
Distributed Frank-Wolfe Algorithm
A Unified Framework for Communication-Efficient Sparse Learning

Aurélien Bellet1

Joint work with Yingyu Liang2, Alireza Bagheri Garakani1,
Maria-Florina Balcan2 and Fei Sha1

1University of Southern California
2Georgia Institute of Technology

ICML 2014 Workshop on New Learning Frameworks
and Models for Big Data

June 25, 2014



Introduction
Distributed learning

I General setting
I Data arbitrarily distributed across different sites (nodes)
I Examples: large-scale data, sensor networks, mobile devices
I Communication between nodes can be a serious bottleneck

I Research questions
I Theory: study tradeoff between communication complexity and

learning/optimization error
I Practice: derive scalable algorithms, with small communication

and synchronization overhead



Introduction
Problem of interest

Problem of interest

Learn sparse combinations of n distributed “atoms”:

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

I Atoms are distributed across a set of N nodes V = {vi}Ni=1

I Nodes communicate across a network (connected graph)

I Note: domain can be unit simplex ∆n instead of `1 ball

∆n = {α ∈ Rn : α ≥ 0,
∑
i

αi = 1}



Introduction
Applications

I Many applications
I LASSO with distributed features
I Kernel SVM with distributed training points
I Boosting with distributed learners
I ...

Example: Kernel SVM

I Training set {zi = (xi , yi )}ni=1

I Kernel k(x, x′) = 〈ϕ(x), ϕ(x′)〉
I Dual problem of L2-SVM:

min
α∈∆n

αTK̃α

I K̃ = [k̃(zi , zj)]ni ,j=1 with k̃(zi , zj) = yiyjk(xi , xj) + yiyj +
δij
C

I Atoms are ϕ̃(zi ) = [yiϕ(xi ), yi ,
1√
C

ei ]



Introduction
Contributions

I Main ideas
I Adapt the Frank-Wolfe (FW) algorithm to distributed setting
I Turn FW sparsity guarantees into communication guarantees

I Summary of results
I Worst-case optimal communication complexity
I Balance local computation through approximation
I Good practical performance on synthetic and real data



Outline

1. Frank-Wolfe in the centralized setting

2. Proposed distributed FW algorithm

3. Communication complexity analysis

4. Experiments



Frank-Wolfe in the centralized setting
Algorithm and convergence

Convex minimization over a compact domain D

min
α∈D

f (α)

I D convex, f convex and continuously differentiable

Let α(0) ∈ D
for k = 0, 1, . . . do

s(k) = arg mins∈D
〈
s,∇f (α(k))

〉
α(k+1) = (1− γ)α(k) + γs(k)

end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After O(1/ε) iterations, FW returns α s.t. f (α)− f (α∗) ≤ ε.

(figure adapted from [Jaggi, 2013])



Frank-Wolfe in the centralized setting
Algorithm and convergence

Convex minimization over a compact domain D

min
α∈D

f (α)

I D convex, f convex and continuously differentiable

Let α(0) ∈ D
for k = 0, 1, . . . do

s(k) = arg mins∈D
〈
s,∇f (α(k))

〉
α(k+1) = (1− γ)α(k) + γs(k)

end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After O(1/ε) iterations, FW returns α s.t. f (α)− f (α∗) ≤ ε.
(figure adapted from [Jaggi, 2013])



Frank-Wolfe in the centralized setting
Algorithm and convergence

Convex minimization over a compact domain D

min
α∈D

f (α)

I D convex, f convex and continuously differentiable

Let α(0) ∈ D
for k = 0, 1, . . . do

s(k) = arg mins∈D
〈
s,∇f (α(k))

〉
α(k+1) = (1− γ)α(k) + γs(k)

end for

Convergence [Frank and Wolfe, 1956, Clarkson, