.1 A point z* € Q is a solution to (2.3.1) if and only if
for any z € Q we have

f(z%z) 2 f(z%527) = f(z). (2.3.4)

Proof: Indeed, if (2.3.4) is true, then
f(z) > f(z%2) > f(z"27) = f(z7)

for all z € Q.
Let z* be a solution to (2.3.1). Assume that there exists z € () such

that f(z*;z) < f(z*). Consider the functions
di(a) = filz* +a(z—2*)), i=1...m.
Note that for all 7, 1 <1i < m, we have

fiz*) + (fi(z"),z — %) < f(z") = max fi(z").

1<i<m
Therefore either ¢;(0) = fi(z*) < f(z*), or
¢i(0) = f(z%), 4i(0) = (fi(z"),z — z*) <.
Therefore, for a small enough we have
filz* + a(z — %)) = ¢i(e) < f(z)

for all 7, 1 <1 < m. That is a contradiction. a

COROLLARY 2.3.1 Let z* be a minimum of a maz-type function f(z)
on the set Q. If f belongs to S, (R™), then

fl@) 2 fle*)+ 5z —z* |
forallz € Q.

Proof: Indeed, in view of (2.3.2) and Theorem 2.3.1, for any z € Q we
have

flz) = fie2)+4z—z|?

2 flztz*)+gllz—z*P=fiz)+§ |z - |12,

O
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Finally, let us prove the existence theorem.

THEOREM 2.3.2 Let maz-type function f(z) belong to S, (R") with p >
0, and Q be a closed conver set. Then there ezists a unique optimal
solution z* to the problem (2.5.1).

Proof: Let z € Q. Consider theset Q = {z € Q| f(z) < f(z)}. Note
that the problem (2.3.1) is equivalent to
min{f(z) | z € Q}. (2.3.5)
But Q is bounded: for any z € Q we have
f(@) 2 filz) 2 fi(@) + (fi(@z -2+ § -2 %
consequently,
Glle—z P f@) - Il 2 -z || +£(2) - fi(2).

Thus, the solution z* of (2.3.5) (and of (2.3.1)) exists.

If 2} is another solution to (2.3.1), then

f(z*) = f(2}) 2 f(z*;2}) + & | 2] —2° P2 f(2*) + § [l 2] — 2" |

(by (2.3.2)). Therefore z7 = z*. 0

2.3.2 Gradient mapping

In Section 2.2.3 we have introduced the gradient mapping, which re-
places the gradient for a constrained minimization problem over a sim-
ple set. Since linearization of a max-type function behaves similarly to
linearization of a smooth function, we can try to adapt the notion of
gradient mapping to our particular situation.

Let us fix some v > 0 and z € R". Consider a max-type function
f(z). Denote

H(@z) = fEHa)+Flz -2 2.

The following definition is an extension of Definition 2.2.3.

DEFINITION 2.3.2 Define

[ (zy) = r;éig f4(Z5 ),

zf(Z;y) = arggggfw(z;w),

gr(zy) = (& —zs(Z;7))
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We call gf(z;y) gradient mapping of maz-type function f on Q.

For m = 1 this definition is equivalent to Definition 2.2.3. Similarly,
the point of linearization Z does not necessarily belong to Q.

It is clear that f,(Z;z) is a max-type function composed by the com-
ponents

Ji(®) + (J{@),c - 8) + 1 o - 2 |2 SLUR™, i=0...m.
Therefore the gradient mapping is well defined (Theorem 2.3.2).
Let us prove the main result of this section, which highlights the simi-

larity between the properties of the gradient mapping and the properties
of the gradient (compare with Theorem 2.2.7).

THEOREM 2.3.3 Let f € S’} (R™). Then for all z € Q we have
L

f(@2) 2 f1(@7) +{gs@ )z —2) + 35 lgs@N 1P (2.3.6)

Proof: Denote ;= x7(Z;7v), gr = gf(Z;). It is clear that f,(Z;z) €
STI,'%,(R") and it is a max-type function. Therefore all results of the
previous section can be applied also to f,.

Since z; = argmin f,(Z;z), in view of Corollary 2.3.1 and Theorem

TEQ
2.3.1 we have

f&z) = f(@z)-Fz-z|?
2 @z +ille—zp P - Nz-23)
2 fzg) + 3z -2y, 28~ 25—~ )

= U&7+ (& - 25,2z - 2) + Z - zp)

@+ gne—2)+ 4 larl?.
O

In what follows we often refer to the following corollary to Theorem
2.3.3.

COROLLARY 2.3.2 Let f €S, (R") and vy > L. Then:
1. Foranyz € Q and T € R”’ we have

fx) = flzp(z;7) + (95(2; ),z — T)
(2.3.7)
+o= lgr@EV) P +5 lz—2 |
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2. If £ € Q, then
Fzp(%7) < f(@) = 55 1 977 112, (2.3.8)

3. For any T € R™ we have

(9r(@7), 2 —2") 2 35 [ gp(@m ) 1P +5 1 =* -2 |12 (2.3.9)

Proof: Assumption vy > L implies that f*(z;v) > f(z(Z;7v)). There-
fore (2.3.7) follows from (2.3.6) since

fg)2 f(Ze)+ 42—z |2
for all z € R" (see Lemma 2.3.1).

Using (2.3.7) with z = Z, we get (2.3.8), and using (2.3.7) with z = z*,
we get (2.3.9) since f(zr(Z;7)) — f(z*) 2 0. a
Finally, let us estimate the variation of f*(Z;~) as a function of ~.

LEMMA 2.3.2 For any 7, y2 > 0 and T € R™ we have

PEy) 2 PEm) + T2 gr@a) 1P

Proof: Denote z; = z7(Z;7v:), g = 97(F;%), ¢ = 1,2. In view of (2.3.6),
we have

fEGa)+ R Nz-z | 2 f@mn)+{n,z-3)
(2.3.10)
+ta= o IP+R lz-z |2
for all z € Q. In particular, for £ = z, we obtain
(@) = f(@Ez)+Z |z —7 |2
> fHEm)+ (-2 +a- o lP+F 22—z &

= f(@&7) + 5 I 1P —5(91,92) + 35 [l 92 |17

> @) +a a2 -2 e |1%.
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2.3.3 Minimization methods for minimax problem

As usual, we start a presentation of numerical methods for problem
(2.3.1) from a “gradient” method with constant step:

Gradient method for minimax problem

0. Choose zg € Q and h > 0. (2.3.11)
1. kth iteration (k > 0).

Tk = Tk — hgyp(ax; L).

THEOREM 2.3.4 Let f € S, (R"). If in (2.3.11) we choose h < £,
then

Ik — 2 [P< (1= ph)* 20— 2" |2
Proof: Denote 7y =| zx — z* ||, ¢ = gf(2«; L). Then, in view of (2.3.9)
we have

i = llze—2* — hgo = ri —2h{g,zx —z*) + K% | g |

< (U —hwyrf+h(h—1) llgl?S (1 - puh)rg.

Note that with h = % we have
Tk41 = zk — 19f(zk; L) = zp(zp; L)
For this step size, the rate of convergence of scheme (2.3.11) is as follows:
2 =2 IP< (L= §)* ll w0 —2° |

Comparing this result with Theorem 2.2.8, we see that for minimax
problem the gradient method has the same rate of convergence, as it has

in the smooth case.

Let us check, what the situation is with the optimal methods. Recall,
that in order to develop an optimal method, we need to introduce an
estimate sequence with some recursive updating rules. Formally, the
minimax problem differs from the unconstrained minimization problem
only by the form of lower approximation of the objective function. In
the case of unconstrained minimization, inequality (2.1.16) was used for
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updating the estimate sequence. Now it must be replaced by inequality

(2.3.7).

Let us introduce an estimate sequence for problem (2.3.1). Let us
fix some zp € Q and 79 > 0. Consider the sequences {yx} C R" and
{ax} € (0,1). Define

do(z) = flzo)+ % |lz—=z0?

dk+1(z) = (1 —ax)de(z)

+arl| flzp(yes L)) + 5 | 95 (e; L) |12

+(gs(yrs L),z —y) + & | @ — i |]-

Comparing these relations with (2.2.3), we can find the difference only
in the constant term (it is in the frame). In (2.2.3) this place was taken
by f(yx). This difference leads to a trivial modification in the results
of Lemma 2.2.3: All inclusions of f(yx) must be formally replaced by
the expression in the frame, and f’(y,) must be replaced by g(yx; L).
Thus, we come to the following lemma.

LEMMA 2.3.3 For all k > 0 we have
dr(z) = dp + % ||z — v |I?,

where the sequences {7y}, {vk} and {¢}} are defined as follows: vy = zy,
$o = f(zo) and

Ye41 = (1= o)y +orp,

ver1 = 5= [(1 = ak)veve + awuyr — axgr(ye; L)),
bt = (1—aw)de + ar(f(zs(y; L) + 55 | 95 (s L) (1)

gml o Il 95(uks; L) |12

yon(l-ak)y (_1_25 Iy — v |2 +{gs(yes L), v — Yk)) -

Ti4l

Now we can proceed exactly as in Section 2.2. Assume that ¢; >
f(zk). Inequality (2.3.7) with £ = 24 and Z = y; becomes

flzk) = flzp(yes L)) + (g5 (yn; L), zx — y)

+ar 1 gr(yes L) 12 +5 Iz — e 117
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Hence,

Gri1 2 (L —ap)f(zk) + arf(zf(yr; L))

+ (38 - 5oy ) D aslomi L) 1P +28m2m g 45 L), 0 - )
> [y D) + (2 - 7ok ) s D) 1P

+(1 — aw){g (yrs L), S5 (vk — i) + T — vk)-

Thus, again we can choose

Ze1 = zp(yns L),
Lo} = (1 — o)y + ekl = Yt
Uk = s (O WeVk + Vk41Tk).

Let us write down the resulting scheme in the form of (2.2.9), with
eliminated sequences {v} and {v}.

Constant Step Scheme, II. Minimax.

0. Choose zy € R" and ag € (0,1).
Set yo = 2o and ¢ = F.

1. kth iteration (k > 0).

a). Compute {fi(yx)} and {f!(yx)}. Set
Tr+1 = Tf(yx; L) i)
b). Compute ag € (0,1) from equation

2
apyr = (1 — app1)of + qap1,

and set G, = 2=0x)

ap oy

Yk+1 = Tky1 + B (Th41 — Tk)-
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The convergence analysis of this scheme is completely identical to that
of scheme (2.2.9). Let us just give the result.

THEOREM 2.3.5 Let the maz-type function f belong to Sﬁ:}l(R”). If in
(2.3.12) we take ag > \/%, then

fan -5 < minf{ (1~ /)", Gt}
X [flzo) = f*+ B || w0 —z* ||*],

where 7y = 2o(eeL=p)

1—agp

Note that the scheme (2.3.12) works for all 4 > (0. Let us write down
the method for solving (2.3.1) with strictly convex components.

Scheme for f € S;:}J(R")

_ _ YL-yE
0. Choose zo € Q- Set yo = o, 8= V= (2.3.13)

1. kth iteration (k > 0).
Compute {fi(yx)} and {f!(us)}. Set

The1 = (Ui L), Y1 = Tiy1 + B(Try1 — 2k).

THEOREM 2.3.6 For scheme (2.3.13) we have

fee) - £+ <2(1= B) () - £7). (2.3.14)

Proof: Scheme (2.3.13) is a variant of (2.3.12) with ag = \/% Under
this choice, o = p and we get (2.3.14) from Theorem 2.3.5 since, in view
of Corollary 2.3.1, & || zo — z* ||°< f(z0) — f*. O
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To conclude this section, let us look at an auxiliary problem, which we
need to solve in order to compute the gradient mapping of the minimax
problem. Recall, that this problem is as follows:

min{ max [fi(z0) + (fl(eo)2 = zo)l + } 2= 7o [}

Introducing the additional variables t € R™, we can rewrite this problem
in the following way:

min {15—:1 ) 4 Zllz—=o %}

s. t. fi(zo) + (fl(zo),z — o) <t i=1...m, (2.3.15)

r€Q, te R™,

Note that if @ is a polytope, then the problem (2.3.15) is a quadratic
optimization problem. This problem can be solved by some special finite
methods (simplex-type algorithms). It can be also solved by interior
point methods. In the latter case, we can treat much more complicated
nonlinear structure of the set Q.

2.3.4 Optimization with functional constraints

Let us show that methods described in the previous section can be
used for solving a constrained minimization problem with smooth func-
tional constraints. Recall, that the analytical form of such a problem is

as follows:
min fo(z),

gt. Juz) €0, 4=1:.::m; (2.3.16)

z € Q,
where the functions f; are convex and smooth and @ is a closed convex
set. In this section we assume that f; € 8;:}4(12"), t=0...m, with some
p> 0.
The relation between the problem (2.3.16) and minimax problems
is established by some special function of one variable. Consider the
parametric max-type function

f(tz) = max{fo(z) — t; fi(z),i=1...m}, teR' z€Q.
Let us introduce the function
i) = ?}513 f(tx). (2.3.17)
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Note that the components of max-type function f(¢;-) are strongly con-
vex in z. Therefore, for any ¢ € R! the solution of problem (2.3.17),
z*(t), exists and is unique in view of Theorem 2.3.2.

We will try to get close to the solution of (2.3.16) using a process
based on approzimate values of function f*(¢). This approach can be
seen as a variant of sequential quadratic optimization. It can be applied

also to nonconvex problems.
Let us establish some properties of function f*(t).

LEMMA 2.3.4 Let t* be an optimal value of problem (2.3.16). Then

ff@t) < 0 forallt>t",

f5t) > 0 forallt<t*.
Proof: Let z* be a solution to (2.3.16). If t > ¢*, then

f*(t) < f(tz*) = max{fo(z*) — t; fi(z*)}
< max{t* —¢; fi(z*)} < 0.
Suppose that ¢ < t* and f*(t) < 0. Then there exists y € @ such that
foly) <t <t*, fi(y) <0,i=1...m.

Thus, t* cannot be an optimal value of (2.3.16). o

Thus, the smallest root of function f*(¢) corresponds to the optimal
value of the problem (2.3.16). Note also, that using the methods of
the previous section, we can compute an approximate value of function
f*(t). Hence, our goal is to form a process of finding the root, based on
that information. However, for that we need to know more properties of
function f*(t).

LEMMA 2.3.5 For any A > 0 we have

[fA)-A< P+ A) < f(1).
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Proof: Indeed,

ffE+4) = géig llg%{fo(z)-t—mﬁ(z)}

& gleig 1‘&2’;“"@) -t fi(z)} = f*(¢),

f*(t+4A) = min max {fo(z)—¢; fi(z) + A} - A

z€Q 1<i<m

v

mn lgg%ﬁ{fo(x) -t fi(z)} - A= f(t) - A
0

In other words, function f*(t) decreases in ¢ and it is Lipschitz con-
tinuous with constant equal to 1.

LEMMA 2.3.6 For any t; < t2 and A > 0 we have

Fr(ti—A) > fo(ty) + ALBEL @) (2.5.18)

Proof: Denote t3 = &, — A, a = fzéto = trﬁm‘ € [0,1]. Then
t1 = (1 — @)ty + at; and (2.3.18) can be written as

frt) £ (1 —a)f*(to) + af*(t2). (2.3.19)

Let z, = (1 — a)z* (o) + az*(t2). We have

f‘(tl) < max {fﬂ(xa) = tl?fi(wa)}

1<i<m

< max {(1 - a)(fo(z*(t)) — to) + a(fo(z*(t2)) — t2);

1<i<m
(1 = a)fi(z*(to)) + afi(z*(t2))}

(1-a) l1r<1r1;gﬂ{j'u(:c“(tn)) — to; fi(z*(t0))}

IA

+a max {fola"(2)) = 25 fi(a" (t2))}

= (I1-a)f*(to) +af*(t2),

and we get (2.3.18). O
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Note that Lemmas 2.3.5 and 2.3.6 are valid for any parametric max-
type functions, not necessarily formed by functional components of prob-
lem (2.3.16).

Let us study now the properties of gradient mapping for a parametric
max-type function. To do that, let us introduce first a linearization of a
parametric max-type function f(¢;z):

f(t:2;2) = max {fo(&) + (fo(2),2 - 7) — t; fu(2) + (£i(2),2 - 7)}.
Now we can introduce a gradient mapping in a standard way. Let us fix
some 7 > 0. Denote

ftEz) = fGEz)+3z—Z |3,
"2 = t;

I tz) ggg Jo(t: 3;2)

zf(t; Z3y) = argmin fy(ti%;v)

gr(tiz;7) = ¥(E —z4(t;F;))-

We call g;(t; ;) the constrained gradient mapping of problem (2.3.16).
As usual, the point of linearization Z is not necessarily feasible for Q.

Note that function f,(t; Z;z) itself is a max-type function composed
by the components

fo(®) +{fo(Z),z - T} —t+ F |z — % |2,
i@+ i@ z-2)-t+Elz-z|?i=1...m.

Moreover, fy(t;Z;z) € Sk l(R“). Therefore, for any ¢ € R! the con-
strained gradient m Ppmg is well defined in view of Theorem 2.3.2.
Since f(t;z) € S , we have

f,u(t;f;w) < f(t;z) < fo(t; %5 2)

for all £ € R". Therefore f*(t;z;u) < f*(t) < f*(t;%;L). Moreover,
using Lemma 2.3.6, we obtain the following result:
For anyz € R, v >0, A > 0 and t, < t2 and we have

FHt = 8529) 2 fr (0 259) + 525 (F (05 55) = £ (82 23 7))-
(2.3.20)

There are two values of v, which are important for us. These arey = L
and y = p. Applying Lemma 2.3.2 to max-type function f,(¢;Z; z) with
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v1 = L and ~; = u, we obtain the following inequality:

T > f 65 L) - 52 g L) |2 (2.3.21)

Since we are interested in finding a root of the function f*(¢), let us

describe the behavior of the roots of function f*(¢;Z;~), which can be

seen as an approximation of f*(t).
Denote

t*(z,1) = root ¢(f*(t; Z; u))
(notation root(-) means the root in ¢ of function (-)).
LEMMA 2.3.7 Let T € R" and t < t* be such that
&2 u) 2 (1-k)f* (635 L)

for some k € (0,1). Then t < t*(z,t) < t*. Moreover, for any t <t and
z € R™ we have

frz L) 2 2(1 = k) f* (535 L)/ :},Ttt_,-
Proof: Since f < t*, we have
0< DS EEL) < e E 2 p)-
Thus, f*(t;Z; 1) > 0 and, since f*(¢;7; 1) decreases in ¢, we get
Pzt T
Denote A =t —t. Then, in view of (2.3.20), we have
friszL) 2 1) 2 &3 ) 2 G E) + sanmf G E )
> (1-r) (1+ 5cdm) [ EHL)

A

> 2(1—&)f*(t;x; L) FEOT
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2.3.5 Method for constrained minimization
Now we are ready to analyze the following process.

Constrained minimization scheme

0. Choose zg € Q, k € (0, %). to < t* and accuracy € > 0.

1. kth iteration (k£ > 0).

a). Generate sequence {zx;} by method (2.3.13) as
applied to f(tx; z) with starting point zx g = zx. If

Fr(tes e gip) = (1 — &) f* (tr; Th,j3 L)

then stop the internal process and set j(k) = j,

(2.3.22)

*(k) = i *(tk; Tk 55 L),
i* (k) argosrjxg?(k)f(kwk,gla)

Teg1 = Ttk Thgen)s L)-

Global stop, if at some iteration of the internal
scheme we have f*(tx; zx j; L) < e.

b). Set txy1 = " (T j(k)s tk)-

This is the first time in our course we meet a two-level process. Clearly,
its analysis is rather complicated. Firstly, we need to estimate the rate
of convergence of the upper-level process in (2.3.22) (it is called a mas-
ter process). Secondly, we need to estimate the total complexity of the
internal processes in Step la). Since we are interested in the analyti-
cal complexity of this method, the arithmetical cost of computation of
t*(z,t) and f*(t;x,~) is not important for us now.

Let us describe convergence of the master process.

LEmMMA 2.3.8
* tg -t~ 1 k
F* (e zeyr; L) < = [T_Tz l—x.] :

Proof: Denote 8 = 2—(111?) (<1) and

kT gonysl)
O = ;;tk+1‘f—k ’
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Since tk.1 = t* (T4 j(x), tx), in view of Lemma 2.3.7 for k > 1 we have

St Te k)i l) < I (k= 13Tk -1, (k—1) L))

\/t1+1—tk - \/tk-tl 1
Thus, 8 < 38,1 and we obtain

Stz iy L) = Oev/Tesr — ik < B0kt — &k

= ﬁkf‘(to} To,j(0) L) t’::.l—::k :

2(1 - k)

Further, in view of Lemma 2.3.5, we have t; — tg > f*(to; Zq j(0); #)-
Hence,

* : i * 5 . t —t,
f* (ks 2y L) < BEf*(to; o, j(0); L) Floseicd
k
< ‘[2__,;\/f*(t{l;$o,j(0)i#‘)(tk+l — 1)

k
< E VPt —t).
It remains to note that f*(tg) < tg — t* (Lemma 2.3.5) and

F*(tk; a1 L) = f* (b Trjm)s L) < F* (k5 2k ey L)-

O

The above result provides us with an estimate for the number of
upper-level iterations, which are necessary to find an e-solution of prob-
lem (2.3.16). Indeed, let f*(tx;zx j; L) < €. Then for z, = xf(tx; 2k ;; L)
we have

f(tesz,) = lglig{fo(w*) = tx; fi(za)} < f* (s 2p 43 L) S e

Since ty < t*, we conclude that

fﬂ(z*) St‘+51

(2.3.23)
filze) <egi=1l...m
In view of Lemma 2.3.8, we can get (2.3.23) at most in
Nle) = ln[2{1 )] In (t1 _,:).e (2.3.24)

full iterations of the master process (the last iteration of the process, in
general, is not full since it is terminated by the Global stop rule). Note
that in this estimate x is an absolute constant (for example, k = %)
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Let us analyze the complexity of the internal process. Let the sequence
{zk,;} be generated by (2.3.13) with the starting point zx o = . In view
of Theorem 2.3.6, we have

Ftsoes) - () <2(1-/E) (F(tzn) - £(t)
< 26777 (f(tr; zk) — f*(tr)) < 2e777 f(ty; i),

where o = \/%

Denote by N the number of full iterations of the process (2.3.22)
(N < N(e)). Thus, j(k) is defined for all k, 0 < k < N. Note that
e = t‘(xk_l,j(knl)atk—l) > tg—1. Therefore

flteszi) < flte—132k) < F7(8k=15 Th—1,5+(k-1), L)-
Denote
A = [ (tk-15Tk—1,5-(k-1), L)y k21, Do = f(to; o)
Then, for all £ > 0 we have
flteize) — 7 (te) < Ak

LEMMA 2.3.9 For all k, 0 < k < N, the internal process works no
longer as the following condition is satisfied:

F(t203) = [*(86) < £ - f* (s a5 L). (2.3.25)

Proof: Assume that (2.3.25) is satisfied. Then, in view of (2.3.8), we
have

IA

f(te; zrg) — f(tes zp(te; 2,55 L))
< [k zeg) — f*(tk)-

Therefore, using (2.3.21), we obtain

or |l g (ts T 53 L ||

it zegin) = [tk zeg; L) — Ii_;f | g7 (te; Tk 3 L ||?
> f*(thizhgi L) — 2 (S (b5 2a,5) — F* (%))

2 (1 —&)f*(te; 7,55 L).
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And that is the termination criterion of the internal process in Step 1a)
in (2.3.22). O

The above result, combined with the estimate of the rate of con-
vergence for the internal process, provide us with the total complexity
estimate of the constrained minimization scheme.

LEMMA 2.3.10 For all k, 0 < k < N, we have
. L 2(L—p)Ag
j(k) <1+ \/_;‘-ln—ﬁm‘%l—&.
Proof: Assume that

j(k)—1>LIn AL—p)Ag

Kpdpiy 7

where o = \/% Recall that Agyy = 0<m<m(k f*(tk; xk 53 L). Note that

the stopping criterion of the internal process did not work for j = j(k) —
1. Therefore, in view of Lemma 2.3.9, we have

I (ths gy L) < S2B(F (b 2ag) — F2(8)) < 255Re79A, < App

= uk

That is a contradiction with the definition of Agy. O

COROLLARY 2.3.3

EJU") (N +1) [1+'\/_ In L_ ] \/_ lnANH

It remains to estimate the number of internal iterations in the last
step of the master process. Denote this number by j*.

LEmMMA 2.3.11

0

ESERVIARNECSOT

KlE
Proof: The proof is very similar to that of Lemma 2.3.10. Suppose that

jt —-1> \/E'l !L PJAN;tI

KuE
Note that for j = 7* — 1 we have

e < ftvyizneriL) < -[;,—;E(f(tNH;aJNH,j) - f*(tn+41))

< 2kEeriAN, <«
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That is a contradiction. O

COROLLARY 2.3.4

j*+£;0j(k)5(fv+z) [1+/E m2n] 4 /L.1nds

Let us put all things together. Substituting estimate (2.3.24) for the
number of full iterations N into the estimate of Corollary 2.3.4, we come
to the following bound for the total number of internal iterations in the
process (2.3.22):

[ty In 5 +2] - [1+ /5 - n 2

+\/%. In (% : 12&&%};{]"0(3:0) o tU;fi(IU)}) :

Note that method (2.3.13), which implements the internal process, calls
the oracle of problem (2.3.16) at each iteration only once. Therefore,
we conclude that estimate (2.3.26) is an upper complexity bound for the
problem (2.3.16) with e-solution defined by (2.3.23). Let us check, how
far this estimate is from the lower bounds.

The principal term in estimate (2.3.26) is of the order

P
mfzt. /L.nL,
This value differs from the lower bound for an unconstrained minimiza-
tion problem by a factor of In ﬁ This means, that scheme (2.3.22) is at
least suboptimal for constrained optimization problems. We cannot say
more since a specific lower complexity bound for constrained minimiza-
tion is not known.

To conclude this section, let us answer two technical questions. Firstly,
in scheme (2.3.22) we assume that we know some estimate ¢, < t*. This
assumption is not binding since we can choose #; equal to the optimal
value of the minimization problem

min [£(@0) + (f'(z0), 2 = z0) + § || = = 70 |

(2.3.26)

Clearly, this value is less than or equal to ¢*.
Secondly, we assume that we are able to compute £*(Z,t). Recall that
t*(z,t) is the root of function

it zp) = L‘QS Fult; Zyz),
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where f,(t;Z;z) is a max-type function composed by the components
fo@) + (@) z -2+ 4 ||z — % | -2,
[i@)+(fl@)z-z)+Elz-z % i=1...m.

In view of Lemma 2.3.4, it is the optimal value of the following mini-
mization problem:

min [fo(Z) + (f§(),z - 2) + § [l 2 — 2 |I?],
st. fi(Z)+ (fl(@)z—-2)+ 4 |lz—2|?<0,i=1...m,

z € Q.

This problem is not a quadratic optimization problem, since the con-
straints are not linear. However, it can be solved in finite time by a
simplex-type process, since the objective function and the constraints
have the same Hessian. This problem can be also solved by interior-
point methods.



Chapter 3

NONSMOOTH CONVEX OPTIMIZATION

3.1 General convex functions

(Equivalent definitions; Closed functions; Continuity of convex functions; Sep-
aration theorems; Subgradients; Computation rules; Optimality conditions.)

3.1.1 Motivation and definitions

In this chapter we consider methods for solving general convez mini-
mization problem

min fo(z),
gt filg)ys O; gi=1...m (3.1.1)

T €QC R,

where @ is a closed convex set and f;(z), ¢ = 0...m, are general convez
functions. The term general means that these functions can be non-
differentiable. Clearly, such a problem is more difficult than a smooth
one.

Note that nonsmooth minimization problems arise frequently in differ-
ent applications. Quite often some components of a model are composed
by max-type functions:

f(z)= max ¢; (z),
where ¢;(z) are convex and differentiable. In the previous section we
have seen that such a function can be treated by a gradient mapping.
However, if the number of smooth components p in this function is very
big, the computation of the gradient mapping becomes too expensive.
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Then, it is reasonable to treat this max-type function as a general convex
function. Another source of nondifferentiable functions is the situation
when some components of the problem (3.1.1) are given implicitly, as
a solution of an auxiliary problem. Such functions are called the func-
tions with implicit structure. Very often these functions appear to be
nonsmooth.

Let us start our considerations with definition of general convex func-
tion. In the sequel the term “general” is often omitted.

Denote by

dom f = {z € R" : | f(z) |< o0}

the domain of function f. We always assume that dom f # 0.

DEFINITION 3.1.1 Function f(z) is called convex if its domain is convex
and for all z, y € dom f and a € [0,1] the following inequality holds:

flaz + (1 - a)y) < af(z) + (1 - a)f(y).

We call f concave if —f is convexz.

At this point, we are not ready to speak about any method for solving
(3.1.1). In the previous chapter, our optimization methods were based
on the gradients of smooth functions. For nonsmooth functions such
objects do not exist and we have to find something to replace them.
However, in order to do that, we should study first the properties of
general convex functions and justify a possibility to define a generalized
gradient. That is a long way, but we have to pass through it.

A straightforward consequence of Definition 3.1.1 is as follows.

LEMMA 3.1.1 (Jensen inequality) For any z1,...,z, € dofnf and co-
efficients ay,...,an such that

m
Ya=1 @>0i=1...m, (3.1.2)
i=1

we have

Proof: Let us prove this statement by induction in m. Definition 3.1.1
justifies the inequality for m = 2. Assume it is true for some m > 2. For
the set of m + 1 points we have

m-+1 m

Z oz = oz + (1 — o) Zﬁ,’l‘,‘,

i=1 i=1
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where §; = {*£1. Clearly,

Zﬁi=1, Bi>20,i=1...m.
Therefore, using Definition 3.1.1 and our inductive assumption, we have

f (T‘:ill Of:‘l?i) = f (01:1:1 + (1 - al)lgl ﬁ,-mi)

< af@)+-a)s (£ fn) <8 asie.

m
The point z = ¥ a;z; with coefficients «; satisfying (3.1.2) is called
i=1
a convex combination of points ;.
Let us point out two important consequences of Jensen inequality.

COROLLARY 3.1.1 Let x be a convez combination of points z1,...,Tm.
Then
< ).
f(z) < fg“%’ﬁnf(x‘)

m
Proof: Indeed, in view of Jensen inequality and since a; > 0, 3 o =1,
i=1
we have

1@ =1 (£ am) < £ af(o) < max f(z).

a
COROLLARY 3.1.2 Let
m m
A=COIIV{:L'1,...,.’B"1}E{.’u":ZaiﬂIi| Otz‘20, Zai:l}'
i=1 i=1
Then maxzea f(z) = [max flz:). o

Let us give two equivalent definitions of convex functions.

THEOREM 3.1.1 Function f is convez if and only if for all z, y € dom f
and B > 0 such that y + B(y — =) € dom f, we have

fly+Bly—x)) > fly) +B(f(y) — f(z)). (3.1.3)
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Proof: Let f be convex. Denote a = TEE and v =y + B(y — z). Then
y = 33(u+6z) = (1 - 2)u + az.
Therefore
fv) < (1 - a)f(u) +af(z) = ) + 45/ (@)

Let (3.1.3) hold. Let us fix z,y € domf and a € (0,1]. Denote
B =1=2 and u = az + (1 — a)y. Then

z=%tu—-(1-a)y) =u+plu-y)
Therefore
f(z) > f(u)+ B(f(u) - f(y) = Lf(u) - 521 (v).

THEOREM 3.1.2 Function f is convez if and only if its epigraph
epi(f) = {(z,t) € dom f x R| t > f(c)}
18 a convez set.

Proof: Indeed, if (z1,t1) € epi(f) and (z2,t2) € epi(f), then for any
a € [0,1] we have

aty + (1 — )ty 2 af(z;) + (1 — a)f(z2) > flaz) + (1 — a)z2).

Thus, (az; + (1 — @)z, at; + (1 — a)ty) € epi(f).
Let epi (f) be convex. Note that for z;,z2 € dom f

(mlaf(zl)) Eepl(f): (ml}f(xil) Eepl(f)
Therefore (az; + (1 — a)zs,af(z1) + (1 — @) f(z2)) € epi(f). That is

flazy + (1 — a)x2) < af(z) + (1 — a)f(x2).
ad

We need also the following property of level sets of convex functions.
THEOREM 3.1.3 If function f is convez, then all its level sets
Ly(B) ={zedomf| f(z) < B}

are either conver or empty.
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Proof: Indeed, if z; € L;(8) and zy € L(f), then for any a € [0,1]
we have
flazy + (1 —a)zs) < af(z1) + (1 -a)f(z2) Saf+ (1 —a)f =F.

a

We will see that the behavior of a general convex function on the
boundary of its domain sometimes is out of any control. Therefore, let
us introduce one convenient notion, which will be very useful in our
analysis.

DEFINITION 3.1.2 A convez function f is called closed if its epigraph is
a closed set.

As an immediate consequence of the definition we have the following
result.

THEOREM 3.1.4 If convez function f is closed, then all its level sets are
either empty or closed.

Proof: By its definition, (Ls(8),8) = epi(f) N{(z,t) | t = B}. There-
fore, the epigraph L£;(/3) is closed and convex as an intersection of two
closed convex sets. O

Note that, if f is convex and continuous and its domain dom f is
closed, then f is a closed function. However, in general, a closed convex
function is not necessarily continuous.

Let us look at some examples of convex functions.

ExAMPLE 3.1.1 1. Linear function is closed and convex.
2. f(z) =]z |, z € R!, is closed and convex since its epigraph is
{(z,8)| tz=, t > -z},
the intersection of two closed convex sets (see Theorem 3.1.2).

3. All differentiable and convex on R"™ functions belong to the class of
general closed convex functions.

4. Function f(z) = %, z > 0, is convex and closed. However, its domain
dom f = int R} is open.
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5. Function f(z) =|| z ||, where || - || is any norm, is closed and convex:

flazi + (1 —a)z2) = |az;+(1—a)z: ||

IA

Ilazi || + 11 (1 —a)zz ||

= allz | +(1-a) | z2 |

for any z;1,z9 € R" and a € [0,1]. The most important norms in
numerical analysis are so-called l,-norms:

n ) lf‘P
|z llp= [Z | =) I"] , p>1
1=1

Among them there are three norms, which are commonly used:
no.

—  The Buclidean norm: || z |=[% (2®)?)/2, p =2,
=1

n X
— The ly-norm: ||z 1= % |z |, p=1.
i=1
— The l-norm (Chebyshev norm, uniform norm, infinity norm):

2 lloo= max |2 |.

Any norm defines a system of balls,
By (zo,r) ={z € R" ||z -z |[<T}, 720,

where r is the radius of the ball and zg € R" is its center. We call
the ball B (0,1) the unit ball of the norm || - [|. Clearly, these balls
are convex sets (see Theorem 3.1.3). For [,-balls of the radius r we
use the notation

Bp(zo,r) ={x €R" |||z —zq [[,< r}.

Note the following relation between Euclidean and [;-balls:
B (zg,7) C Ba(zo,r) C Bi(zo,7v/n).

That is true because of the standard inequalities:

Reop < (£1501)"

i=1

2
(}; 3 | 20 l) <

=1

5 |2 2

i=1

3=
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6. Up to now, all our examples did not show up any pathological behav-
ior. However, let us look at the following function of two variables:

0, ifz?+y?2<1,

flz,y) = {
p(x,y), ifz®+y2=1,

where ¢(z,y) is an arbitrary nonnegative function defined on a unit
circle. The domain of this function is the unit Euclidean disk, which is
closed and convex. Moreover, it is easy to see that f is convex. How-
ever, it has no reasonable properties on the boundary of its domain.
Definitely, we want to exclude such functions from our considerations.
That was the reason for introducing the notion of closed function. It
is clear that f(z,y) is not closed unless ¢(z,y) = 0. O

3.1.2  Operations with convex functions

In the previous section we have seen several examples of convex func-
tions. Let us describe a set of invariant operations, which allow us to
create more complicated objects.

THEOREM 3.1.5 Lel functions f; and fa be closed and convez and lel
B > 0. Then all functions below are closed and convez:

1. f(z) =Bfi(z) , dom f = dom f;.
2. f(z) = fi(z) + f2(z), dom f = (dom f;) N(dom f>5).
3. f(z) = max{fi(z), f2(z)}, dom f = (dom f1) (dom f2).

Proof:
1. The first item is evident:

flazy + (1 - a)z2) < Blafi(z1) + (1 - @) fi(z2).
2. For all z;,z5 € (dom f;) N(dom f;) and & € [0, 1] we have
filaz; + (1 — a)zz) + fo(az) + (1 — a)zz)

<afi(z1) + (1 = o) fi(z2) + afx(z1) + (1 — a) fa(zs)

= a(fi(z1) + f2(z1)) + (1 — a)(f1(z2) + fa(z2)).

Thus, f(z) is convex. Let us prove that it is closed. Consider a sequence
{(zk, t)} C epi(f):

te > fi(zk) + fo(zk), kli)n;-cxk =Z € dom f, kli’rgo iy ==
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Since f; and f; are closed, we have
illfkliﬂ;c filzk) 2 f1(2), infklil’go fa(zi) > f2(Z).
Therefore
e Jim ¢ > inf lim £ (z) + iﬂfklj’lilo fa(zx) > £(2).
Thus, (Z,f) € epi f.!
3. The epigraph of function f(z) is as follows:
epif = {(z,t)| t> fi(z) t > f2(z) = € (dom f1) N(dom f2)}
= epifi Nepifo.

Thus, epi f is closed and convex as an intersection of two closed convex
sets. It remains to use Theorem 3.1.2. a

The following theorem demonstrates that convexity is an affine-inva-
riant property.

THEOREM 3.1.6 Let function ¢(y), y € R™, be convez and closed. Con-
sider a linear operator

A(z) =Az+b: R"—> R™.
Then f(z) = ¢(A(z)) is a closed convez function with domain
dom f = {z € R" | A(z) € dom ¢}.

Proof: For z; and z; from dom f denote y; = A(x;), y2 = A(y2). Then
for a € [0, 1] we have

flazy + (1 -a)zz) = ¢(Alaz; + (1 — a)z2))

lay; + (1 — a)y2)

< ah(yr) + (1 — a)d(y2)

af(z1) + (1 — a)f(z2).

11t is important to understand, that a similar property for convex sets is not valid. Consider
the following two-dimensional example: Q1 = {(z,y): ¥ > i—, z>0}hLQ2={=zy): p=
0, z < 0}. Both of these sets are convex and closed. However, their sum Q; + Q2 = {(z,y) :
y > 0} is convex and open.



Nonsmooth convez optimization 119

Thus, f(z) is convex. The closedness of its epigraph follows from conti-
nuity of the linear operator A(z). 0

The next theorem is one of the main suppliers of convex functions
with implicit structure.

THEOREM 3.1.7 Let A be some set and
fz) = St;p{qb(y, z) | y € A}

Suppose that for any fized y € A the function ¢(y, z) is closed and convez
in . Then f(x) is a closed and convezr function with domain

dom f = {z € [ dom¢(y,-) | Iv: ¢(y,2) <yYVy €A} (3.1.4)
yeA

Proof: Indeed, if z belongs to the right-hand side of equation (3.1.4),
then f(z) < oo and we conclude that ¢ € dom f. If z does not belong
to this set, then there exists a sequence {yx} such that ¢(yx,z) — 0.
Therefore z does not belong to dom f.
Finally, it is clear that (z,t) € epif if and only if for all y € A we
have
TE d0m¢(y7')1 t> ¢(y,$)-

This means that
epif = [ epig(y,-).

yeA

Therefore f is convex and closed since each epi¢(y,-) is convex and
closed. m]

Now we are ready to look at more sophisticated examples of convex
functions.

EXAMPLE 3.1.2 1. Function f(z) = [max {z("} is closed and convex.
<isn

2. Let A= (A“), S ,,\(’ ’)) and A be a set in R’l”. Consider the function
- (i)
) = su A Y £ Z),
f(z) Aepizl fi(z)

where f; are closed and convex. In view of Theorem 3.1.5, the
epigraphs of functions

m

pa(z) = 3 2D fi(z)

L |
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are convex and closed. Thus, f(z) is closed and convex in view of
Theorem 3.1.7. Note that we did not assume anything about the
structure of the set A.

3. Let () be a convex set. Consider the function

Yo(z) = sup{(g,z) | g € Q}.

Function g(z) is called support function of the set Q). Note that
¥o(z) is closed and convex in view of Theorem 3.1.7. This function
is homogeneous of degree one:
Yo(tz) = tyo(z), = €dom@, t>0.
If the set @ is bounded then dom g = R".
4. Let @Q be a set in R". Consider the function ¥(g, ) = sup ¢(v,9,7),
yeQ
where
¢y, 9,7 = (g9 -3 llyl*.
The function (g, <) is closed and convex in (g, ) in view of Theorem
3.1.7. Let us look at its properties.

If Q is bounded, then dom = R"*1. Consider the case Q = R".
Let us describe the domain of 9. If v < 0, then for any g # 0 we
can take y, = ag. Clearly, along this sequence ¢(ya,g9,7) = o0 as
a — oo. Thus, domy contains only points with v > 0.

If v = 0, the only possible value for g is zero since otherwise the
function ¢(y, g,0) is unbounded.

Finally, if v > 0 then the point maximizing ¢(y, g,y) with respect
toy is y*(g,7v) = %g and we get the following expression for #:

wmﬂ=%i

Thus,
0, ifg=0,y7y=0,
¥(g,7) =
5y iy >0,

with the domain domy = (R" x {y > 0})J(0,0). Note that this
is a convex set, which is neither closed nor open. Nevertheless,
is a closed convex function. At the same time, this function is not
continuous at the origin:

P(VIg =3 llgl? v#0.
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3.1.3 Continuity and differentiability

In the previous sections we have seen that the behavior of convex func-
tions at the boundary points of its domain can be rather disappointing
(see Examples 3.1.1(6), 3.1.2(4)). Fortunately, this is the only bad news
about convex functions. In this section we will see that the structure of
convex functions in the interior of its domain is very simple.

LEMMA 3.1.2 Let function f be convez and zo € int (dom f). Then f
is locally upper bounded at x.

Proof: Let us choose some € > 0 such that zy £ ee; € int(dom f),
it =1...n, where e; are the coordinate vectors of R". Denote

A = Conv {zg tee;, i =1...n}

Let us show that A D Ba(zp,€) with € = ﬁ Indeed, consider

n n
z=xo+) hiei, Y _(h)’<e
i=1 i=1

We can assume that h; > 0 (otherwise, in the above representation we
can choose —e; instead of e;). Then

5= msvatin
Therefore for h; = lehz‘ we have

"
g = mg+ﬁ§:he;—mg+§—2h,eei

= (lwg)zg+giﬁi(mo+ee,—)eA.

Thus, using Corollary 3.1.2, we obtain

D

Remarkably enough, the above result implies continuity of a convex
function at any interior point of its domain.

THEOREM 3.1.8 Let f be convez and z( € int (dom f). Then f is locally
Lipschitz continuous at xp.
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Proof: Let By(zg,¢) C dom f and sup{f(z) | ¢ € Ba(zg,€)} < M (M is
finite in view of Lemma 3.1.2). Consider y € Ba(zy,¢€), y # zg. Denote

a=1y-=z |, z=z0+1(y— o).

It is clear that || z — 2o ||= L || ¥y — 2o ||= €. Therefore o < 1 and
y = az + (1 — a)zy. Hence,

fly) < af(2)+ (1 -a)f(zo) < f(zo) + a(M — f(z0))
= flzo) + ML) |y — g | .

Further, denote u = zg + %(:ro —y). Then || u —2z¢ ||=€and y =
zp + a(xzp — u). Therefore, in view of Theorem 3.1.1 we have

fly) > flzo) +alf(z0) = f(u) > f(z0) — a(M — f(z))
= f(zo) — M=z |y — g4
Thus, | f(y) — f(@o) |< M=LE || y — g9 |, 0

Let us show that the convex functions possess a property, which is
very close to differentiability.

DEFINITION 3.1.3 Let z € dom f. We call f differentiable in a direction
p at point z if the following limit exists:

f(a;p) = Liig%[f($+ap) - f(=@)]. (3.1.5)

The value f'(x;p) is called the directional derivative of f at .

THEOREM 3.1.9 Convez function f is differentiable in any direction at
any interior point of its domain.

Proof: Let z € int (dom f). Consider the function
¢la) = [f(z +ap) - f(z)], a>0.

Let v € (0,1] and a € (0, €] be small enough to have  + ep € dom f.
Then

f(z+afp) = f((1 - B)z + Bz + ap)) < (1 - B)f(z) + Bf(z + ap).
Therefore

¢laB) = g5lf (@ + afp) - f(z0)] < L[f(z + ap) - f(2)] = ¢(a).
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Thus, ¢(«) decreases as a | 0. Let us choose v > 0 small enough to
have £ — 4p € dom f. Then, in view of (3.1.3) we have

#(@) 2 L[f(z) - f(x - )]
Hence, the limit in (3.1.5) exists. O

Let us prove that the directional derivative provides us with a global
lower support of the convex function.

LEMMA 3.1.3 Let f be a convez function and z € int (dom f). Then
f'(z;p) is a convex function of p, which is homogeneous of degree 1. For
any y € dom f we have

fly) 2 f(z) + f'(z;y — x). (3.1.6)

Proof: Let us prove that the directional derivative is homogeneous.
Indeed, for p € R™ and 7 > 0 we have

fl(z;mp) = lim L[f(z + rap) — f(z)]
= Tlim3lf (@ +Pp) - f(2)] = 7' (z0:p)-

Further, for any p;, p2 € R™ and 8 € [0, 1] we obtain

f'(z;Bpr+ (1= B)p2) = 1;1101 alf(z +a(Bps + (1 = B)p2)) — f(z)]

IA

lim {617 (@ +am) - £(2)]

+(1 = B)[f(z + ap2) — f(z)]}
= Bf'(z;p) + (1= B)f'(z; pa)-

Thus, f'(z;p) is convex in p. Finally, let « € (0,1], y € dom f and
Ya = ¢ + a(y — z). Then in view of Theorem 3.1.1, we have

f@W) = f(ya+ 21— @) (ya = 2)) 2 f(ya) + £(1 = Q)[f(va) - f(2)],

and we get (3.1.6) taking the limit in o | 0. ]
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3.1.4  Separation theorems

Up to now we were describing properties of convex functions in terms
of function values. We did not introduce any directions which could
be useful for constructing the minimization schemes. In convex analy-
sis such directions are defined by separation theorems, which form the
subject of this section.

DEFINITION 3.1.4 Let Q be a convez set. We say that hyperplane
H(g,7) ={z € R*[(g9,z) =}, g#0,

is supporting to Q if any x € Q satisfies inequality (g,z) < 7.
We say that the hyperplane H(g,~y) separates a point z¢ from Q if

(9,z) <v < (g, 0) (8.1.7)

Jor all z € Q. If the second inequality in (3.1.7) is strict, we call the
separation strict.

The separation theorems can be derived from the properties of pro-
jection.

DEFINITION 3.1.5 Let Q be a closed set and =g € R™. Denote
mQ(zo) = argmin{|| z — z¢ ||: =z € Q}.
We call mg(zg) projection of point 2y onto the set Q.

THEOREM 3.1.10 If Q is a convex set, then there exists a unique pro-
jection mg(zq).

Proof: Indeed, mg(z¢) = argmin{¢(z) | = € Q}, where the function

¢(z) = 1 || z — 70 || belongs to 811_'11 (R"). Therefore mg(zp) is unique
and well defined in view of Theorem 2.2.6. O

It is clear that (o) = zo if and only if z¢ € Q.

LEMMA 3.1.4 Let Q be a closed convex set and o ¢ Q. Then for any

z € QQ we have
(mq(z0) — o,z — m@(x0)) > 0. (3.1.8)

Proof: Note that mg(zg) is a solution to the minimization problem
rm%ig ¢(z) with ¢(z) = L || z — zo ||2. Therefore, in view of Theorem

2.2.5 we have
(¢'(mq(z0)), ¢ — mg(m0)) >0
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for all z € Q. It remains to note that ¢'(z) = z — zy. o

Finally, we need a kind of triangle inequality for projection.
LEMMA 3.1.5 For any z € QQ we have
| z = mq(zo) II* + Il mq(z0) — 2o II°<|l & — 2o |I* -
Proof: Indeed, in view of (3.1.8), we have

|z —mgzo) 2= lz—20 > = (zo—7q(x0),2z — mg(z0) — zo)

< = |l o — mq(=o) II” -

a

Now we can prove the separation theorems. We will need two of them.
The first one describes our possibilities in strict separation.

THEOREM 3.1.11 Let Q be a closed convez set and xo ¢ Q. Then there
erists a hyperplane H(g,v), which strictly separates zq from Q. Namely,
we can take

g =0 —mQ(z0) #0, 7= (zo— m@(z0), mQ(%0)).
Proof: Indeed, in view of (3.1.8), for any = € Q we have

(ro — mo(x0),z) < (zo — mg(z0), mQ(20))

= (20 — mq(20), z0)~ || To — mq(zo) |I* - -

Let us give an example of an application of the above theorem.

COROLLARY 3.1.3 Let Q; and Q2 be two closed convex sets.
1. If for any g € domyg, we have g, (g) < ¥g,(g), then @) C Q.
2. Let domyg, = domipg, and for any g € domyq, we have

Y@, (9) = ¥q,(p). Then Q1 = Q2.

Proof: 1. Assume that there exists =g € @}, which does not belong
to Q2. Then, in view of Theorem 3.1.11, there exists a direction g such
that

(g,z0) > = (g9, 2)
for all z € Q,. Hence, g € domg, and 9g,(g9) > ¥q,(g9). That is a

contradiction.
2. In view of the first statement, Q; C @2 and @2 C ;. Therefore,

Q1 = Q. o
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The next separation theorem deals with boundary points of convex
sets.

THEOREM 3.1.12 Let @ be a closed convez set and zy belong to the
boundary of set Q. Then there exists a hyperplane H(g,7), supporting
to @ and passing through xg.

(Such a vector g is called supporting to Q at z;.)
Proof: Consider a sequence {y} such that y, ¢ Q and yx — z¢. Denote

gk = (=Rl = (96, TQ(uk))-

In view of Theorem 3.1.11, for all z € Q we have

(95> T) <k < (Gk» Uk)- (3.1.9)

However, || gk ||= 1 and the sequence {v;} is bounded:
7% | = | {9k 7q(yk) — zo) + (gk, Zo) |

(Lemma 3.1.5) < [[7q(yk) — 2o || + [ 2o I<N gk —2o | + | o || -

Therefore, without loss of generality we can assume that there exist
¢* = lim g; and 7v* = lim 7. It remains to take the limit in (3.1.9). O
k—o00 k—o00

3.1.5 Subgradients

Now we are completely ready to introduce an extension of the notion
of gradient.

DEFINITION 3.1.6 Let f be a convez function. A wvector g is called a
subgradient of function f at point z¢ € dom f if for any x € dom f we
have

f(x) 2 f(zo) + (9,2 — o). (3.1.10)

The set of all subgradients of f at xy, Of (z¢), is called the subdifferential
of function f at point xg.

The necessity of the notion of subdifferential is clear from the following
example.
EXAMPLE 3.1.3 Consider function f(z) =| z |, z € R!. For all y € R!
and g € [-1,1] we have

fW=lyl>2g-y=f0)+g-(y-0).
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Therefore, the subgradient of f at x = 0 is not unique. In our example
it is the whole segment [—1,1]. O

The whole set of inequalities (3.1.10), z € dom f, can be seen as a set
of linear constraints, defining the set df(zg). Therefore, by definition,
the subdifferential is a closed convez set.

Note that the subdifferentiability of a function implies convexity.

LEMMA 3.1.6 Let for any x € dom f subdifferential 0f(z) be nonempty.
Then f is a convex function.

Proof: Indeed, let z, y € dom f, a € [0,1]. Consider yo = z+ a(y —z).
Let g € f(ya).- Then

TW) = fe) +(9,y —Ya) = f(va) + (1 — a){g,y — 2),

f@) 2 fya) + (9,2 = Ya) = f(Yo) — alg,y — z).

Adding these inequalities multiplied by a and (1 — a) respectively, we

get
af(y) + (1 —a)f(z) 2 f(ya)-

On the other hand, we can prove a converse statement.

THEOREM 3.1.13 Let f be closed and convex and zo € int(dom f).
Then df (zg) is a nonempty bounded set.

Proof: Note that the point (f(zg),z¢) belongs to the boundary of
epi(f). Hence, in view of Theorem 3.1.12, there exists a hyperplane

supporting to epi(f) at (f(zo), zo):

—ar + (d,z) < —af(zg) + (d, zo) (3.1.11)
for all (7,z) € epi (f). Note that we can take
| d|? +a® =1. (3.1.12)

Since for all 7 > f(zo) the point (7, zg) belongs to epi (f), we conclude
that a > 0.

Recall, that a convex function is locally upper bounded in the interior
of its domain (Lemma 3.1.2). This means that there exist some ¢ > 0
and M > 0 such that By(xg,¢) C dom f and

fl@)=f(zo) M|z —x0 |
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for all z € Ba(zo,¢€). Therefore, in view of (3.1.11), for any = from this
ball we have

(d,z — z0) < a(f(z) — f(zo0)) SaM ||z —zo || .

Choosing = = zo + ed we get | d ||?< Ma || d ||. Thus, in view of the
normalizing condition (3.1.12) we obtain

1

@2 Jrem
Hence, choosing g = d/a we get
f(x) = f(zo) + (9,7 — o)

for all z € dom f.
Finally, if g € 8f(zo), g # 0, then choosing = = zo + €g/ || g || we
obtain

ellgll= (g, —m0) < f(z) - f(z0) S M || z — zg ||= Me.
Thus, df(zg) is bounded. O

Let us show that the conditions of the above theorem cannot be re-
laxed.

ExAMPLE 3.1.4 Consider the function f(z) = —\/z with the domain
{z € R' | z > 0}. This function is convex and closed, but the subdiffer-
ential does not exist at x = 0. O

Let us deterine an important relation between the subdifferential and
the directional derivative of convex function.

THEOREM 3.1.14 Let [ be a closed conver function. For any zo €
int (dom f) and p € R™ we have

['(zo; p) = max{{g,p) | g € df(z0)}.
Proof: Note that

f'(z0;p) = lim 5[f (@0 + ap) = f(z0)] > (9,P), (3.1.13)

where g is an arbitrary vector from df(zo). Therefore, the subdifferential
of function f'(xg;p) at p = 0 is not empty and 8f(zo) C 3, f'(z0;0). On
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the other hand, since f'(zo;p) is convex in p, in view of Lemma 3.1.3,
for any y € dom f we have

f(y) > f(zo) + f'(z0;y — z0) = flzo) + (9, y — z0),

where g € 8, f'(z0;0). Thus, 8, f'(x0;0) C df(z¢) and we conclude that

of (z0) = Gpf'(70; 0).
Consider g, € d,f'(zo; p). Then, in view of inequality (3.1.6), for all
v € R™ and 7 > 0 we have

7f'(z0;0) = f'(x0; 70) > f'(x0;p) + (gp, Tv — p).
Considering 7 — oo we conclude that
f'(zo3v) > (gp, ), (3.1.14)
and, considering 7 — 0, we obtain
f'(zo;p) = {gp,p) < 0. (3.1.15)
However, inequality (3.1.14) implies that g, € 0,f'(zo;0). Therefore,
comparing (3.1.13) and (3.1.15) we conclude that (g,,p) = f'(zo;p). O

To conclude this section, let us point out several properties of sub-
gradients, which are of main importance for optimization. Let us start
from the optimality condition.

THEOREM 3.1.15 We have f(z*) = er(rilinf f(z) if and only if
reaom

0 € af(z*).

Proof: Indeed, if 0 € df(z*), then f(z) > f(z*) + (0,z — z*) = f(z*)
for all z € dom f. On the other hand, if f(z) > f(z*) for all z € dom f,
then 0 € 8f(x*) in view of Definition 3.1.6. o

The next result forms a basis for cutting plane optimization schemes.

THEOREM 3.1.16 For any zy € dom f all vectors g € df(zy) are sup-
porting to the level set Lg(f(xo)):

(970 —220 VzeLly(f(zo)) ={zedomf: f(z) < f(zo)}.
Proof: Indeed, if f(z) < f(zo) and g € df(xp), then
f(zo) + (9,7 — z0) < f(z) < f(z0)-
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COROLLARY 3.1.4 Let Q C dom f be a closed convez set, zg € @ and
z* = argmin{f(z) | =z € Q}.

Then for any g € 8f(zo) we have (g,zo — z*) > 0. o

3.1.6 Computing subgradients

In the previous section we introduced the subgradients, objects which
we are going to use in minimization schemes. However, in order to
apply such schemes in practice, we need to be sure that these objects
are computable. In this section we present some rules for computing the
things.

LEMMA 3.1.7 Let f be closed and convez. Assume that it is differen-
tiable on its domain. Then 8f(z) = {f'(z)} for any z € int (dom f).

Proof: Let us fix some z € int(dom f). Then, in view of Theorem
3.1.14, for any direction p € R™ and any g € df(r) we have

(f'(z),p) = f'(z;p) 2 (9,P)-
Changing the sign of p, we conclude that {f'(z),p) = (g, p) for all g from
df(z). Finally, considering p=ex, k=1...n, we get g = f'(z). a
Let us provide all operations with convex functions, described in Sec-
tion 3.1.2, with corresponding rules for updating subgradients.

LEMMA 3.1.8 Let function f(y) be closed and convezx with dom f C R™.
Consider a linear operator

A(r)=Az+b: R"—> R™

Then ¢(z) = f(A(z)) is a closed convex function with domain dom ¢ =
{z| A(z) € dom f}. For any z € int (dom ¢) we have

og(z) = ATOf (A(z)).

Proof: We have already proved the first part of this lemma in Theo-
rem 3.1.6. Let us prove the relation for the subdifferential.
Indeed, let 9 = A(zo). Then for all p € R we have

¢'(z0,p) = f'(yo; Ap) = max{(g, Ap) | g € 9f(y0)}

max{(g,p) | g € ATOf(yo)}.

Il



Nonsmooth convex optimization 131
Using Theorem 3.1.14 and Corollary 3.1.3, we get

dp(zo) = ATAf (A(o)).
w

LEMMA 3.1.9 Let fi(x) and fa(z) be closed convez functions and a,
ag > 0. Then function f(z) = ayfi(z) + azf2(z) is closed and convex

and
0f (z) = a18f1(z) + azdfa(z) (3.1.16)

for any x from int (dom f) = int (dom f;) () int (dom fa).

Proof: In view of Theorem 3.1.5, we need to prove only the relation for
the subdifferentials. Consider z¢ € int (dom f;)[) int (dom f2). Then,
for any p € R" we have

f(mo;p) = aufi(zo;p) + aafi(zo;p)
= max{(g1,1p) | g1 € dfi(z0)}

+ max{ (g2, a2p) | g2 € df2(z0)}

max{(a191 + a2g2,p) | g1 € 3f1(z0), g2 € Of2(z0)}

max{(g,p) | g € a18f1(x0) + a20f2(xo)}-

Note that both df;(z¢) and 8f,(zo) are bounded. Hence, using Theo-
rem 3.1.14 and Corollary 3.1.3, we get (3.1.16). O

LEMMA 3.1.10 Let functions fi(z), i = 1...m, be closed and convez.
Then function f(z) = ma{x fi(z) is also closed and convez. For any

z € int (dom f) = ﬁ int (dom f;) we have

=1

df(x) = Conv {dfi(z) | i € I(z)}, (3.1.17)
where I(z) = {1 : fi(z) = f(z)}.

Proof: Again, in view of Theorem 3.1.5, we need to justify only the

rules for subdifferentials. Consider z € ﬁ int (dom f;). Assume that
i=1
I(z) = {1,...,k}. Then for any p € R™ we have

f'(@p) = max filzip) = max max{{g:p) | 9: € fi(x)}-
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Note that for any set of values a;,...,a; we have

k
max a; = max {Z Aiai | {N} € Ak},
i=1

1<i<k

k
where Ay = {A; > 0, ¥ Ai = 1}, the k-dimensional standard simplez.
i=1

Therefore,

f'(z;p) max {il Aimax{{gi,p) | g; € 8/i(z)}

{Ai}eAy i=

= 11[13'-3‘{(2_21531L Xigi,p) | gi € 8fi(z), {Mi} € A}

= max{(g,p) | g = él Aigi, gi € Ofi(x), {\i} € Ak}

= max{(g,p) | g € Conv{dfi(z),i € I(x)} }.
O

The last rule can be useful for computing some elements from the
subdifferential.

LEMMA 3.1.11 Let A be a set and f(z) = sup{d(y,z) | y € A}.
Suppose that for any fized y € A the function ¢(y,z) is closed and
convez in . Then f(z) is closed convex.

Moreover, for any x from

dom f ={z € R"| 3y:¢(y,z) <yVy€ A}

we have
df(z) 2 Conv {0¢:(y,z) | y € I(z)},
where 1(z) = {y | ¢(y,) = f(z)}.

Proof: In view of Theorem 3.1.7, we have to prove only the inclusion.
Indeed, for any = € dom f, y € I(z) and g € ¢, (y, z) we have

f(z) 2 é(y,z) > by, z0) + (g, — x0) = f(z0) + {9,z — o).
o

Now we can look at some examples of subdifferentials.
EXAMPLE 3.1.5 1. Let f(z) =| z |, € R!. Then 8f(0) = [~1, 1] since

= m e
f(z) S, - &
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) ) m
2. Consider function f(z) = ¥ | {a;,z) — b; |. Denote
i=1

I_(z) = {i:{ai,z)—-b; <0},
Ii@) = {it{ons)—b >0},
Iy(z) = f{i:(a;,z)—b; =0}

Thenaf(:c)= > ai— Y ai+ X [—a,-,a,-].

1€l (z) iel_(z) i€lp(x)

3. Consider function f(z) = Jmax z®. Denote I(z) = {i : @ =
Isn

f(z)}. Then 8f(z) = Conv {e; | i € I(z)}. For z = 0 we have
3f(0) =Conv{e; | 1<i<n}=A,.

4. For Euclidean norm f(z) =|| z || we have

9f(0) = By(0,1)={z e R"[| z <1},

f(z) = {z/llz|}, z#0.

5. For lj-norm f(z) =| z |,= i | z®) | we have

1=

8f(0) =Bwo(0,1) ={z € R*| max |z |<1},
1<i<n

8f(x) o 2 € — E e+ E [—ei,ﬁi],$§£0,

i€ly(z) iel-(z) i€lo(x)

where I (z) = {i | z® > 0}, I_(z) = {i | z) < 0} and Iy(z) =
{i | 9 =0}.

We leave justification of these examples as an exercise for the reader. O

We conclude this section with an example of application of the above
technique for deriving an optimality condition for a smooth minimization
problem with functional constraints.

THEOREM 3.1.17 (Kuhn-Tucker). Let f; be differentiable convex func-
tions, 1 = (... m. Suppose that there ezists a point T such that f;(z) <0
for alli=1...m. (Slater condition.)
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A point z* is a solution to the problem
min{ fo(z) | fi(zr) <0,i=1...m} (3.1.18)
if and only if it is feasible and there exist nonnegative numbers X;, 1 =
1...m, such that
folz*) + 3~ Mifi(z*) =0,
iel*
where I* = {i € [I,m] : fi(z*) = 0}.

Proof: In view of Lemma 2.3.4, z* is a solution to (3.1.18) if and only
if it is a global minimizer of the function

¢(z) = max{fo(z) — f*; fi(z),i =1...m}.

In view of Theorem 3.1.15, this is the case if and only if 0 € 0¢(z*).
Further, in view of Lemma 3.1.10, this is true if and only if there exist
nonnegative A;, such that

Xofola*) + D Xifi(z*) =0, do+ D Ai=1

iel* iel*
Thus, we need to prove only that Ay > 0. Indeed, if Ay = 0, then
> Xfi(@) 2 )0 Millile®) + (file*),& - 2)] = 0.
el el
This contradicts the Slater condition. Therefore Ao > 0 and we can take
/\i=)\,‘/)\g,2.61*. O
Theorem 3.1.17 is very useful for solving simple optimization prob-
lems.

LEMMA 3.1.12 Let A > 0. Then
mg,x{(c,:t:) : (Az,z) <1} = (A7 ¢, 0) /2.

Proof: Note that all conditions of Theorem 3.1.17 are satisfied and
the solution z* of the above problem is attained at the boundary of the
feasible set. Therefore, in accordance with Theorem 3.1.17 we have to
solve the following equations:

c=Mz*, (Ar*,z*)=1.

Thus, A = (A~ 1¢,c)/? and z* = . ]
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3.2 Nonsmooth minimization methods

(General lower complezity bounds; Main lemma,; Localization sets; Subgradient
method; Constrained minimization scheme; Optimization in finite dimension
and lower complexity bounds; Cutting plane scheme; Center of gravity method;
Ellipsoid method; Other methods.)

3.2.1 General lower complexity bounds

In the previous section we have introduced a class of general convex
functions. These functions can be nonsmooth and therefore the corre-
sponding minimization problem can be quite difficult. As for smooth
problems, let us try to derive a lower complexity bounds, which will
help us to evaluate the performance of numerical methods.

In this section we derive such bounds for the following unconstrained
minimization problem

min f(z), (3.2.1)

where f is a convex function. Thus, our problem class is as follows:

Model: 1. Unconstrained minimization.
2. f is convex on R" and Lipschitz
continuous on a bounded set.

Oracle: First-order black box:
at each point £ we can compute

f(&), g(2) € 9f(2),
g(&) is an aerbitrary subgradient. (3.2.2)

Approximate Findz € R": f(z) - f* <e.
solution:

Methods: Generate a sequence {xy} :
zx € g + Lin {g(z0), ..., g(zk-1)}-

As in Section 2.1.2, for deriving a lower complexity bound for our
problem class, we will study the behavior of numerical methods on some
function, which appears to be very difficult for all of them.
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Let us fix some constants ;1 > 0 and y > 0. Consider the family of
functions

orand (i) E 2 =1___ &
fe(z) T ax @ +50z|% & n

Using the rules of subdifferential calculus, described in Section 3.1.6, we
can write down an expression for the subdifferential of f; at z. That is

dfk(z) = pz++Conv{e; |ie€ I(z)},

= T51 5 fedl ot s @),
I(z) {(Jl1<i<k = b }

Therefore for any z, y € B»(0, p), p > 0, and gx(y) € dfk(y) we have

Te(y) = filz) < (ge(v),y — )

< lg@@ll-ly—-zlSwe+Y)ly—=|.

Thus, fi is Lipschitz continuous on B(0,p) with Lipschitz constant

M = pp+1.
Further, consider the point z} with the coordinates

(@) =
0, k+1<i<n

It is easy to check that 0 € dfk(x}) and therefore z} is the minimum of
function fi(z) (see Theorem 3.1.15). Note that

2

— L | P N (i P
Ry =|| =x ”_m/l?’ fe= uk‘*‘%Rk_ éjﬁ

Let us describe now a resisting oracle for function fi(z). Since the
analytical form of this function is fixed, the resistance of this oracle
consists in providing us with the worst possible subgradient at each test
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point. The algorithmic scheme of this oracle is as follows.

Input: z € R™.

Main Loop: | f:= —o0; " :=0;

for j:=1 to m do
if z0)> f then {f:=z0); i*:=j};

f=rf+5z|% g:=e-+pz;

Output: | fu(e):=f, g(z):=ge€R™

At the first glance, there is nothing special in this scheme. Its main loop
is just a standard process for finding a maximal coordinate of a vector
from R™. However, the main feature of this loop is that we always
form the subgradient as a coordinate vector. Moreover, this coordinate
corresponds to ¢*, which is the first maximal component of vector z. Let
us check what happens with a minimizing sequence, which uses such an
oracle.
Let us choose starting point g = 0. Denote

RP"={zeR"| sV =0, p+1<i<n}.

Since zg = 0, the answer of the oracle is fx(zo) = 0 and gx(zo) = e;.
Therefore the next point of the sequence, x, necessarily belongs to R,
Assume now that the current test point of the sequence, z;, belongs to
RP" 1 < p < k. Then the oracle will return a subgradient

9 = pz; + yeir,

where i* < p+ 1. Therefore, the next test point z;.; belongs to RP+1:",

'This simple reasoning proves that for all i, 1 < ¢ < k, we have z; €
R*". Consequently, for i: 1 < i < k— 1, we cannot improve the starting
value of the objective function:

(7)
) = =10,
ﬁwd_ﬁg%a

Let us convert this observation in a lower complexity bound. Let us
fix some parameters of our problem class P(zq, R, M), that is R > 0 and
M > 0. In addition to (3.2.2) we assume that
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» the solution of problem (3.2.1), z*, exists and z* € Ba(zo, R).
= f is Lipschitz continuous on Ba(zg, R) with constant M > 0.
THEOREM 3.2.1 For any class P(zo, R, M) and any k, 0 <k <n-—1,
there exists a function f € P(zg, R, M) such that
_ MR
Flee) = f* 2 57

for any optimization scheme, which generates a sequence {xy} satisfying
the condition
ax € zo + Lin {g(z0),...,9(zk-1)}.

Proof: Without loss of generality we can assume that zo = (. Let us
choose f(z) = fr41(x) with
_ 3£k§lM _ M
T= ey B (I+vVE+DR"

Then \

. — _ MR

I = i = ~ 50 = TamevAT

=R,

and f(z) is Lipschitz continuous on By (zg, R) with constant uR+y = M.
Note that z; € R*". Hence, f(zi) — f* > —f*. O

_ s o Y
” zo— ' ”_ Rk+1 ~ avk+l

The lower complexity bound presented in Theorem 3.2.1 is uniform
in the dimension of the space of variables. As for the lower bound of
Theorem 2.1.7, it can be applied to problems with very large dimension,
or to efficiency analysis of starting iterations of a minimization scheme
(k<n-1).

We will see that our lower estimate is exact: There exist minimiza-
tion methods, which have the rate of convergence proportional to this
lower bound. Comparing this bound with the lower bound for smooth
minimization problems, we can see that now the possible convergence
rate is much slower. However, we should remember that we are working
now with the most general class of convex problems.

3.2.2 Main lemma
At this moment we are interested in the following problem:

min{f(z) | z € @}, (3.2.3)

where @ is a closed convex set, and f is a function, which is convex
on R™ We are going to study some methods for solving (3.2.3), which
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employ subgradients g(z) of the objective function. As compared with
the smooth problem, our goal now is much more complicated. Indeed,
even in the simplest situation, when Q = R", the subgradient seems to
be a poor replacement for the gradient of smooth function. For example,
we cannot be sure that the value of the objective function is decreasing
in the direction —g(z). We cannot expect that g(z) — 0 as = approaches
a solution of our problem, etc.

Fortunately, there is one property of subgradients that makes our
goals reachable. We have proved this property in Corollary 3.1.4:

At any z € Q the following inequality holds:

(9(z),z —z*) 2 0. (3.2.4)

This simple inequality leads to two consequences, which form a basis for
any nonsmooth minimization method. Namely:

m The distance between z and z* is decreasing in the direction —g(z).

= Inequality (3.2.4) cuts R™ on two half-spaces. Only one of them
contains z*.

Nonsmooth minimization methods cannot employ the idea of relax-
ation or approximation. There is another concept, underlying all these
schemes. That is the concept of localization. However, to go forward
with this concept, we have to develop some special technique, which al-
lows us to estimate the quality of an approximate solution to problem
(3.2.3). That is the main goal of this section.

Let us fix some £ € R". For z € R" with g(z) # 0 define

T}f(ﬂ_’,',.-“':) = m(g(m)im - i)

If g(z) = 0, then define vs(Z;z) = 0. Clearly, v¢(Z,z) <[z —Z ||

The values vf(Z, z) have a natural geometric interpretation. Consider
a point z such that g(z) # 0 and (g(z),z — Z) > 0. Let us look at the
point y = Z + vs(z)g(z)/ || g(z) ||. Then

{9(z),z —y) = (9(2), 2 — T) —vs(Z,2) | 9(=) =0

and || y — Z ||= vy (Z,z). Thus, vf(Z,x) is a distance from the point Z to

hyperplane {y : (g(z),z —y) = 0}.
Let us introduce a function that measures the variation of function f
with respect to the point Z. For { > 0 define

wy(Z;t) = max{f(z) = f(z) | || = — Z || < t}.

Ift <0, we set wy(z;t) = 0.
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Clearly, the function wy possesses the following properties:
® wi(z;0) =0 forallt <O0.
® w;(Z;t) is a nondecreasing function of ¢, t € R'.
" f(z) - f(2) Swp(@ ]l 2 2" |)-

It is important that in the convex situation the last inequality can be
strengthened.

LEMMA 3.2.1 For any z € R" we have

f(@) = f(Z) < wy(&;vp(Z; 7)) (3.2.5)
If f(x) is Lipschitz continuous on Ba(%, R) with some constant M, then
f(z) = f(Z) < M(vs(Z;2))+ (3.2.6)

for all z € R™ with vf(Z;z) < R.

Proof: If (g(z),z — z) < 0, then f(z) > f(z) + (
This implies that vs(z;z) < 0. Hence, wy(Z;vs(Z;
holds.

Let {g(z),z — Z) > 0. For

‘E\
5_*,

y = i (& + vr (@ 2)g(z))
we have (g(z),y — ) =0 and || y — Z ||= vf(Z; ). Therefore
fy) 2 f(z) + {g(2),y — z) = f(2),
and
flz) = £(2) < fly) = f(2) Swp(Z; | y — 2 ||) = wr(Z;v5(T; ).

If f is Lipschitz continuous on B(z, R) and 0 < vs(Z;z) < R, then
y € By(%, R). Hence,

f2) - 1(®) < fly) - (@) S M ||y -z ||= Mvg(z; 2).
0

Let us fix some z*, a solution to problem (3.2.3). The values vs(z*; )
allow us to estimate the quality of localization sets.

DEFINITION 3.2.1 Let {z;}32, be a sequence in (). Define

Sk‘—‘{:L‘EQI (g(ﬂ:i),l'.i--.’t) 20, t=0k}
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We call this set the localization set of problem (3.2.3) generated by se-
quence {z;}32,.

Note that in view of inequality (3.2.4), for all £ > 0 we have z* € S;.
Denote

v =vp(z*2;) (2 0), v = Oréli-?k v;.

Thus,
vg = max{r | (g(z;),zi —z) >0,1=0...k, Vz € Ba(z*,7)}.

LEMMA 3.2.2 Let fi = Grél_igk f(zi). Then fif — f* < wys(z*;v5).
_2-

Proof: Using Lemma 3.2.1, we have

wr(z*;vp) = O?Eljgkwf(w’;v;:) = Ugliiélk[f(xi) - frl=f-rI
a

3.2.3 Subgradient method

Now we are ready to analyze the behavior of some minimization
schemes. Consider the problem

min{f(z) | = € Q}, (3.2.7)

where f is a convex on R" function and @ is a simple closed convex set.
The term “simple” means that we can solve ezplicitly some simple mini-
mization problems over Q. In accordance to the goals of this section, we
have to be able to find in a reasonably cheap way a Euclidean projection
of any point onto Q.

We assume that problem (3.2.7) is equipped with a first-order oracle,
which at any test point  provides us with the value of objective function
f(Z) and with one of its subgradients g(Z).

As usual, we try first a version of a gradient method. Note that for
nonsmooth problems the norm of the subgradient, || g(z) ||, is not very
informative. Therefore in the subgradient scheme we use a normalized



142 INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION

direction ¢(z)/ || g(Z) ||.

Subgradient method. Unconstrained minimization

0. Choose zp € Q and a sequence {h }32:

B 50 B0, S Fp=wo.
¢ k Z b (3.2.8)

1. kth iteration (k > 0).
Compute f(zg), g(zx) and set

T =molzr —h Ly
k+1— Q k kgIk b

Let us estimate the rate of convergence of this scheme.
THEOREM 3.2.2 Let f be Lipschitz continuous on By(z*, R) with con-
stant M and z¢ € B(z*,R). Then

R2+Xk:h3
fi=f* s M—22—, (3.2.9)
th;

i=0
Proof: Denote r; =|| z; — z* ||. Then, in view of Lemma 3.1.5, we have
e = Jro (o= mish) =

'.’r,--—h,- gz: -x*

2
r

2
< = 1"1-2 — 2h;v; + hiz.

Summing up these inequalities for i = 0...k we get
9 k k k
ry + Z h? =23 hivi+r£+l 221); Z hi.

Thus,
£

R+ h?

* =0
L

23 h,

1=0
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It remains to use Lemma 3.2.2. O

Thus, Theorem 3.2.2 demonstrates that the rate of convergence of
subgradient method (3.2.8) depends on the values

k
R*4+ Y h?
Ak _— i=0

k
2 Z hy;
i=0

o0
We can easily see that Ax — 0 if the series Y h; diverges. However, let
i=0
us try to choose hy in an optimal way.
Let us assume that we have to perform a fixed number of steps of
the subgradient method, say, N. Then, minimizing Ay as a function of

{hk}Y_q, we find that the optimal strategy is as follows:?

o amIL ; —
hi= =, i=0...N. (3.2.10)

In this case Ay = 7Ni+T and we obtain the following rate of convergence:
= * MR
fi= 1" < I
Comparing this result with the lower bound of Theorem 3.2.1, we con-
clude:

The subgradient method (3.2.8), (3.2.10) is optimal for
problem (3.2.7) uniformly in the dimension n.

If we do not want to fix the number of iterations apriori, we can choose

e L g =
h,—m, ‘1—0,....

Then it is easy to see that Ay is proportional to

R?4rIn(k+1
rv/k+1 !

and we can classify the rate of convergence of this scheme as sub-optimal.

Thus, the simplest method for solving the problem (3.2.3) appears
to be optimal. This indicates that the problems from our class are too
complicated to be solved efficiently. However, we should remember, that
our conclusion is valid uniformly in the dimension of the problem. We
will see that a moderate dimension of the problem, taken into account
in a proper way, helps to develop much more efficient schemes.

2From Example 3.1.2(3) we can see that A is a convex function of {h;} .
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3.2.4 Minimization with functional constraints
Let us apply a subgradient method to a constrained minimization
problem with functional constraints. Consider the problem
min{f(z) | z € Q, fj(z) £0,i=1...m}, (3.2.11)
with convex f and f;, and a simple bounded closed convex set Q:
lz-ylI<R, VzyeqQ.

Let us form an aggregate constraint f(z) = (&n«’gﬂ fi (:c)) . Then
<< +

our problem can be written as follows:
min{f(z) | = € Q, f(z) < 0}. (3.2.12)

Note that we can easily compute a subgradient §(z) of function f, pro-
vided that we can do so for functions f; (see Lemma 3.1.10).

Let us fix some z*, a solution to (3.2.11). Note that f(z*) = 0 and
vi(z*;z) 2 0 for all z € R". Therefore, in view of Lemma 3.2.1 we have

f(z) < wi(z*;v5(z"; 2)).
If f; are Lipschitz continuous on Q with constant M, then for any z
from R™ we have the estimate

flz) <M -vj(a™;2).

Let us write down a subgradient minimization scheme for constrained
minimization problem (3.2.12). We assume that R is known.

Subgradient method. Functional constraints

0. Choose zo € @ and sequence {hg}32

— R
i = Vk+0.5"

1. kth iteration (£ > 0). (3.2.13)
a). Compute f(zx), g(zx), f(zx), §(zk) and set

{ g($k)1 if f(wk) <|[ g(ﬂ.’:k) ” h'fc) (A)a
Pk =

g(zx), if f(zx) 2|l g(zk) || he, (B).

b). Set x441 = mg (:rk — hk"%fﬂ)'
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THEOREM 3.2.3 Let f be Lipschitz continuous on Ba(z*, R) with con-
stant M, and

Mz:lg;a(x {llgll: g€dfj(z), z € Ba(z*, R)}.

Then for any k > 3 there exists a number i/, 0 < i’ < k, such that

fai) f‘<§k_‘1¥5" flaw) < k,15

Proof: Note that for direction py, chosen in accordance to rule (B), we

have ~
I (ze) | e < flzx) < (9(zk), Tk — 27).

Hence, in this case vf(z*; zx) > hy.
Let k' =]§[ and Iy = {i € [K,... k] : p; = g(z:)}. Denote
ri=llzi—a" |, vi=vp(z®izi), Ui =vp(z’;zi).
Then for all 7, &’ < i < k, we have

if ¢ € Iy, then er — 2h;v; + h?,
if i¢I then 12, <r?—2h;;+hl.
Summing up these inequalities for i € [K/, ..., k], we get:

k
R+ Y hE>rE +2) hwi+2) hivi
i=k' i€l i&ly

Recall that for i ¢ I we have 9; > h; (Case (B)).
Assume that v; > h; for all i € I,. Then

k
— . 2k43
l>‘§!‘12’h2 ‘E;c t+05—- f 'r+05 11’150%2]]13

That is a contradiction. Thus, Ix # @ and there exists some i’ € I
such that vy < h;y. Clearly, for this number we have vy < hyr, and,
consequently, (vyt)+ < hgr.

Thus, we conclude that f(zy) — f* < M hy (see Lemma 3.2.1) and,
since i € I we have also the estimate

Flzi) <l gze) || hir < Mahy.

It remains to note that k' > % — 1 and therefore hy < ki’f!). a
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Comparing the result of Theorem 3.2.3 with the lower complexity
bound of Theorem 3.2.1, we see that scheme (3.2.13) has an optimal rate
of convergence. Recall, that this lower complexity bound was obtained
for an unconstrained minimization problem. Thus, our result proves
that from the viewpoint of analytical complexity the general convex
unconstrained minimization problems are not easier than the constrained
ones.

3.2.5 Complexity bounds in finite dimension

Let us look at the unconstrained minimization problem again, assum-
ing that its dimension is relatively small. This means that our com-
putational resources allow us to perform the number of iterations of
a minimization method, proportional to the dimension of the space of
variables. What will be the lower complexity bounds in this case?

In this section we obtain a finite-dimensional lower complexity bound
for a problem, which is closely related to minimization problem. This is

the feasibility problem:
Find z* € Q, (3.2.14)

where () is a convex set. We assume that this problem is endowed with
an oracle, which answers our request at point Z € R" in the following
way:

= FEither it reports that € Q.

® Or, it returns a vector g, separating T from Q:

(g,z2-2)=20 VzeqQ.
To estimate the complexity of this problem, we introduce the following
assumption.

ASSUMPTION 3.2.1 There exists a point z* € @ such that for some
€ > 0 the ball Bx(x*,¢) belongs to Q .

For example, if we know an optimal value f* for problem (3.2.3), we
can treat this problem as a feasibility problem with

Q={(t,z) e R | t> f(z), t < f* +& z € Q).

The relation between the accuracy parameters € and € in (3.2.1) can be
easily obtained, assuming that the function f is Lipschitz continuous.
We leave this reasoning as an exercise for the reader.
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Let us describe now a resisting oracle for problem (3.2.14). It forms
a sequence of boxes {Bg}2,, Bk+1 C Bk, defined by their lower and
upper bounds.
Bk={$€Rnl akgxgbk}.

For each box By, k > 0, denote by ¢ = %(ak + by ) its center. For boxes
By, k > 1, the oracle creates an individual separating vector gx. Up to
a sign change, this is always a coordinate vector.

In the scheme below we use two dynamic counters:

= m is the number of generated boxes.
m 3 is the active coordinate.

Denote by e € R™ a vector of all 1s. The oracle starts from the following

settings:
ag:=—Re, bp:=Re, m:=0, i:=1.

Its input is an arbitrary z € R".

Resisting oracle. Feasibility problem

If 2 ¢ By then return a separator of z from By else

1. Find the maximal k € [0,...,m]: z € By.

2. If kK <m then return g else {Create a new box}:
If z(® > c,(,i) then a,,,;1 := ap,
bms1 :=bm + (cif,’ - bi(r:;))ei, Ois 5= €5
else any):=an + (cg;) - ag;))e,-,

bm+1:=bm, gm:= —e;.

m:=m+1;i:=1+1; If i >ntheni:=1.

Return g,,.

This oracle implements a very simple strategy. Note, that the next
box B4 is always a half of the last box B,;,. The box B, is divided into
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two parts by a hyperplane, which passes through its center and which
corresponds to the active coordinate 7. Depending in which part of the
box B,, we get the test point z, we choose the sign of the separation
vector gm4+1 = =*e;. After creating a new box By,4+1 the index 7 is
increased by 1. If this value exceeds n, we return again to 7 = 1. Thus,
the sequence of boxes { By} possesses two important properties:

L] VOln Bk+1 = %voln Bk.
m For any & > 0 we have by, — Ggyn = %(bk —ag).

Note also that the number of generated boxes does not exceed the num-
ber of calls of the oracle.

LEMMA 3.2.3 For all k > 0 we have the inclusion

)
By(ck,r4) C By, with re=%(3) " (3.2.15)

Proof: Indeed, for all k € [0,...,n — 1] we have
By D By ={z| ¢ca— §Re <z < co + 3 Re} D Ba(en, 3 R).

Therefore, for such k we have By D Ba(ck, %R) and (3.2.15) holds. Fur-
ther, let k = nl + p with some p € [0,...,n — 1]. Since

b — a = (%)—l (bp — ap),

we conclude that
1 1y~
By 2.8 (ck, 3R (5) ) .

—
It remains to note that ry < %R (%) . m]

Lemma 3.2.3 immediately leads to the following complexity result.

THEOREM 3.2.4 Consider a class of feasibility problems (3.2.14), which
satisfy Assumplion 3.2.1, and for which the feasible sets Q@ belong to
By (0, R). The lower analytical complezity bound for this class is nln 5’%
calls of the oracle.

Proof: Indeed, we have seen that the number of generated boxes does
not exceed the number of calls of the oracle. Moreover, in view of Lemma
3.2.3, after k iterations the last box contains the ball Ba(cm,, 7). 0O
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The lower complexity bound for minimization problem (3.2.3) can be
obtained in a similar way. However, the corresponding reasoning is more
complicated. Therefore we present here only a conclusion.

THEOREM 3.2.5 The lower bound for analytical complezity of problem
class formed by minimization problems (3.2.3) with Q@ C By (0, R) and
[ € FoP(Bo(0, R)), is nln ME calls of the oracle. u]

3.2.6 Cutting plane schemes
Let us look now at the following constrained minimization problem:

min{f(z) | z € Q}, (3.2.16)

where f is a function convex on R", and Q@ is a bounded closed convex
set such that

int@ #0, diam@Q =D < o0.
We assume that @ is not simple and that our problem is equipped with a
separating oracle. At any test point z € R" this oracle returns a vector
g which is:

m a subgradient of f at z, if z € Q,
» a separator of Z from @, if z ¢ Q.

An important example of such a problem is a constrained minimization
problem with functional constraints (3.2.11). We have seen that this
problem can be rewritten as a problem with a single functional constraint
(see (3.2.12)), which defines a feasible set

Q={z€R"| f(z) <0}

In this case, for z ¢ Q the oracle has to provide us with any subgradient
g € df (z). Clearly, g separates = from Q (see Theorem 3.1.16).
Let us present the main property of finite-dimensional localization

sets.
Consider a sequence X = {z;}{2, belonging to the set ). Recall, that
the localization sets, generated by this sequence, are defined as follows:

SO(X) — Qa

Se1(X) = {z € Se(X) | (9(zx), 2, — ) > 0}.
Clearly, for any k > 0 we have z* € Si. Denote

vi =vp(z*;2:) (20), v= ugliigk v,



150 INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION

Denote by vol, S an n-dimensional volume of set S C R".

THEOREM 3.2.6 For any k > 0 we have

<D [mt;snkqug]%_
Proof: Denote o = vg/D (< 1). Since @ C By(z*, D) we have the
following inclusion:
(1 —a)z*+aQ C (1 —a)z" + aBy(z*, D) = Ba(z*, vg).
Since () is convex, we conclude that
(1 -a)a* +aQ = [(1 - a)z* +aQ]()Q C Bala*, v}) ) Q € Se(X).
Therefore vol, Sk(X) > vol, [(1 — a)z* + aQ] = a™vol, Q. a

Quite often the set @ is rather complicated and it is difficult to work
directly with sets Si(X). Instead, we can update some simple upper
approximations of these sets. The process of generating such approxi-
mations is described by the following cutting plane scheme.

General cutting plane scheme

0. Choose a bounded set Ey 2 Q.

1. kth iteration (k > 0).
a) Choose y;. € Ey

b) If yx € Q then compute f(yx), g(yr). fyx ¢ Q,| (3.2.17)
then compute g(yx), which separates y; from Q.

c) Set
glyr), fye €Q,
9 =

g(uk), ifyr € Q.

d) Choose Exy1 2 {z € Ex | (g9k,yx — z) > 0}.

Let us estimate the performance of the above process. Consider the
sequence Y = {yx}22,, involved in this scheme. Denote by X a sub-
sequence of feasible points in the sequence Y: X = Y[ Q. Let us
introduce the counter

i(k) = number of points y;, 0 < j < k, such that y; € Q.



Nonsmooth convez optimization 151

Thus, if i(k) > 0, then X # 0.
LEMMA 3.2.4 For any k > 0, we have Syy) C Ek.

Proof: Indeed, if i(0) = 0, then S; = @ C Ej. Let us assume that
Si(k) € Ej for some k > 0. Then, at the next iteration there are two
possibilities:

a) i(k + 1) = i(k). This happens if and only if yx ¢ Q. Then

Exp1 2 {z € EBEe| (9(ye),yx — ) 2 0}

2 {z € Sik+1) | (G(yr)syk — ) > 0} = Sieqy
since Sjx4+1) € @ and g(yk) separates yx from Q.
b) i(k + 1) = i(k) + 1. In this case y; € Q. Then

By 2 {z € EBx| (9(yx),yx —z) > 0}

2 {z €Sk (aluk)yx — ) = 0} = Siy41

since y; = Zik)- O

The above results immediately lead to the following important con-
clusion.

COROLLARY 3.2.1 1. For any k such that i(k) > 0, we have

b Sina T " a
vi(X) < D [“ag )™ < D [ehtx]".
2. If vol, E; < vol, Q, then i(k) > 0.

Proof: We have already proved the first statement. The second one
follows from the inclusion Q = Sy = Sj(x) C Ek, which is valid for all &
such that i(k) = 0. O

Thus, if we manage to ensure vol, Ex — 0, then we obtain a conver-
gent scheme. Moreover, the rate of decrease of the volume automatically
defines the rate of convergence of the method. Clearly, we should try to
decrease vol, E}. as fast as possible.

Historically, the first nonsmooth minimization method, implementing
the idea of cutting planes, was the center of gravity method. It is based
on the following geometrical fact.

Consider a bounded convex set S C R", int S # (. Define the center
of gravity of this set as

cg(S) = ?El“ln_s {mdsr:.
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The following result demonstrates that any cut passing through the cen-
ter of gravity divides the set on two proportional pieces.

LEMMA 3.2.5 Let g be a direction in R™. Define
Sy ={z eS| (g,¢c9(8) - 2) > 0}.

Then
voly, S4 1
volo & < 1-¢
(We accept this result without proof.) O

This observation naturally leads to the following minimization scheme.

Method of centers of gravity

0. Set So =Q.

1. kth iteration (k > 0).
a) Choose z; = cg(Sk) and compute f(zx), g(zk).
b) Set Ski1 = {z € Sk | (g(zk),zx — z) > 0}.

Let us estimate the rate of convergence of this method. Denote

L= jatin, fiw3).
THEOREM 3.2.7 If f is Lipschitz continuous on Ba(z*, D) with a con-
stant M, then for any k > 0 we have

fg—f’gMD(l——%)_%.

Proof: The statement follows from Lemma 3.2.2, Theorem 3.2.6 and
Lemma 3.2.5. @]

Comparing this result with the lower complexity bound of Theo-
rem 3.2.5, we see that the center-of-gravity method is optimal in finite
dimension. Its rate of convergence does not depend on any individual
characteristics of our problem like condition number, etc. However, we
should accept that this method is absolutely impractical, since the com-
putation of the center of gravity in multi-dimensional space is a more
difficult problem than our initial one.
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Let us look at another method, which uses a possibility of approxi-
mation of the localization sets. This method is based on the following

geometrical observation.
Let H be a positive definite symmetric n X n matrix. Consider the

ellipsoid
E(H,z)={x€R"| (H Y(z -2),z - %) < 1}.

Let us choose a direction g € R" and consider a half of the above ellip-
soid, defined by corresponding hyperplane:

Ey={z e EHz)| (9,5 - z) > 0}.

It turns out that this set belongs to another ellipsoid, which volume is
strictly smaller than the volume of E(H, z).

LEMMA 3.2.6 Denote

|
51

1 H
T ntl T (Hg.g)17??

= T2 2  HgeTH
H, = n?—1 H n+l  {Hgg) }°

Then Ey C E(H,,Z,) and

Ty =

voln E(Hy,24) < (1 - gyr) * vola E(H, 2).
Proof: Denote G = H ! and G, = H_:l. It is clear that
_ 2_q 2 EE"J"'
Gy =52 (G ta (Hy.y)) '

Without loss of generality we can assume that z = 0 and (Hg,g) = 1.
Suppose z € E,. Note that z, = —;—jog. Therefore

— 2_ — _
le-z4 12, = Zzt(llo-24 12 +:%5(0,0 - 24)%),
lz—z4 1& = lzl% +:37(g.2) + (;‘J;Lm,

(9, — £+>2 = (g!w)g P Z%'{(gs z) + ﬁj’f
Putting all terms together, we obtain
- 2_
o — 24 1%, = 27 (I = 13 +:500.2)2 + 351(9,2) + 1) -
Note that (g,z) <0 and || z ||g< 1. Therefore

(9,2)* + (g,2) = (g,2)(1 + (g,2)) < 0.
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Hence,
_ 2
|z —-24 17, < e (|| z 1% "'?I’l"-"f) =L

Thus, we have proved that B, C E(H,,Z4).
Let us estimate the volume of E(H,,Z ).

voly E(Hy,34) _  [det Ho1Y2 _ [f n2 \ p_1]1/2
vol, E(H,T) = | detH -

n
2 2

< [#= (- )]

- ;%(1—%“)1

It turns out that the ellipsoid E(H,Z ) is the ellipsoid of the minimal
volume containing the half of the initial ellipsoid E .

Our observations can be implemented in the following algorithmic
scheme of the ellipsoid method.

Ellipsoid method

0. Choose yg € R" and R > 0 such that Ba(yo, R) 2 Q.
Set Hy = R? - I,.

1. kth iteration (k > 0).

9(uk), ifyk € Q, _—
9 = .
a(ye), ifyx € Q,
_ 1 H
Yetl = Uk = 350" THegroe)/2?

. 4 2 Higrgl H
Hyy = = Hy, n+l " (Hege.gx) ) °

This method can be seen as a particular implementation of general
scheme (3.2.17) by choosing

Ex={ze€eR"| (H Y (z—w),z—y) <1}
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and y; being the center of this ellipsoid.
Let us present an efficiency estimate for the ellipsoid method. Denote
Y = {yx}32, and let X be a feasible subsequence of the sequence Y

xX=Y()Q.
Denote f; = Dr(njigkf(mj).

THEOREM 3.2.8 Let f be Lipschitz continuous on Ba(z*, R) with some
constant M. Then for i(k) > 0, we have
k L
. * 1 2 ola Bo(zo,R) | n
figy —F* < MR (1 = '(n+1)7) ' [v ol O ] -

Proof: The proof follows from Lemma 3.2.2, Corollary 3.2.1 and Lem-
ma 3.2.6. O

We need additional assumptions to guarantee X # (. Assume that
there exists some p > 0 and T € @ such that

By(#,p) C Q. (3.2.19)
Then
[%_k.} < ( W) [voln Ba(xg, R!] < ’—1)8“2(“_11)5}?.

vol, Q vol, @
In view of Corollary 3.2.1, this implies that (k) > 0 for all
k>un+nﬂn%
If i(k) > 0, then

fiw =1 S SMR? & T,

In order to ensure that(3.2.19) holds for a constrained minimization
problem with functional constraints, it is enough to assume that all
constraints are Lipschitz continuous and there is a feasible point, at
which all functional constraints are strictly negative (Slater condition).
We leave the details of the proof as an exercise for the reader.

Let us discuss now the complexity of ellipsoid method (3.2.18). Each
iteration of this method is rather cheap; it takes only O(n?) arithmetic
operations. On the other hand, in order to generate an e-solution of
problem (3.2.16), satisfying assumption (3.2.19), this method needs

2(n+1)?1In n’ifz
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calls of the oracle. This efficiency estimate is not optimal (see Theorem
3.2.5), but it has a polynomial dependence on In % and a polynomial de-
pendence on logarithms of the class parameters M, R and p. For problem
classes, whose oracle has a polynomial complexity, such algorithms are

called (weakly) polynomial.
To conclude this section, let us mention that there are several methods

that work with localization sets in the form of a polytope:
Ex={zeR"| (aj,x) <b;, 1=1...m}.
Let us list the most important methods of this type:

» Inscribed Ellipsoid Method. The point y; in this scheme is chosen as
follows:

yx = Center of the maximal ellipsoid Wy : Wy C Ej.

m Analytic Center Method. In this method the point y is chosen as
the minimum of the analytic barrier

Fi(z) = Zln aJ: z)).

s Volumetric Center Method. This is also a barrier-type scheme. The
point yx is chosen as the minimum of the volumetric barrier

Vi(z) = Indet F} (z),
where Fi(z) is the analytic barrier for the set E.

All these methods are polynomial with complexity bound

P
n (ln %) ;
where p is either 1 or 2. However, the complexity of each iteration in
these methods is much larger (n® + n* arithmetic operations). In the

next chapter we will see that the test point yx for these schemes can be
computed by interior-point methods.

3.3 Methods with complete data

(Model of nonsmooth function; Kelley method; Idea of level method; Uncon-
strained minimization; Efficiency estimates; Problems with functional con-
straints.)
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3.3.1 Model of nonsmooth function

In the previous section we studied several methods for solving the

following problem:

L%ig flz), (3.3.1)

where f is a Lipschitz continuous convex function and @ is a closed con-
vex set. We have seen that the optimal method for problem (3.3.1) is the
subgradient method (3.2.8), (3.2.10). Note, that this conclusion is valid
for the whole class of Lipschitz continuous functions. However, when
we are going to minimize a particular function from that class, we can
expect that it is not too bad. We can hope that the real performance of
the minimization method will be much better than a theoretical bound
derived from a worst-case analysis. Unfortunately, as far as the subgra-
dient method is concerned, these expectations are too optimistic. The
scheme of the subgradient method is very strict and in general it cannot
converge faster than in theory. It can be also shown that the ellipsoid
method (3.2.18), inherits this drawback of subgradient scheme. In prac-
tice it works more or less in accordance to its theoretical bound even
when it is applied to a very simple function like || z ||%.

In this section we will discuss the algorithmic schemes, which are more
flexible than the subgradient and the ellipsoid methods. These schemes
are based on the notion of a model of nonsmooth function.

DEFINITION 3.3.1 Let X = {zx}72, be a sequence in Q. Denote

-~

fe(X;z) = o [f(z:) + (9(zi), z — z3)],

where g(z;) are some subgradients of f at z;.
The function fi(X;x) is called the model of convez function f.

Note that fx(X;z) is a piece-wise linear function of z. In view of
inequality (3.1.10) we always have

f(z) 2 fe(X;2)
for all z € R". However, at all test points z;, 0 < i < k, we have
fla:) = fe(X;23),  g(a:) € Bfi(X;i).
The next model is always better than the previous one:
Fenr(X;2) > fu(X;2)

for all z € R™.
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3.3.2 Kelley method

Model fi(X;z) represents the complete information on function f
accumulated after k calls of the oracle. Therefore it seems natural to
develop a minimization scheme, based on this object. Perhaps the most
natural method of this type is as follows:

Kelley method

0. Choose zj € Q. (3.3.2)
1. kth iteration (k > 0).

Find 2441 € Argmin fi(X;z).
zeQ

Intuitively, this scheme looks very attractive. Even the presence of
a complicated auxiliary problem is not too disturbing, since it can be
solved by linear optimization methods in finite time. However, it turns
out that this method cannot be recommended for practical applications.
And the main reason for that is its instability. Note that the solution
of auxiliary problem in the method (3.3.2) may be not unique. More-
over, the whole set Arg 21‘151‘51 fk(X;:c) can be unstable with respect to an

arbitrary small variation of data {f(z;),g(z;)}. This feature results in
unstable practical behavior of the scheme. Moreover, this feature can
be used for constructing an example of a problem, in which the Kelley
method has a very bad lower complexity bound.

ExaMPLE 3.3.1 Consider the problem (3.3.1) with
fly,z) = max{|y|, |z}, yeR' zeR",

Q = {z=(w2): ¥+ =z|?<1}
Thus, the solution of this problem is z* = (y*,z*) = (0,0), and the
optimal value f* = 0. Denote by Z; = Arg l'l'élcl?l Jk(Z; z), the optimal set
F4

of model f(Z;z), and by ff = fi(Z}) the optimal value of the model.
Let us choose zy = (1,0). Then the initial model of function f is

fo(Z;2) = y. Therefore, the first point, generated by the Kelley method
is z; = (—1,0). Hence, the next model of the function f is as follows:

filZ;z) = max{y, -y} =| y | .
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Clearly, fl* = 0. Note that f',: 12 f;‘ On the other hand,
fi < f(z") =0.

Thus, for all consequent models with & > 1 we will have f,: = 0 and
Zg = (0,X;), where

X; ={z € By(0,1): | z; |* +(2zi,2 —2;) €0, i =0...k}.

Let us estimate efficiency of the cuts for the set X. Since zx4; can
be an arbitrary point from X, at the first stage of the method we can
choose z; with the unit norms: || #; ||= 1. Then the set X, is defined as

follows:
X; = {z € Ba(0,1) | (ziyz) < b, = 0...k}.

We can do that if
52(0,1) = {e € R | || z |l=1}[) X{ # 0.
As far as this is possible, we can have
f(z) = f(0,z;) = 1.

Let us estimate a possible length of this stage using the following fact.

Let d be a direction in R", || d ||= 1. Consider a surface

S(a)={zeR" || z|l=1, (dz)2a}, a€lsl]

Then v(a) = vol,—;(S(@)) < v(0) [1 - a?] T,

At the first stage, each step cuts from the sphere S»(0,1) at most the

n—1
segment S(%) . Therefore, we can continue the process if £ < [%] :

During all these iterations we still have f(z;) = 1.
Since at the first stage of the process the cuts are (z;,z) < %, for all

k,0<k<N= [%]n_l, we have

B,(0,1) c X;.

This means that after N iterations we can repeat our process with the
ball B»(0, ..1—,), etc. Note that f(0,) =  for all z from B»(0, -;—)
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Thus, we prove the following lower bound for the Kelley method
(3.3.2):

n=1
k|33
fla) - £+ 2 (%) LI
This means that we cannot get an e-solution of our problem less than in

Int 4 n-1
Rl
2In2 [75]

calls of the oracle. It remains to compare this lower bound with the
upper complexity bounds of other methods:

Ellipsoid method: | O (n2 In %)

Optimal methods: | O (n In -:-)

Gradient method: | O (gg)

3.3.3 Level method
Let us show that it is possible to work with models in a stable way.
Denote A X
lr=gnfXin), Ji= s £z
The first value is called the minimal value of the model, and the second
one the record value of the model. Clearly f < f* < f.
Let us choose some a € (0,1). Denote

k(@) = (1 - a)fi + af.
Consider the level set
Lila) ={z € Q| fr(z) <lk(a)}.

Clearly, Li(«) is a closed convex set.

Note that the set Li(a) is of a certain interest for an optimization
scheme. Firstly, inside this set clearly there are no test points of the
current model. Secondly, this set is stable with respect to a small vari-
ation of the data. Let us present a minimization scheme, which deals
directly with this level set.
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Level method

0. Choose point g € @, accuracy ¢ > 0 and level coeffi-
cient € (0, 1).
" ; (3.3.3)
1. kth iteration (k > 0).
a). Compute f,: and fy.
b). If f§ — f} < ¢, then STOP.

c). Set Tky1 = ey (a)(Tk)-

In this scheme there are two quite expensive operations. We need to
compute an optimal value f; of the current model. If Q is a polytope,
then this value can be obtained from the following linear programming
problem:

min ¢

b

s.t. f(z;) + (9(zi),z —zi) <t, i=0...k,

T € Q.

We also need to compute projection 7z, (q)(zk)- If Q is a polytope, then
this is a quadratic programming problem:

min || z — =z ||?,
s.t.  f(zi) + (9(2:), 2 — 23) < h(a), i=0...k,

€ Q.

Both these problems are solvable either by a standard simplex-type
method, or by interior-point schemes.

Let us look at some properties of the level method. Recall, that the
optimal values of the model decrease, and the records values increase:

e <fim P <frm sk

Denote Ay = (ff, f#] and & = ff — ff. We call §; the gap of the model
fk(X; z). Then
Apy1 C Ag,  Oky1 <
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The next result is crucial for the analysis of the level method.

LEMMA 3.3.1 Assume that for some p > k we have §, > (1 — a)éi.
Then for alli, kK <i<p, R
li(@) 2 f5

Proof: Note that for such i we have §, > (1-a)d; > (1—a)d;. Therefore

ha@)=f1-(1-a)52f;-(1-a)li=fi+6-(1-a)b > f;
O

Let us show that the steps of the level method are large enough.

Denote
My =max{||g || g €0f(z), z € Q}.

LEMMA 3.3.2 For the sequence {x} generated by the level method we
have

<aif
| k41 — zx 1> Q—A%u

Proof: Indeed,
flax) —(1—e)bp > fi— (1 —a)d = lk(a)

v

fel@ks1) > flzx) + (9(ak), Tos1 — T%)

v

Flzg) = My || zpgr — 2 ||

Finally, we need to show that the gap in the model is decreasing.

LEMMA 3.3.3 Let Q in the problem (3.3.1) be bounded: diam@Q < D.
If for some p > k we have 6, > (1 — a)d, then

M?2D?

p+1—ks(1—_m

Proof: Denote z}, € Arg rrélg fi(X; ). In view of Lemma 3.3.1 we have
b o

filX;23) < fp(X;27) = f; < lifa)
for all 4, k <1 < p. Therefore, in view of Lemma 3.1.5 and Lemma 3.3.2
we obtain the following:
lzisa =25 B < Nawi—ap IF = || zie1 — 2 |12
1—a)?42

1—a)?4?
< lzi—z; | —(—,%ia—L <z — = |12 ”(—M;—"-
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Summing up these inequalities in i = k...p we get

'}
(p+1- )2’,—?— <|l 24 — 2 ||I2< D2
a

Note that the value p + 1 — k is equal to the number of indices in
the segment [k, p]. Now we can prove the efficiency estimate of the level
method.

THEOREM 3.3.1 Letdiam @ = D. Then the scheme of the level method
terminates no sooner than after

M?2D?
= l_e’ail—a}’(Z—a)J il

iterations. Termination criterion of the method guarantees f; — f* <e.

Proof: Assume that §; > ¢, 0 < k < N. Let us divide the indices on
the groups in the decreasing order

{N,...,0} =100) 12 ...l I(m),
such that
I(j)=[p(j),k‘(j)], P(J)Ek(J)a J=0‘m,

p(0) =N, p(G+1)=k(G)+1, k(m)=0,

3k(i) < Toa %) < OkG)+1 = Op(sis1)-
Clearly, for j > 0 we have

62!21 dp(0)
Op(j+1) 2 (1 J:1)“-1 2 (- o:}J'“

In view of Lemma 3.3.2, n(j) = p(j) + 1 — k(j) is bounded:

. M2p? M2p? .
n(j) S {1—&3252:; S 62(1f—0:)2 (1 - a.)2]

Therefore
i m . M2D?
N = E n(.?) < (l—-a) ): (1 - a)2j' £ (2(1_0)2{]_(1_9)2)'

O

Let us discuss the above efficiency estimate. Note that we can obtain
the optimal value of the level parameter « from the following maximiza-
tion problem:

) s O B ax .
(1-a)*l ~(1-a)*) = oA
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Its solution is o* = 5—1_—175 Under this choice we have the following ef-

ficiency estimate of the level method: N < ;‘%M}Dg. Comparing this
result with Theorem 3.2.1 we see that the level method is optimal uni-
formly in the dimension of the space of variables. Note that the analyt-
ical complexity bound of this method in finite dimension is not known.

One of the advantages of this method is that the gap oy = fi — ff
provides us with an ezact estimate of current accuracy. Usually, this gap
converges to zero much faster than in the worst case situation. For the
majority of real life optimization problems the accuracy e = 1074 — 1075
is obtained by the method after 3n — 4n iterations.

3.3.4 Constrained minimization

Let us demonstrate how we can use the models for solving constrained
minimization problems. Consider the problem

min f('r)s
gt fi{®2) €0, 5 =1...m (3.3.4)

T € Q,

where @ is a bounded closed convex set, and functions f(z), fj(z) are

Lipschitz continuous on Q.
Let us rewrite this problem as a problem with a single functional
constraint. Denote f(z) = ,max fi(z). Then we obtain the equivalent
<j<m

problem
min  f(z),

st. f(z) <0, (3.3.5)

TEQ.

Note that f{z) and f(z) are convex and Lipschitz continuous. In this
section we wiil try to solve (3.3.5) using the models for both of them.

Let us define the corresponding models. Consider a sequence X =
{zk}2,- Denote

fi(X;z) = 22 [f(z5) + (9(x;), x — z;)] £ f(z),
fu(Xz) = Joax. [f(z;) + (3(z)), 2 — ;)] < f(z),

where g(z;) € 8f(z;) and §(z;) € 0f(z;).
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As in Section 2.3.4, our scheme is based on the parametric function
flz) = max{f(z) -t f(z)},
fr(t) = gélélf(t;m)-

Recall that f*(¢) is nonincreasing in ¢. Let z* be a solution to (3.3.5).
Denote t* = f(z*). Then t* is the smallest root of function f*(t).

Using the models for the objective function and the constraint, we
can introduce a model for the parametric function. Denote

fe(Xit, ) = max{fe(X;z) - ¢, fe(X;2)} < f (8 ),

frx;t)y = min fi(X3t,2) < £(t).

Again, f,:(X;t) is nonincreasing in £. It is clear that its smallest root
t5(X) does not exceed t*.
We will need the following characterization of the root ¢ (X).

LEMMA 3.3.4
th(X) = min{fe(X;2) | fe(X;2) <0, z € Q).

Proof: Denote by &} the solution of the minimization problem in the
right-hand side of the above equation. And let ¢} = fk(X ;Z3). Then

F(X ) < max{fi(X; 1) — &, fe(X; 3})} <O

Thus, we always have f,'; 2 e (X).
Assume that ¢} > t;(X). Then there exists a point y such that

fie(X5y) — t(X) €0, fr(X3y) <0.

However, in this case f;: = fk(X; ) fk(X;y) < t(X) < fz. That is
a contradiction. 0

In our analysis we will need also the function
¢ (X;t) = mi o 7
fk( y ) Dg:lélkfk(-xst$$3)s

the record value of our parametric model.
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LEMMA 3.3.5 Let ty < t; < t*. Assume that f}(X;t;) > 0. Then
tp(X) >t and

fe(Xito) 2 f(Xsh) + e fi (X ). (3.3.6)
Proof. Denote z}(t) € Argmin fg(X;t,z), t2 = {;(X), a = M €

[0,1]. Then
t1 = (1 —a)ty + ats

and inequality (3.3.6) is equivalent to the following:
filXit) < (1 - a)fp (X3 to) + afi (X; ta) (3.3.7)

(note that f,:(X;tg) =0). Let zo = (1 — a)zi(to) + az)(t2). Then we
have

Fe(X;t1) < max{fi(X;2a) — t1; fi(X;7a)}
< max{(1 - a)(fe(X; (to)) — to) + &l fi(X; 2} (t2)) — t2);
(1 = a) fi(X; 23 (b)) + afi(X; 2 (£2))}
< (1 — a) max{ fi(X; zi (o)) — to; fi(X; 7} (t0))}
+amax{fi(X; 2t (t2)) — ta; fi(X; 2k (t2))}
= (1 - a)ff(X;to) + aff(X;t2),
and we get (3.3.7). o

We also need the following statement (compare with Lemma 2.3.5).

LEMMA 3.3.6 For any A > 0 we have
[ —Aa < fH(t+4),

Xty - A < Ji(Xit+4)
Proof. Indeed, for f*(t) we have
fr{t+48) = min [max{f(z) -t f(z) + A} - A

>m1n[max{f(:c)—tf )} = Al = f*(t) -
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The proof of the second inequality is similar. m]

Now we are ready to present a constrained minimization scheme (com-
pare with constrained minimization scheme of Section 2.3.5).

Constrained level method

0. Choose zg € Q, ty < t*, K € (0, %) and accuracy € > 0.

1. kth iteration (k > 0).

a). Keep generating sequence X = {z;}32, by the
level method as applied to function f(tg;z). If the (3.3.8)
internal termination criterion

f] (X tk) (1_-5).{7 (X tk)
holds, then stop the internal process and set j(k) = j.
Global stop: ff(X;tx) <e.
b). Set tk+1 = t;(k}(X)'

We are interested in an analytical complexity bound for this method.
Therefore the complexity of computation of the root ¢(X) and of the

value f}-“(X; t) is not important for us now. We need to estimate the rate
of convergence of the master process and the complexity of Step 1a).
Let us start from the master process.

LEMMA 3.3.7 For all k > 0, we have

k
Fi(Xte) < 825 [t
Proof: Denote
(Xte)

?‘L"'“’:w—t,, B=gim (1)

Since tg4; = t;(k)(X) and in view of Lemma 3.3.5, for all k > 1, we have

— 1 * ' 1 "* 2

= V_tk_tk_lfj(k—l)(x, tk-1) > mfﬂk)(X, tk-1)
2 £ x . 2(1—-« * . _

2 ;7tk+1—zkfj(k)(X’t’°) = ng_tkfj(k)(X,tk) =
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Thus, o < fok—1 and we obtain

FiXte) = o/l = bk < Broo/Tiar — B
t1—to

B Fi10) (X to)/ 2.

Further, in view of Lemma 3.3.6, t; — # fJ(ﬂ)(X to). Therefore

k rx ’ bt —tx
T (Xite) < B (Xito)\ [ 220

< [Ty it b = 1) S L /T TG0 o — ).

It remains to note that f*(ty) < t9 — ¢t* (see Lemma 3.3.6). ]

Let Global stop condition in (3.3.8) be satisfied: f;(X;x) < e Then
there exist 7* such that

[ty zie) = f7(X5tk) < e
Therefore we have
f(te; zj0) = max{f(z;-) — tg; f(z;-)} < e
Since t; < ¢*, we conclude that

flap) < "+
(3.3.9)

flzj) < e

In view of Lemma 3.3.7, we can get (3.3.9) at most in

N(E) = Qii—xi ]nﬁn_;é?

Jull iterations of the master process. (The last iteration of the process is
terminated by the Global stop rule). Note that in the above expression
k is an absolute constant (for example, we can take kK = %).

Let us estimate the complexity of the internal process. Denote

My =max{|| g ||| g€ df(z)|Jof(e), z € Q}.

We need to analyze two cases.
1. Full step. At this step the internal process is terminated by the

rule

Fiey (X t6) = (1= K) £33 (X t)-
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The corresponding inequality for the gap is as follows:

£y (X5 te) = iy (X te) < K5 (X; ).
In view of Theorem 3.3.1, this happens at most after

M}D?
nz(f;(,.)(X:tk))"a(l —a)?(2-a)

iterations of the internal process. Since at the full step f;‘(k)(X i1tk)) > €,
we conclude that

. . M2p2
j(k) —j(k-1) < szﬁa(f;%p(g,m

for any full iteration of the master process.
2. Last step. The internal process of this step was terminated by
Global stop rule:
fi(Xite) <e

Since the normal stopping criterion did not work, we conclude that
F(Xste) = fia(Xite) 2 wfi_1 (X3 1) 2 ke

Therefore, in view of Theorem 3.3.1, the number of iterations at the last

step does not exceed
M2D?
k?efa(l-a)?*(2—-a) "’
Thus, we come to the following estimate of total complexity of the
constrained level method:
2n2
(N(E) ks l)K € a(]rf—f) (2—-a

M?D?

= Za(l-a)(2-a) [1 ;7 ln[Z(;ﬁnﬂ In (tlojr:)r]

M2D?In 2tg—t7)
— €
T efa(l-a)?(2-a)k? In[2(1-K)]"

It can be shown that the reasonable choice for the parameters of this
scheme isa =Kk = 2;

The principal term in the above complexity estimate is on the order
of ;lg In —2‘9%1)- Thus, the constrained level method is suboptimal (see
Theorem 3.2.1).

In this method, at each iteration of the master process we need to

find the root t;( k) (X). In view of Lemma 3.3.4, that is equivalent to the
following problem:

min{fe(X;2) | fi(X;z) <0, z € Q}.
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In other words, we need to solve the problem

min ¢,

st. flzj) +(glaj)z — =) <t, §=0...k,

f(zj) + (g(Ej),.’L" - :BJ) <0, j=0...k

T € Q.

If Q is a polytope, this problem can be solved by finite linear program-
ming methods (simplex method). If Q is more complicated, we need to
use interior-point schemes.

To conclude this section, let us note that we can use a better model
for the functional constraints. Since

f(z) = max fi(z),

1<i<m
it is possible to work with

fie(X;z) = max  max (fi(z;) + (gi(zj)y = - 75},
where gi(z;) € dfi(z;). In practice, this complete model significantly ac-
celerates the convergence of the process. However, clearly each iteration
becomes more expensive.

As far as practical behavior of this scheme is concerned, we note that
usually the process is very fast. There are some technical problems,
related to accumulation of too many linear pieces in the model. However,
in all practical schemes there exists some strategy for dropping the old
elements of the model.



Chapter 4

STRUCTURAL OPTIMIZATION

4.1 Self-concordant functions

(Do we really have a black bozx? What the Newton method actually does?
Definition of self-concordant functions; Main properties; Minimizing the self-
concordant function.)

4.1.1 Black box concept in convex optimization

In this chapter we are going to present the main ideas underlying the
modern polynomial-time interior-point methods in nonlinear optimiza-
tion. In order to start, let us look first at the traditional formulation of
a minimization problem.

Suppose we want to solve a minimization problem in the following

form:

min{fo(z) | fi(z) <0, j=1...m}

We assume that the functional components of this problem are con-
vex. Note that all standard convex optimization schemes for solving
this problem are based on the black-box concept. This means that we
assume our problem to be equipped with an oracle, which provides us
with some information on the functional components of the problem at
some test point z. This oracle is local: If we change the shape of a
component far enough from the test point, the answer of the oracle does
not change. These answers comprise the only information available for
numerical methods.!

However, if we look carefully at the above situation, we can see a
certain contradiction. Indeed, in order to apply the convex optimization

IWe have discussed this concept and the corresponding methods in the previous chapters.
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methods, we need to be sure that our functional components are convex.
However, we can check convexity only by analyzing the structure of these
functions?: If our function is obtained from the basic convex functions
by convez operations (summation, maximum, etc.), we conclude that it
is convex.

Thus, the functional components of the problem are not in a black
box at the moment we check their convexity and choose a minimization
scheme. But we put them in a black box for numerical methods. That is
the main conceptual contradiction of the standard convex optimization
theory.?

The above observation gives us hope that the structure of the problem
can be used to improve the performance of convex minimization schemes.
Unfortunately, structure is a very fuzzy notion, which is quite difficult
to formalize. One possible way to describe the structure is to fix the
analytical type of functional components. For example, we can consider
the problems with linear functions f;(z) only. This works, but note that
this approach is very fragile: If we add just a single functional component
of different type, we get another problem class and all theory must be
done from scratch.

Alternatively, it is clear that having the structure at hand we can
play a lot with the analytical form of the problem. We can rewrite the
problem in many equivalent forms using nontrivial transformation of
variables or constraints, introducing additional variables, etc. However,
this would serve no purpose until the moment we realize the final goal
of such transformations. So, let us try to find the goal.

At this moment, it is better to look at classical examples. In many
situations the sequential reformulations of the initial problem can be
seen as a part of the numerical scheme. We start from a complicated
problem P and, step by step, we simplify its structure up to the moment
we get a trivial problem (or, a problem which we know how to solve):

P ... = (f,2).

Let us look at the standard approach for solving a system of linear

equations, namely,
Az =b.

We can proceed as follows:

1. Check that A is symmetric and positive definite. Sometimes this is
clear from the origin of matrix A.

2 A numerical verification of convexity is a hopeless problem.
3However, the conclusions of the theory concerning the oracle-based minimization schemes
remain valid.
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2. Compute the Cholesky factorization of the matrix:
A=LLT,
where L is a lower-triangular matrix. Form an auxiliary system

Ly=b LTz=y.

3. Solve the auxiliary system.

This process can be seen as a sequence of equivalent transformations of
the initial problem

Imagine for a moment that we do not know how to solve systems
of linear equations. In order to discover the above scheme we should
perform the following steps:

1. Find a class of problems which can be solved very efficiently (linear
systems with triangular matrices in our example).

2. Describe the transformation rules for converting our initial problem
into the desired form.

3. Describe the class of problems for which these transformation rules
are applicable.

We are ready to explain the way it works in optimization. First of
all, we need to find a basic numerical scheme and a problem formulation
at which this scheme is very efficient. We will see that for our goals the
most appropriate candidate is the Newton method (see Section 1.2.4) as
applied in the framework of Sequential Unconstrained Minimization (see
Section 1.3.3).

In the succeeding section we will highlight some drawbacks of the
standard analysis of Newton method. From this analysis we derive a
family of very special convex functions, the self-concordant functions
and self-concordant barriers, which can be efficiently minimized by the
Newton method. We use these objects in a description of a transformed
version of our initial problem. In the sequel we refer to this description as
to a barrier model of our problem. This model will replace the standard
functional model of optimization problem used in the previous chapters.

4.1.2 What the Newton method actually does?

Let us look at the standard result on local convergence of the Newton
method (we have proved it as Theorem 1.2.5). We are trying to find an
unconstrained local minimum z* of twice differentiable function f(z).
Assume that:
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s f"(z*) = I, with some constant [ > 0,
w || f'(z) = f"(y) IS M ||z —y| for all z and y € R™.

We assume also that the starting point of the Newton process zy is close
enough to z*:

| zo — z* ||< 7 = 2. (4.1.1)
Then we can prove that the sequence
Tra1 = T — [ (ze] " f(zk), k20, (4.1.2)

is well defined. Moreover, || zx — z* ||< 7 for all £ > 0 and the Newton
method (4.1.2) converges quadratically:

M _e*|12
| Tk+1 —2z* ||I< m—_“ﬁﬁf_—ﬂ—m

What is wrong with this result? Note that the description of the
region of quadratic convergence (4.1.1) for this method is given in terms
of the standard inner product

n
(z,y) = Y zlyl),
i=1

If we choose a new basis in R", then all objects in our description change:
the metric, the Hessians, the bounds [ and M. But let us look what
happens with the Newton process. Namely, let A be a nondegenerate
(n x n)-matrix. Consider the function

P(y) = f(Ay).
The following result is very important for understanding the nature of
Newton method.
LEMMA 4.1.1 Let {zx} be a sequence, generated by the Newton method
for function f:
Zep1 =z = [f"(ze)) 7 f (), k20
Consider a sequence {yx}, generated by the Newton method for function

b:
Yk+1 =Yk — [¢" (k)] ¢ (yk), k=0,

with yg = A~ 'wg. Then yr = A 'z for all k> 0.
Proof: Let y, = A~ !z for some k& > 0. Then
yr1 = Yk — (8" ()] b (k) = wk — [AT f"(Aye) A) 71 AT £ (Ayy)

= A7lzp — A7 (z)] 7 f (xk) = A gy
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Thus, the Newton method is affine invariant with respect to affine
transformation of variables. Therefore its real region of quadratic con-
vergence does not depend on a particular inner product. It depends only
on the local topological structure of function f(z).

Let us try to understand what was bad in our assumptions. The main
assumption we used is the Lipschitz continuity of Hessians:

I (@)= "W IS Mllz-yll, Yz,yeR"
Let us assume that f € C3(R™). Denote
f"(@)u] = lim Z[f"(z + au) - f"(z)).

Note that the object in the right-hand side is an (n x n)-matrix. Then
our assumption is equivalent to

I (@)u] |I< M |lul.
This means that at any point z € R™ we have
(f"@ulp,0) <M [[ull-|v]?® VuveR"

Note that the value in the left-hand side of this inequality is invariant
with respect to affine transformation of variables. However, the right-
hand side does not possess this property. Therefore the most natural
way to improve the situation is to find an affine-invariant replacement
for the standard norm || - ||. The main candidate for such a replacement
is rather evident: That is the norm defined by the Hessian f"(z) itself,
namely,
Il [l priay= (F" (), u)/2.

This choice gives us the class of self-concordant functions.

4.1.3 Definition of self-concordant function

Let us consider a closed conver function f(z) € C*(dom f) with open
domain. Let us fix a point z € dom f and a direction © € R™. Consider
the function

$(z;t) = f(z + tu),

as a function of variable ¢ € dom ¢(z;-) C R!. Denote
Df(z)[u] = ¢'(z;t) = (f'(), u),
D*f(z)[u,u] = ¢"(z;t) = (f"(z)u,u) = u ”?u(z),

D f(z)[u,u,u) = ¢"(z;t) = (Df(x)[u]u,u).
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DEFINITION 4.1.1 We call function f self-concordant if there exists a
constant My > 0 such that the inequality

D* f(a)lu,u,u] < My || u |}y

holds for any = € dom f and u € R".

Note that we cannot expect these functions to be very widespread.
But we need them only to construct a barrier model of our problem. We
will see very soon that such functions are easy to be minimized by the

Newton method.
Let us point out an equivalent definition of self-concordant functions.

LEMMA 4.1.2 A function [ is self-concordant if and only if for any
z € dom f and eny uj, usz, ug € R" we have

3
| D? f ()1, uz, us] |< My [T I wi llprgay - (4.1.3)

=1

We accept this statement without proof since it needs some special facts
from the theory of three-linear symmetric forms.

In what follows, we very often use Definition 4.1.1 in order to prove
that some f is self-concordant. On the contrary, Lemma 4.1.2 is useful
for establishing the properties of self-concordant functions.

Let us consider several examples.

EXAMPLE 4.1.1 1. Linear function. Consider the function
f(z) = a+(a,a), domf=R"

Then
fllz)=a, f"(z)=0, f"(z)=0,

and we conclude that My = 0.
2. Convex quadratic function. Consider the function
f(z) = a+ (a,z) + }(Az,z), domf = R",
where A = AT > 0. Then
fllz) =a+ Az, ["(z)=4, ["(z)=0,

and we conclude that My = 0.
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3. Logarithmic barrier for a ray. Consider a function of one variable
f(z)=-Inz, domf={z€R'| z>0}.

Then
fla)y=-L M=) =% M==-%

Therefore f(z) is self-concordant with My = 2.

. Logarithmic barrier for a second-order region. Let A = AT > 0.
Consider the concave function

¢{$) =a+ (a,a:) = %(ACE,:B}.
Define f(z) = —In¢(z), with dom f = {z € R"| ¢(z) > 0}. Then
Df(a:)[u] = "ﬁ[(as“) - (AI&UHr
sz(x)[ua u] = ;ﬁ}'j[(avu) - (Am,'u,)]2 G #H(Auau)i
DY @wuu] = —giglaw - (Az, )’
_Ef%m_)[(avld - (AI.',‘[L)](AU, ’U.)
Denote w; = D f(z)[u] and w; = ala(Au,u). Then
D?f(z)[u,u] = w?+ws >0,
| D3f(z)[u,u,u) | = |2w}+3wiwy|.
The only nontrivial case is w; # 0. Denote a = wy/w?. Then
|D3 f(2)[uu, < 2o B43lwiws _ 2(1+2a)
(D*f(a:)[t:tu])t; 3 (c:f+w2;l/2 il (1+a)23/2 <2

Thus, this function is self-concordant and My = 2.

. It is easy to verify that none of the following functions of one variable
is self-concordant:

flz)=¢€*, f(2)=2%,2>0,p>0, f(z)=|zf, p>2
i

Let us look now at the main properties of self-concordant functions.
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THEOREM 4.1.1 Let functions f; be self-concordant with constants M;,
1=1,2, and let a, B > 0. Then the function f(z) = afi(z) + Bf2(z) is
self-concordant with constant

Mf = max {—\/]—?:Ml, ﬁMg}

and dom f = dom f; [ dom fs.

Proof: In view of Theorem 3.1.5, f is a closed convex function. Let us
fix some = € dom f and u € R". Then

]3/2, i=12

| D fi(@)[u, u,u) |< M; [D?f() [, u]

Denote w; = D?f;(z)[u,u] > 0. Then
|D3f(z) u,u.u!' < DN (®)[w,u,u]|+0] D fa (z)[u,u,u]|
(D2 f(z)[uw,u])¥2 = [aD!fi(x)[u,u]+0D2 fa(z)|u,u]]*/?

ale?/",' +BM2w3/2
[aw: +Bw2]3/2

IA

The right-hand side of this inequality does not change when we replace
(wi,wq) by (twy, twy) with t > 0. Therefore we can assume that

aw) + ﬁu)2 =1,

Denote ¢ = aw;. Then the right-hand side of the above inequality
becomes equal to

AE + A1 -6, £e(0,1).

This function is convex in €. Therefore it attains its maximum at the
end points of the interval (see Corollary 3.1.1). O

COROLLARY 4.1.1 Let function f be self-concordant with some constant
M. If A= AT = 0, then the function

$(z) = a+ (a,2) + 5(Az, 7) + f(z)
is also self-concordant with constant My = M.

Proof: We have seen that any convex quadratic function is self-concor-
dant with the constant equal to zero. 0
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COROLLARY 4.1.2 Let function f be self-concordant with some constant
My and a > 0. Then the function ¢(x) = af(z) ts also self-concordant
with the constant My = VIEMf' a

Let us prove now that self-concordance is an affine-invariant property.

THEOREM 4.1.2 Let A(z) = Az +b: R* — R™, be a linear operator.
Assume that function f(y) is self-concordant with constant My. Then
the function ¢(z) = f(A(z)) is also self-concordant and My = M.

Proof: The function ¢(z) is closed and convex in view of Theorem 3.1.6.
Let us fix some z € dom¢ = {z : A(z) € dom f} and u € R". Denote
y = A(z), v= Au. Then

Do(z)[u] = (F'(A(z)), Au) = (f'(y), ),
D¥p(z)[u,u] = (f"(A(z))Au, Au) = (f"(y)v,v),

D¥$(a)fu,u,u] = D*f(A(z))[Au, Au, Au] = D*f(y)[v, v, 0]
Therefore
| D3¢(x)[u,u,u] | = | D3f(y)[v,v,v] [< Mp(f"(y)v,v)*/?

= My(D?*(x)[u, ).
O

The next statement demonstrates that some local properties of a self-
concordant function reflect somehow the global properties of its domain.

THEOREM 4.1.3 Let function f be self-concordant. If dom f contains
no straight line, then the Hessian f”(z) is nondegenerate at any x from
dom f.

Proof: Assume that (f”(z)u,u) = 0 for some z € dom f and u € R",
u # 0. Consider the points y, = z + au € dom f and the function

P(a) = (F"(ya)u, u).
Note that
¥ (@) = D*f(ya)[u, u,u] < 2¢(a)*?, ¥(0) =0.

Since 1(a) > 0, we conclude that ¢(0) = 0. Therefore this function is
a part of the solution of the following system of differential equations:

V(a) = 24()’? -¢(a),

¥(0) = £(0) =0, {
g = O
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However, this system has a unique trivial solution. Therefore ¥(a) = 0

for all feasible a.
Thus, we have shown that the function ¢(a) = f(ya) is linear:

Sty

Ha) = f@)+{f'(2)ye —2) + Oj‘ (e Y, ) drd

= f(z) +a(f'(z),u).

Assume that there exists @ such that y; € d(dom f). Consider a se-
quence {ay} such that oy T @ Then

2k = (yaka ¢(ak)) —Z= (yﬁ!¢(&))‘

Note that z € epi f, but z ¢ epi f since y5 ¢ dom f. That is a contradic-
tion since function f is closed. Considering direction —u, and assuming
that this ray intersects the boundary, we come to a contradiction again.
Therefore we conclude that y, € dom f for all . However, that is a
contradiction with the assumptions of the theorem. a

Finally, let us describe the behavior of self-concordant function near
the boundary of its domain.

THEOREM 4.1.4 Let f be a self-concordant function. Then for any point
Z € d(dom f) and any sequence

{zg} Cdomf: zx—oZ

we have f(zg) — +00.

Proof: Note that the sequence {f(zx)} is bounded below:

f(zk) 2 f(zo) + (f'(z0), 2k — o).

Assume that it is bounded from above. Then it has a limit point f. Of
course, we can think that this is a unique limit point of the sequence.
Therefore

2k = (:rka.f(xk)) 2= (:E}f)

Note that z; € epif, but z ¢ epi f since T ¢ dom f. That is a contra-
diction since function f is closed. ]

Thus, we have proved that f(z) is a barrier function for cl(dom f)
(see Section 1.3.3).
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4.1.4  Main inequalities

Let us fix some self-concordant function f(z). We assume that its
constant My = 2 (otherwise we can scale it, see Corollary 4.1.2). We call
such functions the standard self-concordant. We assume also that dom f
contains no straight line (this implies that all f”(z) are nondegenerate,
see Theorem 4.1.3).

Denote:
” u ”.‘r = (f”(:r)u, u)lﬂ,
vz ([f" (@) v, 0)1 2,

Ar(z) (/" @) f"(=), £ (@)

Clearly, | (v,u) |<|| v |I5 - || w ||z We call | u || the local norm of
direction u with respect to z, and As(z) =|| f'(z) || is called the local
norm of the gradient f'(z).*

Let us fix ¢ € dom f and u € R", u # 0. Consider the function of one
variable

I

_ 1
o) = Farmma
with the domain dom¢ = {t € R' : z + tu € dom f}.
LEMMA 4.1.3 For all feasible t we have | ¢'(t) |< 1.

Proof: Indeed,
_ ["‘!z+tu!|u,u,u|
#(t)= T2 (@t tu)u,u)32

Therefore | ¢'(t) |< 1 in view of Definition 4.1.1. O

COROLLARY 4.1.3 Domain of function ¢(t) contains the interval

(—¢(0), ¢(0)).

Proof: Since f(z+tu) — oo as z+tu approaches the boundary of dom f
(see Theorem 4.1.4), the function (f"(z + tu)u, u) cannot be bounded.
Therefore dom¢ = {t | #(¢t) > 0}. It remains to note that

$(t) = ¢(0)— | ¢ |

in view of Lemma 4.1.3. O

4Sometimes As(z) is called the Newton decrement of function f at z.
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Let us consider the following ellipsoid:
WOo(z;r) ={yeR"||ly—=z|<r}

W(z;r) =cl (Wo(zr)) ={yeR"|ly—z|.<r}.
This ellipsoid is called the Dikin ellipsoid of function f at z.

THEOREM 4.1.5 1. For any z € dom f we have W%(z;1) C dom f.
2. For all z, y € dom [ the following inequality holds:

ly—= lly> iz, (4.1.4)

3 Ifly—=|l-<1, then

ly -2 ly< 2. (4.1.5)

Proof: 1. In view of Corollary 4.1.3, dom f contains the set
{y=o+tu] | ulz<1)

(since ¢(0) =1/ || u ||z). That is exactly W°(z;1).
2. Let us choose u = y — . Then

$(1) = =ame 400) = e

and ¢(1) < ¢(0) + 1 in view of Lemma 4.1.3. That is (4.1.4).
3. If || y—z |lz< 1, then ¢(0) > 1, and in view of Lemma 4.1.3
#(1) > ¢(0) — 1. That is (4.1.5). u]

THEOREM 4.1.6 Let x € dom f. Then for any y € W°(z;1) we have
(1= lly =z )" (=) 2 f"(¥) =X opeamye /" (@)- (4.1.6)

Proof: Let us fix some u € RB", u # 0. Consider the function

Y(t) = <f”(.’ﬂ +ty —z))uw,u), te [Oy 1]'
Denote y; = 2 + t(y — z). Then, in view of Lemma 4.1.2 and (4.1.5), we
have

@) = | D flyly -z u,u] IS 2]y — 2 Iyl w I},

= Flye—zlly () <3 220 9(2)

= Al )
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Therefore

2(n(1 =ty -z o))" < (n(t)) < ~2(n(1 =t [l y - [2))"
Let us integrate this inequality in ¢ € [0,1]. We get:

(= lly ==z l)* < 5} < e
That is exactly (4.1.6). 0

COROLLARY 4.1.4 Let z € dom f and r =|| y — z ||< 1. Then we can
estimate the matriz

as follows:

(1 -1+ F)f"(2) 2G 2 5 f"(=).

Proof: Indeed, in view of Theorem 4.1.6 we have

G = [fe+rly—a)dr=f'(z)- [(1—rr)dr
0 0

(1—r+4r%)/"(2),

d 1
1—3,,—)1 = ﬁf”(-’ﬂ)-

G 2 [f'a)

o;.__._

Let us look again at the most important facts we have proved.

= At any point z € dom f we can point out an ellipsoid
Wo(z;1) = {z € R"| (f"(=)(y — ),y —2)) <1},
belonging to dom f.

= Inside the ellipsoid W(z;r) with » € [0,1) function f is almost
quadratic:

(1= r)2f"(z) % f"(y) < ge S (2)

for all y € W(z;r). Choosing r small enough, we can make the
quality of the quadratic approximation acceptable for our goals.
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These two facts form the basis for almost all consequent results.
We conclude this section with the results describing the variation of
a self-concordant function with respect to a linear approximation.

THEOREM 4.1.7 For any z, y € dom f we have

(F(y) - f(z)y —z) > Fle (4.1.7)
f) > f(2) +(f'(@),y =) +wllly =2 |l2), (4.1.8)

where w(t) =t — In(1 + ¢).
Proof: Denote y, =z + 7(y —z), 7 € [0,1], and r =|| y — z ||z. Then,
in view of (4.1.4) we have

1

(f'ly) = f@)y—=2) = [{f"(y:)y—2)y—z)dr

D

}l! | ¢ — ”2T dr

fl
o, .

r

N
2 [rfpdr =1 [ mypdt = I

ctﬁ,_.

S

Further, using (4.1.7), we obtain

f (m):.} - :l:)d‘l‘

I
cL_,_.

fy) = f(z) = (f'(z),y — x)

1
g'—,l?(f’(y'r) - f’(m)sy'r - $>dT

v
Ot =
3
:
s
4
a'e =
L]
=9
-.‘

Il
Sty
Tla
h

)
=%
—-'

[l
Ot
—les

&
5

Il

£
—

S
e

THEOREM 4.1.8 Let z €dom f and ||y — z ||z< 1. Then
- 2
(f'(y) = f'(z),y — z) < flp=tle- (4.1.9)

f) (@) +{f(@)y-2) +wlly -z ), (4.1.10)
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where w,(t) = —t — In(1 — t).

Proof: Denote y, =z + 7(y —z), 7 € [0,1], and r =|| y — = ||z. Since
| yr =z ||< 1, in view of (4.1.5) we have

(FW) - Flz)y—7) = Uf'(f"(yf)(y - o)y~ 2¥dr

1
= c{;‘zllyrﬂwlif,rd‘f
< f r? dr = j‘ 1 dt...L?_
< [atapdr =1 mpdt ==

Further, using (4.1.9), we obtain

) = f(@) - (Fe)y —3) = Ef<f'(yT) ~ @)y — z)dr

1

= f %(f,(yr) - f’(m),yT — z)dr

o

IA

1 1
r—T - T
g"r 1—|lyr—2z||= dr _b[ lf'rrdT

Et—t = wy(r).

Il
Oty

a

THEOREM 4.1.9 Inequalities (4.1.4), (4.1.5), (4.1.7), (4.1.8), (4.1.9)
and (4.1.10) are necessary and sufficient characteristics of standard self-
concordant functions.

Proof: We have justified two sequences of implications:
Definition 4.1.1 = (4.1.4) = (4.1.7) = (4.1.8),
Definition 4.1.1 = (4.1.5) = (4.1.9) = (4.1.10).

Let us prove the implication (4.1.8) = Definition 4.1.1. Let z € dom f
and z — au € dom f for « € [0,¢). Consider the function

Y(a) = f(z —au), a€[0,¢).
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Denote = ||ul|; = [¢"(0)]'/2. Assuming that (4.1.8) holds for all z and
y from dom f, we have

$(a) — $(0) - ¥/ (0)a — 1¥"(0)a® > w(ar) — Ja*r2.
Therefore
§"(0) = lim [4(@) ~ (0) ~ ¥'(0)a — 19/ (0)e?]

1

> lim = [Ld ar) — 1(127'2] = lim __!_1" LIJF ar) — ar
— - r ar — i~ _1"3
- Llﬁll 3a? [1+ar (11‘] =8

Thus, D3f(z)[u,u,u] = —4"(0) < ¥"(0) < 2["(0)]*? and that is
Definition 4.1.1 with My = 2. Implication (4.1.10) = Definition 4.1.1
can be proved by a similar reasoning. a

The above theorems are written in terms of two auxiliary functions
w(t) =t —In(l +t) and w.(7) = =7 — In(1 — 7). Note that

W) =7520, W(t) =m0,
wi(r) =520, wilr) =g >0

Therefore, w(t) and w, (1) are convex functions. In what follows we often
use different relations between these functions. Let us fix this notation
for future references.

LEMMA 4.1.4 For anyt >0 and 7 € [0,1) we have
WW(wi(r)) =7, w (1) =t
o(t) = a6~ n(©)), e (r) = maxler — wl@)],

w(t) + we(7) > 1,

we(7) = 7l (7) — w(Wwl(7)), w(t)=t'(t) — w.(W'(2)).

We leave the proof of this lemma as an exercise for the reader. For
an advanced reader we should note that the only reason for the above
relations is that functions w(t) and w,(t) are conjugate.

Let us prove two more inequalities.
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THEOREM 4.1.10 For any z and y from Q we have

f) 2 £(z) +{f'(z),y —a) +w(llf' (v) = f @)II})- (4.1.11)
If in addition || f'(y) = f'(z)ll; <1, then

fy) < f(2) + (fi(2),y — ) +wulllf (v) = F(@)7)- (4.1.12)

Proof: Let us fix an arbitrary = and y from Q. Consider the function

#(z) = f(2) = (f'(z),2), z€Q.
Note that this function is self-concordant and ¢'(z) = 0. Therefore,
using inequality (4.1.10) we get

flz) = {f'(z),z) = ¢(~’C)=g§3¢(z)

IA

ggg[cb(y) +(#'(y), 2 — y) +walllz = ylly)]

= ¢(y) —w(ll¢' W)
= fy) = (f(@),9) —w(lf () - F(@)I)

and that is (4.1.11). In order to prove inequality (4.1.12) we use a similar
reasoning with (4.1.8). O

4.1.5 Minimizing the self-concordant function
Let us consider the following minimization problem:

min{f(z) | z € dom f}. (4.1.13)

The next theorem provides us with a sufficient condition for existence of
its solution. Recall that we assume that f is a standard self-concordant
function and dom f contains no straight line.

THEOREM 4.1.11 Let Ay(z) < 1 for some x € dom f. Then the solution
of problem (4.1.13), Ty, exists and is unique.

Proof: Indeed, in view of (4.1.8), for any y € dom f we have
fly) =2 f@)+(f'(z)y-a)+wlly-z]2)

2 fl@)= 1@z lly-zle +wlll y =z [l2)

= f@) =M@ ly -2z lz +w(lly — 2 ||2).
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Therefore for any y € L;(f(z)) = {y € R™| f(y) < f(z)} we have
Tl y =z llz) < Ag(z) < 1.

Note that the function jw(t) =1 — 1 In(1 + t) is strictly increasing in ¢.
Hence, || y — z ||»< t, where ¢ is a unique positive root of the equation

(1= Xp(z))t =1In(1 +¢).

Thus, Ls(f(z)) is bounded and therefore 'y exists. It is unique since in
view of (4.1.8) for all y € dom f we have

f(y) > f(z}) +w(ll y — =}

=

Thus, we have proved that a local condition Af(z) < 1 provides us
with some global information on function f, that is the existence of
the minimum Ty Note that the result of Theorem 4.1.11 cannot be
strengthened.

EXAMPLE 4.1.2 Let us fix some € > 0. Consider a function of one

variable
felz) =ex—Inz, z>0.

This function is self-concordant in view of Example 4.1.1 and Corol-
lary 4.1.1. Note that

filz)=€-1, f!=3n

Therefore A\s, (z) =| 1 —ex |. Thus, for € = 0 we have Ay, (z) = 1 for any
z > 0. Note that the function fy is not bounded below.

If € > 0, then =, = 1. Note that we can recognize the existence of
the minimizer at point £ = 1 even if € is arbitrary small. 0O

Let us consider now a scheme of the damped Newton method:

Damped Newton method

0. Choose zy € dom f. (4.1.14)

1. Iterate Tpy1 = T — T)J—(m[f”(:ck)]‘lf’(a:k), k 2 0.
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THEOREM 4.1.12 For any k > 0 we have

S(@is1) < flax) —w(Ap(zk)). (4.1.15)

Proof: Denote A = Ag(zg). Then || zxy1 — 7% 2= H-LA = Ww'(A).
Therefore, in view of (4.1.10) and Lemma 4.1.4, we have

f(xes1) < flze) + (F'(zx), Tegr — z) + walll Zk41 — 7k |lz)
= flmk) - 5 +weW'(N)

= flor) = A'(A) + wilw'(A) = f(z) — w(A). -

Thus, for all z € dom f with Ay(z) > 8 > 0 one step of the damped
Newton method decreases the value of f(z) at least by a constant w(3) >
0. Note that the result of Theorem 4.1.12 is global. It can be used to
obtain a global efficiency estimate of the process.

Let us describe now the local convergence of the standard Newton
method:

Standard Newton method

(4.1.16)
0. Choose zy € dom f.

1. Tterate 1 = ) — [f”(..":k)]ilfl(mk), k> 0.

Note that we can measure the convergence of this process in different
ways. We can estimate the rate of convergence for the functional gap
f(zx)— f(27}), or for the local norm of the gradient Ag(zx) =|| f'(z4) |13,
or for the local distance to the minimum || z — z} ||z,. Finally, we can
look at the distance to the minimum in a fixed metrics

re(zi) = ”"Bk - I; Y

defined by the minimum itself. Let us prove that locally all these mea-
sures are equivalent.
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THEOREM 4.1.13 Let Aj(z) < 1. Then

wAj(@)) < F(@) - Fz}) < wa(As(2)), (4.1.17)
W' ((@) <l 2 = 5 le< W, (Ar (@), (4.1.18)
w(ra(z)) < F(z) = [(z}) < wa(re(z)), (4.1.19)

where the last inequality is valid for r.(z) < 1.

Proof: Denote r =|| z — z} |z and A = Af(z). Inequalities (4.1.17)
follow from Theorem 4.1.10. Further, in view of (4.1.7) we have

2 *
i S {fl(z),z —z3) < A

That is the right-hand side of inequality (4.1.18). If r > 1 then the
left-hand side of this inequality is trivial. Suppose that r < 1. Then

f'(z) = G(z — z}) with
1
G= ff”(ﬂ:} + 7(z — x}))dr,
0
and
M(z) = ([f"(@)'G(z - «}),G(z — 2})) <|| H ||* r*,
where H = [f"(z)]"Y2G[f"(z)]~'/2. In view of Corollary 4.1.4, we have

G = 5 f"(a)-

Therefore || H ||< -~ and we conclude that

3 (z) < oy = (Wh(r)2

Thus, As(z) < w,(r). Applying w'(-) to both sides, we get the remaining
part of (4.1.18).
Finally, inequalities (4.1.19) follow from (4.1.8) and (4.1.10). O

Let us estimate the local rate convergence of the standard Newton
method (4.1.16). It is convenient to do that in terms of Af(x), the local
norm of the gradient.

THEOREM 4.1.14 Let z € dom f and Af(x) < 1. Then the point

zy =z [f"(2)]7 f'(2)
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belongs to dom f and we have
Ar(@) \?
M) < (F52)

Proof: Denote p =z, —z, A = Af(z). Then || p |z= A < 1. Therefore
z4+ € dom f (see Theorem 4.1.5). Note that in view of Theorem 4.1.6,

Mles) = ([f" (@)™ (s), [ (@)

< = 1 7(24) o= 5 Il () Il
Further,
f'(z4) = f(a4) = f'(z) = f(z)(z4 — 7) = Gp,

1
where G = [[f"(z + Tp) — f"(z)]dr. Therefore
0

| f'(z4) 2= ([f"(2)] "' Gp,Gp) <l H |* - | p |13,
where H = [f"(z)]"'/2G[f"(x)]~"/2. In view of Corollary 4.1.4,
(—A+ 1A f"(z) 2 G < 25" ().

Therefore || H ||< max {l—f:\-, A— %AQ} = l_f,\'* and we conclude that

4
,\}(m+) < (—r_lxj! I fi(z4) I12< ﬁf—,\)r
0O

Theorem 4.1.14 provides us with the following description of the region
of quadratic convergence of scheme (4.1.16):

Mlz) < X=35=0.3819...,

where X is the root of the equation (1—:\1—)-7 = 1. In this case we can

guarantee that A¢(z4) < Ag(z).
Thus, our results lead to the following strategy for solving the initial
problem (4.1.13).

m First stage: Af(zk) > B, where 8 € (0, A). At this stage we apply the
damped Newton method. At each iteration of this method we have

f(zk41) < flzx) —w(B).
Thus, the number of steps of this stage is bounded:
N < oglf (@) = f(27)]
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» Second stage: Ap(zy) < [. At this stage we apply the standard
Newton method. This process converges quadratically:

T 2 A
Mze) < (2550)" < 488 < M),

It can be shown that the local convergence of the damped Newton
method (4.1.14) is also quadratic:

MI-II

T+ =2 = S = = Af(z4) < 2/\?,(3:). (4.1.20)
However, we prefer to use the above switching strategy since it gives
better complexity bounds. Relation (4.1.20) can be justified in the same
way as it was done in Theorem 4.1.14. We leave the reasoning as an

exercise for the reader.

4.2 Self-concordant barriers

(Motivation; Definition of self-concordant barriers; Main properties; Standard
minimization problem; Central path; Path-following method; How to initialize
the process? Problems with functional constraints.)

4.2.1 Motivation

In the previous section we have seen that the Newton method is
very efficient in minimizing a standard self-concordant function. Such
a function is always a barrier for its domain. Let us check what can
be proved about the sequential unconstrained minimization approach

(Section 1.3.3), which uses such barriers.
In what follows we deal with constrained minimization problems of

special type. Denote Dom f = cl (dom f).

DEFINITION 4.2.1 We call a constrained minimization problem stan-
dard if it has the form

min{{c,z) | z € Q}, (4.2.1)

where @Q 1s a closed convezr set. We assume also that we know a self-
concordant function f such that Dom f = Q.

Let us introduce a parametric penalty function
f(t;z) = t{e,z) + f(z)

with ¢ > 0. Note that f(¢; z) is self-concordant in = (see Corollary 4.1.1).
Denote
z*(t) = arg min f(t;z).

zE€dom f
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This trajectory is called the central path of the problem (4.2.1). Note
that we can expect z*(t) — z* as ¢ — oo (see Section 1.3.3). Therefore
we are going to follow this trajectory.

Recall that the standard Newton method, as applied to minimization
of function f(t;z), has a local quadratic convergence (Theorem 4.1.14).
Moreover, we have an explicit description of the region of quadratic

convergence:
Ay (@) S B < A= 3%@

Let us study our possibilities assuming that we know exactly z = z*(t)
for some ¢ > 0.
Thus, we are going to increase t:

t+=t+A, A)O

However, we need to keep z in the region of quadratic convergence of
the Newton method for function f(t + A;-):

Aferas)(@) S B <A

Note that the update ¢ — ¢, does not change the Hessian of the barrier
function:
't +Asz) = f7(t z).
Therefore it is easy to estimate how can be big the step A. Indeed, the
first order optimality condition provides us with the following central
path equation:
tc+ f'(z%(t)) = 0. (4.2.2)

Since tc + f'(z) = 0, we obtain
Meran) (@) =l tee+ ['(2) o= A | e llz= 2 | f'(2) < B.

Hence, if we want to increase t at a linear rate, we need to assume that
the value

Ni(2) = f'(2) 3= (" (@) 7' (@), £(2))

is uniformly bounded on dom f.
Thus, we come to a definition of self-concordant barrier.

4.2.2 Definition of self-concordant barriers

DEFINITION 4.2.2 Let F(z) be a standard self-concordant function. We
call it a v-self-concordant barrier for set Dom F, if

aup [2(F'(z),u) — (F"(r)u,u)] < v (4.2.3)
ucR"
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for all € dom F. The value v is called the parameter of the barrier.

Note that we do not assume F”(z) to be nondegenerate. However, if
this is the case, then the inequality (4.2.3) is equivalent to

([F"(z)]"'F'(z), F'(z)) < v. (4.2.4)
We will use also another equivalent form of inequality (4.2.3):
(F'(z),u)? < v(F"(z)u,u) Yue R" (4.2.5)

(To see that for u with (F"(z)u,u) > 0, replace » in (4.2.3) by Au and
find the maximum of the left-hand side in A.) Note that the condition
(4.2.5) can be written in a matrix notation:

F"(z) = 1F'(z)F'(z)T. (4.2.6)

Let us check now which self-concordant functions given by Exam-
ple 4.1.1 are also self-concordant barriers.

EXAMPLE 4.2.1 1. Linear function: f(z) = a + {(a,z), dom f = R".
Clearly, for a # 0 this function is not a self-concordant barrier since

f'(z) = 0.

2. Convex quadratic function. Let A = AT » 0. Consider the function
f(z) =a+ (a,z) + }(Az,z), domf = R".
Then f'(z) = a + Az and f"(z) = A. Therefore
(f@)~'f'(2),f'(z)) = (A7'(Az —a), Az —a)
= (Az,z) —2(a,z) + (A7 'a,qa).

Clearly, this value is unbounded from above on R". Thus, a quadratic
function is not a self-concordant barrier.

3. Logarithmic barrier for a ray. Consider the following function of one
variable:

F(z) = —Inz, domF ={z€R'| z>0}.

Then F'(z) = —1 and F"(z) = 75 > 0. Therefore

F'(z))? 1 2
= @oe =l
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Thus, F(z) is a v-sell-concordant barrier for {z > 0} with v = 1.

4. Logarithmic barrier for a second-order region. Let A = AT = 0.
Consider the concave quadratic function

¢(z) = a + (a,z) — 3(Az, z).
Define F(z) = —In¢(z), dom f = {z € R" | ¢(z) > 0}. Then
(F'(z),u) = —gilla,u) — (Az,u)),
(F'(x)u,u) = gl(a,w) = (Az,u)]? + g5 (Au, u).
Denote w; = (F'(z),u) and wy = W%-;(Au,u). Then
(F"(z)u,u) = w +wp 2 w}.

Therefore 2(F'(z), u) — (F"(z)u,u) < 2w; —w? < 1. Thus, F(z) isa
v-self-concordant barrier with v = 1. O

Let us present some simple properties of self-concordant barriers.

THEOREM 4.2.1 Let F(z) be a self-concordant barrier. Then the func-
tion (c,z) + F(z) is a self-concordant function on dom F.

Proof: Since F(z) is a self-concordant function, we just apply Corol-
lary 4.1.1. O
Note that this property is important for path-following schemes.

THEOREM 4.2.2 Let F; be v;-self-concordant barriers, i = 1,2. Then
the function

F(z) = Fi(z) + Fa(z)

is a self-concordant barrier for convex set Dom F = Dom Fj (| Dom F»
with the parameter v = vy + .
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Proof: In view of Theorem 4.1.1, F is a standard self-concordant func-
tion. Let us fix z € dom F. Then

max [2(F(z)u, u) — (F"(z)u, u)]

= max [2(F!(z)u,u) — (F]'(z)u,u) + 2(F|(z)u, u) — (F]'(z)u, u)]

IA

max [2(Fj()u, u) ~ (F{'(2)u, v)]
B max [2(F3(z)u,u) — (Fy (z)u,u)] < vy + wa.
u n
O

Finally, let us show that the value of a parameter of a self-concordant
barrier is invariant with respect to affine transformation of variables.

THEOREM 4.2.3 Let A(z) = Az + b be a linear operator, A(z) : R" =
R™ . Assume that function F(y) is a v-self-concordant barrier. Then the
function ®(z) = F(A(zx)) is a v-self-concordant barrier for the set

Dom® = {z € R" | A(z) € Dom F}.

Proof: Function ®(z) is a standard self-concordant function in view of
Theorem 4.1.2. Let us fix £ € dom®. Then y = A(z) € dom F. Note
that for any u € R" we have

(®'(x),u) = (F'(y), Au), (3" (x)u,u) = (F"(y)Au, Au).
Therefore
max [2(®(2), u) ~ (2" (e)u, u)]

= 1?(%&&}5‘ [2(F’(y),Au) = {F”(U)Aua Au)]

e max [2(F'(y),v) — (F"(y)v,v)] < v.

4.2.3 Main inequalities

Let us show that the local characteristics of a self-concordant barrier
(the gradient and the Hessian) provide us with global information about
the structure of the domain.

THEOREM 4.2.4 1. Let F(z) be a v-self-concordant barrier. For any z
and y from dom F', we have

(F'(z),y — 2) <. (4.2.7)
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Moreover, if (F'(z),y — z) > 0, then

(F'(y) - F'(z),y — z) > JEfga=s (4.2.8)

2. A standard self-concordant function F(z) is a v-self-concordant bar-
rier if and only if

F(y) > F(z) -vin(1- L(F'(2),y—z)) Vo,yE€domF. (4.29)

Proof: 1. Let z,y € dom F. Consider the function
Q-l’(t) =(F'($+t(y—m)),y—a:), te [071]

If (0) < 0, then (4.2.7) is trivial. If ¢(0) = 0, then (4.2.8) is trivial.
Suppose that ¢(0) > 0. Note that in view of (4.2.5) we have

¢'(t) =(F'(z+ty—2z))ly—=)y—=)
> L(F(z+ty —z),y— )2 = L6%(2).

Therefore ¢(t) increases and it is positive for ¢t € [0,1]. Moreover, for
any t € [0,1] we have

1 1 1
—3® T a0y 2 vt

This implies that (F'(z),y — z) = ¢(0) < ¥ for all ¢ € [0,1]. Thus,
(4.2.7) is proved. Moreover,

#(t) - $(0) > 20 - 4(0) = 2O, te[0,1).

Taking t = 1, we get (4.2.8).
2. Denote ¢(z) = e=vF@), Then

P(z) = —levF@. pi(z),
¥'(@) = —ie i [F(a) - LF(2)F'(2)7].
Thus, in view of Theorem 2.1.4 and definition (4.2.6), function ¥(z) is

concave if and only if the function F(z) is a v-self-concordant barrier.
It remains to note that (4.2.9) is the same as

P(y) < ¢(z) + (¥ (2),y - 2)
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up to a logarithmic transformation of both sides of the inequality. O

THEOREM 4.2.5 Let F(x) be a v-self-concordant barrier. Then for any
z € domF and y € Dom F such that

(F'(z),y —z) 20, (4.2.10)

we have
ly—zllz<v+2V0. (4.2.11)

Proof: Denote r =| y —z ||;. Let r > /v. Consider the point

Ya = Z + oy — z) with o = Jré < 1. In view of our assumption

(4.2.10) and inequality (4.1.7) we have
w=(F'(Ya)y—2) 2 (F'(ya) — F'(z),y — z)

= 2(F'(ya) = F'(2),ya — 2)
1 va—z||2 _ _ofy-=z|2 _ rlfu
2 o T+ya—zlZ = T+aly—zlz = T+/v°
On the other hand, in view of (4.2.7), we obtain

(L= a)w = (F’(ya)ay —Ya) S V.

Thus,
(1-) 2% <
and that is exactly (4.2.11). O

We conclude this section by studying the properties of one special
point of a convex set.

DEFINITION 4.2.3 Let F(z) be a v-self-concordant barrier for the set

Dom F'. The point

Ty =arg min F(z
F gIEdOmF ()1

is called the analytic center of convez set Dom F, generated by the barrier
F(z).

THEOREM 4.2.6 Assume that the analytic center of a v-self-concordant
barrier F(z) exists. Then for any z € Dom F' we have

:::._,S !/+2\/;.

I =<k
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On the other hand, for any x € R" such that || x — zF ||z;. < 1 we have
z € Dom F.

Proof: The first statement follows from Theorem 4.2.5 since F'(z}) =
0. The second statement follows from Theorem 4.1.5. O

Thus, the asphericity of the set Dom F with respect to z}, computed
in the metric || - ||z, does not exceed v +2y/v. It is well known that for
any convex set in R™ there exists a metric in which the asphericity of this
set is less than or equal to n (John Theorem). However, we managed to
estimate the asphericity in terms of the parameter of the barrier. This
value does not depend directly on the dimension of the space.

Note also, that if Dom F' contains no straight line, the existence of z}
implies the boundedness of Dom F. (Since then F"(z}) is nondegener-
ate, see Theorem 4.1.3).

COROLLARY 4.2.1 Let Dom F be bounded. Then for any x € domF
and v € R" we have

lolz<s (v +2vv) vz, .
Proof: By Lemma 3.1.12 we get the following representation:
lo llz= ([F"(2)] " v, 0)"/? = max{(v,u) | (F"(2)u,u) <1}.

On the other hand, in view of Theorem 4.1.5 and Theorem 4.2.6, we

have
B ={yeR"|||ly—z||z<1}CDomF

C{yeR"|lly—sf lls<v+2vV} = B..
Therefore, using again Theorem 4.2.6, we get the following:

Ivlz =max{(v,y—z)| y € B} < max{(v,y —z) | y € B}

= v,z —2) + (v +2v7) | v 2, -

Note that || v ||5=|| —v ||5. Therefore we can assume (v,z} —z) < 0. O

4.2.4  Path-following scheme

Now we are ready to describe a barrier model of the minimization
problem. This is the standard minimization problem

min{{c,z) | z € Q} (4.2.12)
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with bounded closed convex set ) = Dom F, which has nonempty inte-
rior, and which is endowed with a v-self-concordant barrier F(z).
Recall that we are going to solve (4.2.12) by tracing the central path:

z*(t) = arg Emm f(t; =), (4.2.13)

where f(t;z) = t(c,z) + F(z) and t > 0. In view of the first-order
optimality condition, any point of the central path satisfies equation

te+ F'(z*(t)) = 0. (4.2.14)
Since the set @ is bounded, the analytic center of this set, z}, exists and
z*(0) = zf. (4.2.15)

In order to follow the central path, we are going to update the points,
satisfying an approzimate centering condition:

At (@) =N f(82) llz=] te + F'(2) [I2< B, (4.2.16)

where the centering parameter § is small enough.
Let us show that this is a reasonable goal.

THEOREM 4.2.7 For any t > 0 we have
e,z (1) —c* < ¥, (4.2.17)

where c* is the optimal value of (4.2.12). If a point x satisfies the cen-
tering condition (4.2.16), then

(oz) —ct < 3 (v+ ERE), (4.2.18)

Proof: Let z* be a solution to (4.2.12). In view of (4.2.14) and (4.2.7)
we have

(e, z*(t) — 2*) = {{F'(z*(1),z* — z*(t)) < %.
Further, let z satisfy (4.2.16). Denote A = Ag(.y(z). Then
tle,z—z*(t) = (f(tz) - F(z),z —z*(t))

< A+ llz—z*) s

(A + Vo) 125 < B8

IA
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in view of (4.2.4), Theorem 4.1.13 and (4.2.16). a

Let us analyze now one step of a path-following scheme. Namely,
assume that ¢ € dom F. Consider the following iterate:

* 3
CI

(4.2.19)
4 =z —[F"(@)] (trc+ F(2).

THEOREM 4.2.8 Let z satisfy (4.2.16):
| te+ F'(z) 12 B

with B < X = l—g@ Then for ~, such that

RIS ﬁ% -6, (4.2.20)

we have again || tyc+ F'(z4) |[3< B.

Proof: Denote A\g = || tc + F'(z) ||2< B, A1 = || t+c+ F'(z) ||} and
A+ = ” t+C+F’($+) ||;:+. Then

A< Aot |7 [S 6+ 7]
and in view of Theorem 4.1.14 we have
A< (2) =
It remains to note that inequality (4.2.20) is equivalent to
wi(B+ 7] < VB

(recall that w'(w. (7)) = 7, see Lemma 4.1.4). O

Let us prove now that the increase of ¢ in the scheme (4.2.19) is
sufficiently large.

LEMMA 4.2.1 Let x satisfy (4.2.16). Then
I ellz< $(8+ V). (4.2.21)
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Proof: Indeed, in view of (4.2.16) and (4.2.4), we have
tlhellz=ll f'(t2) = F'(2) 1121 f' (=) 12 + 1| Fi(2) 12 8+ Vo
O

Let us fix now some reasonable values of parameters in the scheme
(4.2.19). In the rest of this chapter we always assume that

1 _ VB _ 5
b=t v=7lm--4 (4.2.22)

We have proved that it is possible to follow the central path, using the
rule (4.2.19). Note that we can either increase or decrease the current
value of t. The lower estimate for the rate of increasing t is

t+2(1+m).t,

and the upper estimate for the rate of decreasing t is

APy ———

Thus, the general scheme for solving the problem (4.2.12) is as follows.

Main path-following scheme

0. Set tg = 0. Choose an accuracy € > 0 and zg € dom F
such that
| F'(zo) |I7,< B.

1. kth iteration (k > 0). Set (4.2.23)
teyr =t + ﬁ;ﬂ;—k1

Ter1 = Tk — [F"(zk)]  (tkprc + F'(z1)).

2. Stop the process if ety > v+ @—Tl—/ém

Let us give a complexity bound for the above scheme.

THEOREM 4.2.9 The scheme (4.2.23) terminates no more than after N
steps, where

vllell;
N<O (\/;]n —(—F—) .
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Moreover, at the moment of termination we have (c,zn) — ¢* < €.

Proof: Note that rg = || 2o — 2F [z < 1—% (see Theorem 4.1.13).
Therefore, in view of Theorem 4.1.6 we have

L=llcl,s 2 lels Shlell, -
7(1-26) g BLe
Thus, tx > Al (1 + 5+\/;) for all k > 1. a

F
Let us discuss now the above complexity estimate. The main term in
the complexity is
vllell;.
7.2/vIn —F.
Note that the value v || ¢ ||}. estimates the variation of the linear func-
tion {c,z) over the set Dom F' (see Theorem 4.2.6). Thus, the ratio

v]c||*.
F

can be seen as a relative accuracy of the solution.
The process (4.2.23) has one serious drawback. Sometimes it is diffi-

cult to satisfy its starting condition
| F'(zo) Iz,< 8.

In such cases we need an additional process for finding an appropriate
starting point. We analyze the corresponding strategies in the next
section.

4.2.5 Finding the analytic center

Thus, our goal now is to find an approximation to the analytic center
of the set Dom F. Let us look at the following minimization problem:

min{F(z) | z € dom F}, (4.2.24)

where F' is a v-self-concordant barrier. In view of the needs of the
previous section, we have to find an approximate solution Z € dom F of
this problem, which satisfies inequality

I F'(z) lI3< B,

for certain 8 € (0,1).
In order to reach our goal, we can apply two different minimiza-
tion schemes. The first one is a straightforward implementation of the
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damped Newton method. And the second one is based on path-following

approach.
Consider the first scheme.

Damped Newton method for analytic centers

0. Choose yp € dom F.
1. kth iteration (k > 0). Set (4.2.25)

_ _ Fu X —lFu
Ye+l = Uk T TRIPG,

2. Stop the process if || F'(yk) ||;, < 8.

THEOREM 4.2.10 The process (4.2.25) terminates no later than after
D—{lﬁ—)(F(yg] — F(z}%)) iterations.

Proof: Indeed, in view of Theorem 4.1.12, we have
F(yk+1) < F(ye) = w(Ar(yx)) < Fye) —w(B).
Therefore F'(yo) — kw(B) = F(yx) = F(z}). a

The implementation of the path-following approach is a little bit more
complicated. Let us choose some yy € dom F. Define the auziliary
central path as follows:

y*(t) = arg ,Jin [—t(F'(v0),¥) + F(y)],

where ¢ > 0. Note that this trajectory satisfies the equation
F'(y*(t)) = tF'(yo). (4.2.26)

Therefore it connects two points, the starting point yp and the analytic
center Tp.:
y' (1) =w, y*(0)=zk.
We can follow this trajectory by the process (4.2.19) with decreasing t.
Let us estimate the rate of convergence of the auxiliary central path
y*(t) to the analytic center.



Structural optimization 205
LEMMA 4.2.2 For any t > 0 we have
| F/ (5 (8)) 5 < (v +2v/5) || F'(z0)

Proof: This estimate follows from (4.2.26) and Corollary 4.2.1. a

*
. L.
IF

Let us look now at the corresponding algorithmic scheme.

Auxiliary path-following scheme

0. Choose 39 € Dom F. Set t5 = 1.
1. kth iteration (k > 0). Set

tk+1 = tk = m;—k, (4227)

Ye1 =Yk — [F"(ye)] ™" (tes1 F' (o) + F' ().

2. Stop the process if || F'(yk) ||y, < ﬁ%
Set Z =y — [F"(yx)] " F' (yx).

Note that the above scheme follows the auxiliary central path y*(¢) as
tr — 0. It updates the points {yx} satisfying the approximate centering
condition

Il teF' (yo) + F' () lly, < B.

The termination criterion of this process,
—_ / < ﬁ
Ak = F'(ye) Ny < oy

2
guarantees that | F'(Z) ||2< (]—iﬁ) < (3 (see Theorem 4.1.14).
Let us derive a complexity estimate for this process.

THEOREM 4.2.11 The process (4.2.27) terminates no later than after

; ]
i
Tp

LB+ o) In[L(v +2v/7) || F'(z0)

iterations.
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Proof: Recall that we have fixed the parameters:

| _ B _ 5
B=3, ’Y—ﬁexg—ﬁ—ﬁ-

Note that ty5 = 1. Therefore, in view of Theorem 4.2.8 and Lemma 4.2.1,

we have it
e < (1= 57) te S e (- 532).
Further, in view of Lemma 4.2.2, we obtain

I F'(y) 5, = I (6 F' (o) + F'(yx)) — teF" (o) I3,

< B+t ] Fl(wo) .S B+ talv +2V5) || F'(zo) |1, -

Thus, the process is terminated at most when the following inequality
holds:
/ * < J& — 3 =~.
(v +2v0) | F'(ao) Iz, < 2o - =1
]
Now we can discuss the complexity of both schemes. The principal
term in the complexity of the auxiliary path-following scheme is

7.2vv[Inv +In || F'(zo) II3, ]

and for the auxiliary damped Newton method it is O(F (yo)—F(zF)). We
cannot compare these estimates directly. However, a more sophisticated
analysis demonstrates the advantages of the path-following approach.
Note also that its complexity estimate naturally fits the complexity of the
main path-following process. Indeed, if we apply (4.2.23) with (4.2.27),
we get the following complexity bound for the whole process:

7.2V7 [2Inv + In || F'(zo) s, +1n].

To conclude this section, note that for some problems it is difficult
even to point out a starting point yy € dom F. In such cases we should
apply one more auxiliary minimization process, which is similar to the
process (4.2.27). We discuss this situation in the next section.

I;;. +1n ” (4]

4.2.6  Problems with functional constraints
Let us consider the following minimization problem:

min fo(z),
st fi(z)<0,7=1...m, (4.2.28)

T € Q,
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where Q is a simple bounded closed convex set with nonempty inte-
rior and all functions fj, j = 0...m, are convex. We assume that the
problem satisfies the Slater condition: There exists Z € int @ such that
fi(@ <0forallj=1...m.

Let us assume that we know an upper bound 7 such that fy(z) < 7
for all z € Q. Then, introducing two additional variables 7 and s, we
can rewrite this problem in the standard form:

min 7,

s.t fo(z) <,
(4.2.29)

filz) <K, j=1...m,
T€Q, 7<7, k<0

Note that we can apply the interior-point methods to a problem only if
we are able to construct the self-concordant barrier for the feasible set.
In the current situation this means that we should be able to construct
the following barriers:

= A self-concordant barrier Fg(z) for the set Q.

m A self-concordant barrier Fy(z,7) for the epigraph of the objective
function fy(z).

= Self-concordant barriers Fj(z, ) for the epigraphs of the functional
constraints f;(z).

Let us assume that we can do that. Then the resulting self-concordant
barrier for the feasible set of the problem (4.2.29) is as follows:

ﬁ'(a:,'r,rc) = Fg(z) + Fo(z,7) + iﬂ(m,n) — In(7 — 7) — In(—k).
j=1

The parameter of this barrier is

m
D=vogtvo+ Y v+2 (4.2.30)
i=1

where 1,y are the parameters of the corresponding barriers.
Note that it could be still difficult to find a starting point from dom F.

This domain is an intersection of the set ¢} with the epigraphs of the ob-
jective function and the constraints and with two additional constraints
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7 < 7 and £ < 0. If we have a point ¢ € int @, then we can choose
large enough 7y and k¢ to guarantee

fﬂ(mﬂ) <7 <T, fJ('rU) < Ko, j: l...m,

but then the constraint k < 0 could be violated.
In order to simplify our analysis, let us change notation. From now
on we consider the problem

min (c, 2},
st. z€S, (4.2.31)

(d,z) <0,

where z = (z,7,K), (¢,2) =7, (d,2) = k and S is the feasible set of the
problem (4.2.29) without the constraint & < 0. Note that we know a
self-concordant barrier F'(z) for the set S and we can easily find a point
zp € int S. Moreover, in view of our assumptions, the set

S(@) ={z€ S| (d,z) <a}

is bounded and it has nonempty interior for a large enough.
The process of solving the problem (4.2.31) consists of three stages.
1. Choose a starting point zy € intS and an initial gap A > 0.
Set @ = (d,zy) + A. If a < 0, then we can use the two-stage process
described in Section 4.2.5. Otherwise we do the following. First, we find
an approximate analytic center of the set S(a), generated by the barrier

F(z) = F(2) — In(a — (d, 2)).
Namely, we find a point Z satisfying the condition
Ap(2) = (F(2)7 (F'(3) + =) » F/(B) + =) V2 < 8.

In order to generate such a point, we can use the auxiliary schemes
discussed in Section 4.2.5.

2. The next stage consists in following the central path z(t) defined
by the equation

td + F'(z(t)) =0, t>0.

Note that the previous stage provides us with a reasonable approxima-
tion to the analytic center 2(0). Therefore we can follow this path,
using the process (4.2.19). This trajectory leads us to the solution of
the minimization problem

min{{(d,z) | z € S(a)}.
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In view of the Slater condition for problem (4.2.31), the optimal value
of this problem is strictly negative.

The goal of this stage consists in finding an approximation to the
analytic center of the set

§S={z€8(a)| (d,2) <0},
generated by the barrier
F(z) = F(z) = In(—(d, z)).
This point, z,, satisfies the equation
F'(z,) - @i—‘) = 0.

Therefore z* is a point of the central path z(t). The corresponding value
of the penalty parameter ¢, is

e 1
t.——m>0.

This stage ends up with a point z, satisfying the condition
Ap(2) = (F"(2) 71 (F(2) - iy )  F(2) - )12 < B

3. Note that F”'(z) > F"(z). Therefore, the point Z, computed at the
previous stage satisfies inequality

Ap(2) = (F(2) 7 (F(2) - ofiy) ' (3) - o) /2 < B

This means that we have a good approximation of the analytic center of
the set S and we can apply the main path-following scheme (4.2.23) to

solve the problem )
min{{c, z) | z € S}.

Clearly, this problem is equivalent to (4.2.31).

We omit the detailed complexity analysis of the above three-stage
scheme. It could be done similarly to the analysis of Section 4.2.5. The
main term in the complexity of this scheme is proportional to the product
of Vi (see (4.2.30)) and the sum of the logarithm of desired accuracy
€ and the logarithms of some structural characteristics of the problem
(size of the region, deepness of Slater condition, etc.).

Thus, we have shown that we can apply efficient interior point meth-
ods to all problems, for which we can point out some self-concordant
barriers for the basic feasible set ) and for the epigraphs of functional
constraints. Our main goal now is to describe the classes of convex
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problems, for which such barriers can be constructed in a computable
form. Note that we have an exact characteristic of the quality of the
self-concordant barrier. That is the value of its parameter: The smaller
it is, the more efficient will be the corresponding path-following scheme.
In the next section we discuss our possibilities in applying the developed
theory to particular convex problems.

4.3  Applications of structural optimization

(Bounds on parameters of self-concordant barriers; Linear and quadratic opti-
mization; Semidefinite optimization; Eztremal ellipsoids; Separable problems;
Geometric optimization; Approzimation in l, norms; Choice of optimnization
scheme.)

4.3.1 Bounds on parameters of self-concordant
barriers

In the previous section we have discussed a path-following scheme for
solving the following problem:

in {c, z), 4.3.1
;%13(6 ) (4.3.1)

where @ is a closed convex set with nonempty interior, for which we
know a v-self-concordant barrier F(z). Using such a barrier, we can
solve (4.3.1) in O (/v - In ¥) iterations of a path-following scheme. Recall
that the most difficult part of each iteration is the solution of a system
of linear equations.

In this section we study the limits of applicability of this approach. We
discuss the lower and upper bounds for the parameters of self-concordant
barriers; we also discuss some classes of convex problems, for which the
model (4.3.1) can be created in a computable form.

Let us start from lower bounds on barrier parameters.

LEMMA 4.3.1 Let f(t) be a v-self-concordant barrier for the interval
(a,8) C R', a < B < oc. Then

Proof: Note that v > k by definition. Let us assume that x < 1. Since
f(t) is a barrier for (a,[), there exists a value & € (o, ) such that
f'(t) >0 for all t € [@, 3).
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Consider the function ¢(t) = %i, t € [@,3). Then, since f'(t) >0
f(t) is self-concordant and ¢(t) < k < 1, we have

o) = 270 - ($#4)° 1o
= f(t( ik —fUﬂr)z (1= VR)F(®).

Hence, for all t € [&, 3) we obtain ¢(t) > ¢(a)+ 2(1 — k) (f(t) — f(@)).
This is a contradiction since f(t) is a barrier and ¢(t) is bounded from
above. a

COROLLARY 4.3.1 Let F(z) be a v-self-concordant barrier for Q C R™.
Then v > 1.

Proof: Indeed, let z € int@. Since @ C R", there exists a nonzero
direction u € R™ such that the line {y = z + tu, t € R'} intersects
the boundary of the set ). Therefore, considering the function f(t) =
F(z + tu), and using Lemma 4.3.1, we get the result. O

Let us prove a simple lower bound for parameters of self-concordant

barriers for unbounded sets.
Let @ be a closed convex set with nonempty interior. Consider T €
int Q. Assume that there exists a nontrivial set of recession directions

{p1,...,px} of the set Q:
F+ap; €Q Ya>0.
THEOREM 4.3.1 Let positive coefficients {f5;}%_, satisfy condition
F-Bipi¢intQ, i=1...k

If for some positive ay,...,af we have y = T — Z a;p; € Q, then the

parameter v of any self-concordant barrier for Q satzsﬁes inequality:

'(::LD

.§

Proof: Let F(z) be a v-self-concordant barrier for the set Q. Since p;
is a recession direction, we have

(F'(%), —=pi) > (F"(Z)pi, pi)""* = pi 2,
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(since otherwise the function f(t) = F(Z + tp) attains its minimum; see
Theorem 4.1.11).

Note that £ — 3; p; ¢ Q. Therefore, in view of Theorem 4.1.5, the
norm of the direction p; is large enough: f; || pi ||z> 1. Hence, in view
of Theorem 4.2.4, we obtain

o

k k
v 2 (F'(z),§ — ) = (F'(z), -  aipi) 2 X o I pi llz= E} .

a

Let us present now an existence theorem for self-concordant barriers.
Consider a closed convex set @, int @ # 0, and assume that @ contains
no straight line. Define a polar set of () with respect to some point
T € intQ:

P(z)={s€eR"| (s,z—-%) <1, VzeQ}

It can be proved that for any z € int Q the set P(z) is a bounded closed
convex set with nonempty interior. Denote V' (z) = vol, P(z).

THEOREM 4.3.2 There ezxist absolute constants ¢ and cz, such that the

function
U(z) =c¢; - InV(z)

5 a (c2 - n)-self-concordant barrier for Q). m]

Function U(z) is called the universal barrier for the set @. Note that
the analytical complexity of problem (4.3.1), equipped with a universal
barrier, is O (y/n - In2). Recall that such efficiency estimate is impossi-
ble, if we use a local black-box oracle (see Theorem 3.2.5).

The above result has mainly a theoretical interest. In general, the uni-
versal barrier U(z) cannot be easily computed. However, Theorem 4.3.2
demonstrates that such barriers, in principle, can be found for any con-
vex set. Thus, the applicability of our approach is restricted only by
abilities of constructing a computable self-concordant barrier, hopefully
with a small value of the parameter. The process of creating the barrier
model of the initial problem, can be hardly described in a formal way.
For each particular problem there could be many different barrier mod-
els, and we should choose the best one, taking into account the value of
the parameter of the self-concordant barrier, the complexity of its gradi-
ent and Hessian, and the complexity of solution of the Newton system.
In the rest of this section we will see how that can be done for some
standard problem classes of convex optimization.
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4.3.2 Linear and quadratic optimization
Let us start from linear optimization problem:

2 (o)

s.t Az =6, (4.32)
e >0,i=1...n, (& z€R")

where A is an {(m X n)-matrix, m < n. The inequalities in this problem
define the positive orthant in R™. This set can be equipped with the
following self-concordant barrier:

n
F(z)=- Z Inz® v=n,
i=1

(see Example 4.2.1 and Theorem 4.2.2). This barrier is called the stan-
dard logarithmic barrier for R'}.

In order to solve the problem (4.3.2), we have to use a restriction
of the barrier F(z) onto affine subspace {z : Az = b}. Since this
restriction is an n-self-concordant barrier (see Theorem 4.2.3), the com-
plexity estimate for the problem (4.3.2) is O (y/n-1In %) iterations of a
path-following scheme.

Let us prove that the standard logarithmic barrier is optimal for R’.

LEMMA 4.3.2 Parameter v of any self-concordant barrier for R", satis-
fies the inequality v > n.

Proof: Let us choose

T =e=(1,...,1)T €intRY,

Pi = €, 1'=1...n,

where e; is the ith coordinate vector of R". Clearly, the conditions of
Theorem 4.3.1 are satisfied with a; = 8; =1, i = 1...n. Therefore

3

v>

=2
Il
3

1

O

Note that the above lower bound is valid only for the entire set R’}.
The lower bound for intersection {z € R", | Az = b} can be smaller.
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Let us look now at a quadratically constrained quadratic optimization
problem:

min go(z) = ag + (ap, z) + %(Ag:r:, z),
z€ER"
(4.3.3)

8.t gi(z) = a; + (ai,z) + §(Aiz,z) < G, i=1...m,
where A; are some positive semidefinite (n X n)-matrices. Let us rewrite
this problem in a standard form:

min 7,
z,T

s.t qo(z) <, (4.3.4)

qi(z) < B, i=1...m,

r€ R T€R.

The feasible set of this problem can be equipped with the following self-
concordant barrier:

m
F(z,7) = ~In(r - go(2)) = }_In(B — ai(2)), v=m+1,
=1
(see Example 4.2.1, and Theorem 4.2.2). Thus, the complexity bound

for problem (4.3.3) is O (\/m +1:-In %) iterations of a path-following

scheme. Note this estimate does not depend on n.

In many applications the functional components of the problem in-
clude a nonsmooth quadratic term of the form || Az — b ||. Let us show
that we can treat such terms using interior-point technique.

LEMMA 4.3.3 The function
F(z,t) = ~In(t*~ || z |I?)
is a 2-self-concordant barrier for the convez set®
Ky ={(z,t) e B | t2]| z [}}.

Proof: Let us fix a point z = (z,f) € int K; and a nonzero direction
u = (h,7) € R**'. Denote é(a) = (t + ar)?~ || = + ah ||2. We need to
compare the derivatives of function

#la) = F(z+ au) = —~Iné(a)

5Depending on the field, this set has different names: Lorentz cone, ice-cream cone, second-
order cone.
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at a = 0. Denote ¢) = ¢()(0), £¢) = £0)(0). Then
¢ =2(tr — (z,h)), €& =2(r*-| h|?),

b=f v (8- s a(5)

Note the inequality 2¢" > (¢')? is equivalent to (£/)% > 2¢¢”. Thus, we
need to prove that for any (h,7) we have

(t7 = (z,h))? 2 (= ||z I*)(=*= || & |I*). (4.3.5)

Clearly, we can restrict ourselves by | 7 [>|| h || (otherwise the right-
hand side of the above inequality is nonpositive). Moreover, in order to
minimize the left-hand side, we should chose sign 7 = sign (z, h) (thus,
let 7 > 0), and (z,h) =|| z || - || A ||. Substituting these values in (4.3.5),
we get a valid inequality.

Finally, since 0 < é%'g < 4 and [1 - €% > 1 — 3¢, we get the
following:

o] _ olE'1I€)? - 3€”|
(¢u)3[2 2 [(gr)z EEH]E/? < 2.
a
Let us prove that the barrier described in the above statement is
optimal for the second-order cone.

LEMMA 4.3.4 Parameter v of any self-concordant barrier for the set Ko
satisfies inequality v > 2.

Proof: Let us choose z = (0,1) € int Ky and some h € R", || h ||= L.
Define

B

’ 51:B2=

Note that for all v > 0 we have z + yp; = (+vyh,1 + 7v) € K3 and

P = (h5 1)1 P2 = (_h‘vl)) a) =az =

L

Z— fBipi = (£3h, 3) € int Ko,
f—alpl—-agpg=(——é—h+%h,l~—%—%)=OEK2.

Therefore, the conditions of Theorem 4.3.1 are satisfied and

02%-1-4-%3:2.
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4.3.3 Semidefinite optimization

In semidefinite optimization the decision variables are some matrices.
Let X = {X('J)}}:jzl be a symmetric n X n-matrix (notation: X €
S™*™). The linear space S™*" can be provided with the following inner
product: for any X, Y € S™*" define

=33 xCAYED | X = (X, X)L

i=1j=1

Sometimes the value || X || is called the Frobenius norm of matrix X.
For symmetric matrices X and Y we have the following identity:

(Xi Y- Y)F

5~ 3 X(d) 35 YERYGH = 35 5 5 xEN Y6k y (k)
— =1 k=1 121]:1k=l

i=1

.,

(4.3.6)

)E k.j) i x Dy k) = i i Y ®a) (XY (k)
J=1 =1 k=1j=

I [\13

= 3 (YXY)kH) = Trace (Y XY) = (Y XY, I,)p.

In semidefinite optimization problems a nontrivial part of constraints
is formed by the cone of positive semidefinite n x n-matrices P, C S"*™,
Recall that X € P, if and only if (Xu,u) > 0 for any v € R". If
(Xu,u) > 0 for all nonzero u, we call X positive definite. Such matrices
form an interior of cone P,. Note that P, is a closed convex set.

The general formulation of the semidefinite optimization problem is
as follows:

min (C, X) p,
st (A, X)p=b,i=1...m, (4.3.7)
X € Py,

where C and A; belong to S™*". In order to apply a path-following
scheme to this problem, we need a self-concordant barrier for P,,.
Let matrix X belong to int P,. Denote F(X) = —Indet X. Clearly

F(X)=—-In f[ XX,

where {1;(X)}™, is the set of eigenvalues of matrix X.
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LEMMA 4.3.5 Function F(X) is conver and F'(X) = —X~!. For any
direction A € S™*™ we have

I

(F"(X)A,8)p = | X7V2AXT12 )} = (XTIAXL,A)F
= Trace ([X‘I/QAX‘I/Z']?),
D3F(z)[A, A A] = —2(I, [X~12AXV/2P)p
= —2Trace ([XV2AX1/21).

Proof: Let us fix some A € §"*" and X € int P, such that X +A € P,.
Then

F(X+A)-F(X) = —Indet(X +A)—Indet X
= —Indet(l, + X" 12AX"1/2)

> —In[iTrace (I, + X~/20X-1/7)]"

—nln[1+ Ll X~20X1/2) |
> (L, X V2AXVhp=—(X"1,A)F.
Thus, —X~! € OF(X). Therefore F is convex (Lemma 3.1.6) and
F'(z) = —X~! (Lemma 3.1.7).
Further, consider function ¢(a) = (F'(X +al),A)r, a € [0,1]. Then
pa) —¢(0) = (X' —(X+ad) ' A)F
= (X +aA) (X +0A) - X]X 1, A)p
= a((X +aA)TAX™, A)F.
Thus, ¢/(0) = (F"(X)A, A)p = (X~1AX~1, A)p.

The last expression can be proved in a similar way by differentiating
the function ¥(a) = (X + eA)"'A(X + aA)™ ! A)p. 0

THEOREM 4.3.3 Function F(X) is an n-self-concordant barrier for P,.



218 INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION
Proof: Let usfix X € int P, and A € S"*". Denote Q = X 1/2AX~1/2
and A\; = A;(Q), i = 1...n. Then, in view of Lemma 4.3.5 we have
n
(FI(X),A)r = _Zl Ai
f=

(F"(X)A,A)r = ¥ N2,

D3F(X)[A,A,A] = —23 A,

n 3/2
< (E A?) ,
i=1

(F'(X),80)F < n(F"(X)A,A)r,

Using two standard inequalities

n 2 n n
(z: /\f) <n 3, |z z?
1=1 i=1 ]

=1

we obtain

| D3F(X)[A,B,4]| < 2(F"(X)A,A)32

Let us prove that F(X) = —Indet X is the optimal barrier for P,,.
LEMMA 4.3.6 Parameter v of any self-concordant barrier for cone Py
satisfies inequality v > n.

Proof: Let us choose X = I, € int P, and the directions P, = e;el,
i = 1...n, where e; is the ith coordinate vector of R". Note that for
any vy > 0 we have I, + vP; € int P,. Moreover,

In—eiefgintPn, I, —Zee =0¢€ Pp.

Therefore, the conditions of Theorem 4.3.1 are satisfied with a; = 3; = 1,

i=1. nandweobtamu>2—i=n a
=1
As in the linear optimization problem (4.3.2), in problem (4.3.7) we
need to use restriction of F(X) onto the set

L={X: (A, X)r=b;,i=1...m}.

This restriction is an n-self-concordant barrier in view of Theorem 4.2.3.
Thus, the complexity bound of the problem (4.3.7) is O (y/n-In2) it-
erations of a path-following scheme. Note that this estimate is very
encouraging since the dimension of the problem (4.3.7) is %n(n +1).
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Let us estimate the arithmetical cost of each iteration of a path-
following scheme (4.2.23) as applied to the problem (4.3.7). Note that
we work with a restriction of the barrier F/(X) onto the set L. In view of
Lemma 4.3.5, each Newton step consists in solving the following prob-
lem:

min{(U, A)r + }(XTAX"L A)p: (4, A)p =0, i=1...m},

where X > 0 belongs to £ and U is a combination of the cost matrix C'
and the gradient F'(X). In accordance to Corollary 1.2.1, the solution of
this problem can be found from the following system of linear equations:

U+X-1aX"1 = 3 U4,
¥ (4.3.8)
(A, D) = 0, i=1...m.

From the first equation in (4.3.8) we get
m .
A=X|-U+Y 204 x. (4.3.9)
i=1

Substituting this expression in the second equation in (4.3.8), we get the
linear system

m
S AO(A;, XA X)p = (Ai, XUX)F, i=1...m, (4.3.10)
j=1
which can be written in a matrix form as SA = d with
SN = (A; XA; X)p, dY) = (U, XA;X)p, §,j=1...n.

Thus, a straightforward strategy of solving the system (4.3.8) consists
in the following steps.

» Compute matrices XA; X, j =1...m. Cost: O(mn3) operations.
= Compute the elements of S and d. Cost: O(m?n?) operations.

Compute A = S~1d. Cost: O(m?) operations.

Compute A by (4.3.9). Cost: O(mn?) operations.

Taking into account that m < ﬂ!%!l we conclude that the complexity
of one Newton step does not exceed

O(n?(m + n)m) arithmetic operations. (4.3.11)
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However, if the matrices A; possess a certain structure, then this esti-
mate can be significantly improved. For example, if all A; are of rank 1:

Aj =ajaJT, g; €Y, §=1l...m,

then the computation of the Newton step can be done in

O((m + n)?) arithmetic operations. (4.3.12)

We leave the justification of this claim as an exercise for the reader.

To conclude this section, note that in many important applications we
can use the barrier —Indet(-) for treating some functions of eigenvalues.
Consider, for example, a matrix A(z) € S™*", which depends linearly
on z. Then the convex region

{(z,t) | max Ai(A(z)) <t},
can be described by a self-concordant barrier
F(z,t) = — Indet(tl, — A(z)).

The value of the parameter of this barrier is equal to n.

4.3.4  Extremal ellipsoids

In some applications we are interested in approximating polytopes by
ellipsoids. Let us consider the most important examples.

4.3.4.1 Circumscribed ellipsoid

Given by a set of points ay,...,a, € R", find an ellipsoid
W, which contains all points {a;} and which volume is as
small as possible.

Let us pose this problem in a formal way. First of all note, that any
bounded ellipsoid W C R™ can be represented as

W={zeR"|z=H '(v+u), |[u|<1},

where H € int P, and v € R". Then inclusion a € W is equivalent to
inequality || Ha — v ||< 1. Note also that

vol, W = vol,, B2(0,1) -det H~! = vol,:iggﬁgo,lz‘
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Thus, our problem is as follows:

min T,
Hu,t

s.t. —Indet H <,
(4.3.13)

| Ha; —v <1, i=1...m,
He?P, ve R", T € RL

In order to solve this problem by an interior-point scheme we need to find
a self-concordant barrier for a feasible set. At this moment we know such
barriers for all components of this problem except the first inequality.

LEMMA 4.3.7 Function
—Indet H — In(7 + Indet H)
is an (n + 1)-self-concordant barrier for the set

{(H,7) € ™" x R'| 7> —Indet H, H € P,}.

Thus, we can use the following barrier:

F(H,v,7) = —Indet H — ln(r + Indet H) — 3 In(1— || Ha; — v ||?),

=1

v=m+n+1.

The corresponding complexity bound is O (\/m +n+1-ln @) itera-
tions of a path-following scheme.

4.3.4.2 Inscribed ellipsoid with fixed center

Let Q be a convex polytope defined by a set of linear
inequalities:

Q={ze€R| lg;,z) S b, i=1...m},

and let v € int Q. Find an ellipsoid W, centered at v,
such that W C @ and which volume is as big as possible.
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Let us fix some H € int P,. We can represent the ellipsoid W as
W={zeR"|(H (z—-v),z—-v) <1}
We need the following simple result.

LEMMA 4.3.8 Let {(a,v) < b. Inequality (a,z) < b is valid for any
z € W if and only if

(Ha,a) < (b— (a,v))*.
Proof: In view of Lemma 3.1.12, we have

ml?x{(a, u) | (H 'u,u) <1} = (Ha,a)'/?.

Therefore we need to ensure

max(a,a) = max((a,z ~v) + ()
= (a,v)+ maz:ix{(a, u) | (H 'u,u) <1}
= (a,v) + (Ha,a)/2 < b.
This proves our statement since {(a,v) < b. O

Note that vol, W = vol,, By(0, 1)[det H]'/2. Hence, our problem is as
follows:

min T,
H,r

s.t. —Indet H <7,

(4.3.14)
(Ha;,a;) < (bi = (@;,0))?, i =1...m,
H e P,, r € R.
In view of Lemma 4.3.7, we can use the following self-concordant barrier:
F(H,7) = —IndetH —In(7 + Indet H)

—_ ig:l ]n[(b‘ — (a,', U})2 = (Hail a’i)]a

v = m+n+1.

The efficiency estimate of the corresponding path-following scheme is

O (\/m +n+1-In ﬂ;ﬂ‘—) iterations.
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4.3.4.3 Inscribed ellipsoid with free center

Let @ be a convex polytope defined by a set of linear
inequalities:

={z € R"| {(aij,z) <b;,i=1...m},

and let int Q # 0. Find an ellipsoid W C @, which has
the maximal volume.

Let G € int Py, v € int ). We can represent W as follows:
W = {seR |G z—0) <1}

{reR"| (G %(z—v),z—v) <1}

In view of Lemma 4.3.8, the inequality (a,z) < b is valid for any z € W

if and only if
| Ga ||>= (G%a,a) < (b- (a,v))Q.

That gives a convex region for (G, v):
| Ga < b (a,v).

Note that vol, W = vol, B>(0, 1) det G. Therefore our problem can be
written as follows:

min T,
G,,T1
s.t. —IndetG < T,
(4.3.15)

” Ga; ”S b; — (aiav)a t=1...m,
G E€P,, veER" TeR.

In view of Lemmas 4.3.7 and 4.3.3, we can use the following self-
concordant barrier:
F(G,v,7) = —IndetG — In(r + Indet G)
= Z In[(b; — (@i, v))*~ || Ga |I%],

v = 2m+n+1.



224 INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION

The corresponding efficiency estimate is O (\/ 2m+n+1-In mfﬂ) iter-
ations of a path-following scheme.

4.3.5 Separable optimization

In problems of separable optimization all nonlinear terms are pre-
sented by univariate functions. A general formulation of such a problem
looks as follows:

mo
min qo(z) = _Zl ao,; fo,;({ao,;, ) + bo,5),
T j=
(4.3.16)
st gz)= Za”f”((am, )+ bj)<Bi,i=1...m

where «; ; are some positive coefficients, a; ; € R" and f; ;(t) are convex
functions of one variable. Let us rewrite this problem in a standard
form:

min 70,
Tt 7

8.t f,"j((a,"j,:ﬂ)+biaj)§tg,j, 1=0...m, j=1...m;

m;
> @il <7, 1=0...m, (4.3.17)
i=1

T,;Sﬂi, 'i:l...m,

z€R', € R™tL, te RM,

where M = 2 m;. Thus, in order to construct a self-concordant barrier

for the feafﬂble set of the problem, we need barriers for epigraphs of
univariate convex functions f; ;. Let us point out such barriers for several
important functions.

4.3.5.1 Logarithm and exponent.

Function Fi(z,t) = —Inz — In(lnz + ¢t) is a 2-self-concordant barrier
for the set
Qi ={(z,t)eR*| >0, t > -Inz},

and function Fy(z,t) = —Int — In(Int — z) is a 2-self-concordant barrier
for the set

Q2 = {(z,t) € R?| t > ¢%).
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4.3.5.2  Entropy function.
Function F3(z,t) = —Inz —In(t—zInz) is a 2-self-concordant barrier

for the set
Qs ={(z,t) € R?| 20, t > zlnz}.

4.3.5.3 Increasing power functions.

Function Fy(z,t) = —2Int—In(t?/P — z2) is a 4-self-concordant barrier
for the set
Qi={zeR| t2|z}, p21,
and function F5(z,t) = —Inz — In(t? — ) is a 2-self-concordant barrier
for the set

Q5:{(J:,t)ER2[ 20,2z}, 0xpil

4.3.5.4 Decreasing power functions.
Function Fs(z,t) = — Int —In(z — ¢t~ '/P) is a 2-self-concordant barrier
for the set

Q={(=ter| «>0,t>L}, p>1,

and function F7(z,t) = —Inz —In(t —z7P) is a 2-self-concordant barrier
for the set

Qr={@er|z>0t2%}, o<p<l.

We omit the proofs of the above statements since they are rather
technical. It can be also shown that the barriers for all of these sets,
(except maybe (J4), are optimal. Let us prove this statement for the sets

Qﬁ and Q7.

LEMMA 4.3.9 Parameter v of any self-concordant barrier for the set
Q= {(I(l),:,;(?)) e R?| z >0, £? > (E&T)r?} :
with p > 0, satisfies inequality v > 2.
Proof: Let us fix some v > 1 and choose z = (7,7) € int Q. Denote
pr=e, pr=e€, Ph=0F=y ag=am=a=y-1
Then = + Le; € @ for any £ > 0 and
T—fe1=(0,7)¢Q, Z-Pe2=(7,0)¢0Q,

T—alert+e)=(-ar-a)=(L,1)€Q.
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Therefore, the conditions of Theorem 4.3.1 are satisfied and
o 4 ap — 911
v2HE+ B =25

This proves the statement since v can be chosen arbitrarily big. a

Let us conclude our discussion by two examples.

4.3.5.5 Geometric optimization.
The initial formulation of such problems is as follows:

in o) = 3. aoy [1 (@))%
min r) = g T WJ
TER™ q{) J:l 0.1 J:l '

UL n )
s.t gi(z) = 'Zl o, I1 (I(J))ai.JJ <1l,i=1...m, (4.3.18)
1=

=1

29 >0, j=1...n,

where ¢ ; are some positive coefficients. Note that the problem (4.3.18)
is not convex. ,

Let us introduce the vectors a; ; = (ag,j) i ,JES)) € R™, and change
the variables: z() = e¥“’. Then (4.3.18) is transformed into a conves
separable problem.

mp
min J_g,l a,; exp({ao,j, ¥)),

(4.3.19)

m;
s.t. ) oijexp({eijy))<l,i=1...m.
=

m

Denote M = 3 m;. The complexity of solving (4.3.19) by a path-fol-
i=0

lowing scheme is

O(M]ﬂ-ln%).

4.3.5.6  Approximation in [, norms.
The simplest problem of that type is as follows:

m 5
min | (@i, ) — b(®) P,
PERT =1 (4.3.20)

5., a<zsB,
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where p > 1. Clearly, we can rewrite this problem in an equivalent
standard form:
min 1"(0),

I,T

s.t | (a;,z) — p(d) P<r®, i=1...m,

(i) < 7(0), (4.3.21)

™3

i

L& L0,
z € R", T € R™tL,

The complexity bound of this problem is O (v/7n + n - In 22) jterations
of a path-following scheme.

We have discussed the performance of interior-point methods on sev-
eral pure problem formulations. However, it is important that we can ap-
ply these methods to mized problems. For example, in problems (4.3.7)
or (4.3.20) we can treat also the quadratic constraints. To do that, we
need to construct a corresponding self-concordant barrier. Such barriers
are known for all important examples we meet in practical applications.

4.3.6 Choice of minimization scheme

We have seen that many convex optimization problems can be solved
by interior-point methods. However, we know that the same problems
can be solved by another general technique, the nonsmooth optimization
methods. In general, we cannot say which approach is better, since the
answer depends on individual structure of a particular problem. How-
ever, the complexity estimates for optimization schemes often help to
make a reasonable choice. Let us consider a simple example.

Assume we are going to solve a problem of finding the best approxi-
mation in [,-norms:

min Z | (ah T) — b(®) [p,
TeR™ [
(4.3.22)
st a<z<p,
where p > 1. And let us have two numerical methods available:
m The ellipsoid method (Section 3.2.6).

= The interior-point path-following scheme.
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What scheme should we use? We can derive the answer from the com-

plexity estimates of corresponding methods.
Let us estimate first the performance of the ellipsoid method as ap-

plied to problem (4.3.22).

Complexity of ellipsoid method

Number of iterations: O ('n.2 In —:—) ¢

Complexity of the oracle: O(mn) operations,

Complexity of the iteration: O(n?) operations.

Total complexity: O (n3 (m+n)ln %) operations.

The analysis of a path-following scheme is more involved. First of all,
we should form a barrier model of the problem:

min &,
z,7§

s.t. | {aj,z) — bW P< ) i=1...m,

m 3
YW <g a<a<p,
i=1

(4.3.23)
reR*, T€ R™ £ e R!,

1

Fle,r9) = 3 (9, (o,2) - 49) ~Ing - )

n

~ 3 [In(z® - o) + In(8D — 2],

i=1
where f(y,1) = —2Int — In(t2/? — ).

We have seen that the parameter of barrier F(z,,£) is v = 4dm+n+1.
Therefore, the number of iterations of a path-following scheme can be
estimated as O (\/4m +n+1-In ﬂ;tﬂ)

At each iteration of the path-following scheme we need to compute
the gradient and the Hessian of barrier F(z, 7,£). Denote

ai(y:t) = f(y, 1),  g2(u,t) = fi(y,1).
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Then

11 )
20—l — Bz | €is

=

Fli(z,7,6) = 3 g1(®, (a;,z) — bD)a; -
i=1

=1

i

-1
F‘:'(i)(wa T,§) = 92(7(2-)3 (aivl‘) - b(l)) i |:€ - E TU)] ’
=

m )
Fé(za T, ’f) T [‘5 - 2 T(:)]
i=1
Further, denoting
hll (y: t) = f!:;(ys t)v h'12(ya t) = f;t(y? t)a h22(y9 t) = :t’(y! t):
we obtain

m i 4
Fe(z,m&) = Zlhu(f(‘},(a,-,m)—b(‘))a,-a;r
1=

; 1
+diag [(3(5)_10(-:)2 * (g(a‘)_;m)z} ,

¥ (Sl':, T}&) = hl?(T(i)'} (Gi, .'L‘) - b(i))aiv

i)z

: . m N2
F‘l{f(”,'r(” (.’L’, T,f) h’??(T(t)a (a‘h 3-') - b(t)) + (E - g'g:l 7(1)) 3

m N2 ] -
-:-‘:Ci],—r(j)(xv T!&) — (6 —_ ;11-(")) , 4 __/: 7,
m .\ 2
N N
’ i=1

Rieter) = (6~ 50) .

Thus, the complexity of the second-order oracle in the path-following
scheme is O(mn?) arithmetic operations.

Let us estimate now the complexity of each iteration. The main source
of computations at each iteration is the solution of a Newton system.
Denote

mo o\ -2 '
h‘,=(§~—§lr(‘)) ) si=(ai,m)—b{‘),i=1...n,



230 INTRODUCTORY LECTURES ON CONVEX OPTIMIZATION

and

: n . .
AO = dl&g [(z(i)_la(i))'z + (ﬁfi)_ll.(i))z] Al = dlag (h'l.l (T(t)!si));’:la

=1
Aq = diag (hia(t(), 5:)),, D = diag (hoa(r®, ;)12

Then, using the notation A = (ay,...,an), e = (1,...,1) € R™, the
Newton system can be written in the following form:

[A(Ao + M)AT)Az + AN AT = Fl(z,1,8),
A AT Az + [D + KI,)AT + keAE = Fl(z,1,£), (4.3.24)

k{e, AT) + KAE = Fé(.’ﬂ, T,€) + t,

where t is the penalty parameter. From the second equation in (4.3.24)
we obtain

AT = [D + Iy (Fl(z, 7,8) — Ao AT Az — KeAE).
Substituting A7 in the first equation in (4.3.24), we can express

Az = [A(Ao + Ay — A3[D + sIn] ™) AT Fy (2, 7,€)

—AAo[D + k) Y (Fl(z,1,€) — KeA£)}.

Using these relations we can find A¢ from the last equation in (4.3.24).

Thus, the Newton system (4.3.24) can be solved in O(n® + mn?) op-
erations. This implies that the total complexity of the path-following
scheme can be estimated as

0 (n2(m +n)3%2.1n @)

arithmetic operations. Comparing this estimate with that of the ellipsoid
method, we conclude that the interior-point methods are more efficient
if m is not too large, namely, if m < O(n?).
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Section 1.1. Complexity theory for black-box optimization schemes was
developed in [8]. In this monograph the reader can find different exam-
ples of resisting oracles and lower complexity bounds similar to that of
Theorem 1.1.2.

Sections 1.2 and 1.3. There exist several classic monographs [2, 3, 7],
which treat different aspects of nonlinear optimization and numerical
schemes. For sequential unconstrained minimization the best source is
still [4].

Chapter 2. Smooth convex optimization

Section 2.1. The lower complexity bounds for smooth convex and strong-
ly convex functions can be found in [8]. However, the proof used in this
section seems to be new.

Section 2.2. Gradient mapping was introduced in [8]. The optimal
method for smooth and strongly smooth convex functions was proposed
in [10]. A constrained variant of this scheme is taken from [11].

Section 2.3. Optimal methods for minimax problems were developed in
[11]. The approach of Section 2.3.5 seems to be new.
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Chapter 3. Nonsmooth convex optimization

Section 3.1. A comprehensive treatment of different topics of convex
analysis can be found in [5]. However, the classic [15] is still very useful.

Section 3.2. Lower complexity bounds for nonsmooth minimization
problems can be found in [8]. The scheme of the proof of the con-
vergence rate was suggested in [9]. See [13] for detailed bibliographical
comments on the history of nonsmooth minimization schemes.

Section 3.3. The example for the Kelley method is taken from [8]. The
presentation of the level method is close to [6].

Chapter 4. Structural optimization

This chapter contains an adaptation of the main concepts from [12].
We added several useful inequalities and slightly simplified the path-
following scheme. We refer the reader to [1] for numerous applications
of interior-point methods, and to [14], [16], [18] and [19] for detailed
treatment of different theoretical aspects.
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Analytic center, 198 function, 112
Antigradient, 17 set, 81
Approximate centering condition, 200 Cutting plane scheme, 150
Approximation, 16
first order, 16 Damped Newton method, 34
global upper, 37 Dikin ellipsoid, 182
in lp-norms, 226 Directional derivative, 122
linear, 16 Domain of function, 112
quadratic, 19
second order, 19 Epigraph, 82
Estimate sequence, 72
Barrier
analytic, 156 Feasibility problem, 146
self-concordant, 193 Function
universal, 212 barrier, 48, 180
volumetric, 156 convex, 112

Black box concept, 7 objective, 1
)

self-concordant, 176
Center strongly convex, 63
analytic, 198 Functional constraints, 1
of gravity, 151
Centrz}l‘ pach; 193 General iterative scheme, 6
auxiliary, 204 .
: Gradient, 16
equation, 193
Class of problems, 6
Complexity
analytical, 6
arithmetical, 6
lower bounds, 10
upper bounds, 10
Computational efforts, 6

mapping, 86

Hessian, 19

Hyperplane
separating, 124
supporting, 124

Condition number, 65 Inequality
Cone of Cauchy-Schwartz, 17
positive semidefinite matrices, 216 Jensen, 112
second order, 214 Infinity norm, 116
Conjugate directions, 43 Information set, 6
Contracting mapping, 30 Inner product, 2
Convex
combination, 82, 113 Kelley method, 158

differentiable function, 52 Krylov subspace, 42
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Level set, 17, 82 on a problem, 5
Localization set, 141 on a problem class, 5
Polar set, 212
Matrix Polynomial methods, 156
positive definite, 19 Positive orthant, 213
positive semidefinite, 19 Problem
Max-type function, 91 constrained, 2
Method of feasible, 2
analytic centers, 156 general, 1
barrier functions, 49 linearly constrained, 2
centers of gravity, 151 nonsmooth, 2
conjugate gradients, 42 of approximation in lp-norms, 226-227
ellipsoids, 154 of geometric optimization, 226
gradient, 25 of integer optimization, 3
inscribed ellipsoids, 156 of linear optimization, 2, 213
penalty functions, 47 of quadratic optimization, 2
uniform grid, 8 of semidefinite optimization, 216
variable metric, 38, 40 of separable optimization, 224
volumetric centers, 156 quadratically constrained quadratic, 2,
Method 214
optimal, 29 smooth, 2
path-following, 202 strictly feasible, 2
quasi-Newton, 38 unconstrained, 2
Minimax problem, 91 Projection, 124
Minimum
global, 2 Quasi-Newton rule, 40
local, 2
Model of Recession direction, 211
convex function, 157 Relaxation, 15
minimization problem. 5 Restartjng strategy, 45
barrier, 173, 199
functional, 7 Self-concordant
barrier, 193
Newton method function, 176
damped, 34, 188 Sequential unconstrained minimization, 46
standard, 33, 189 Set
Newton system, 33 convex, 81
Norm feasible, 2
‘GH 8! 116 hasic, 1
Iy, 116 Slater condition, 2, 49
Euclidean, 16 Solution
Frobenius, 216 g[obaL 2
IOC&I, 181 local, 2
Standard
Optimality condition logarithmic barrier, 213
constrained problem, 84 minimization problem, 192
first order, 17 simplex, 132
minimax problem, 92 Stationary point, 18
second order, 19 Step-size strategies, 25
Oracle Strict separation, 124
lacal black box, 7 Structural constraints, 3
resisting, 10-11 Subdifferential, 126
Subgradient, 126
Parameter Support function, 120
barrier, 194 Supporting vector, 126

centering, 200
Performance Unit ball, 116



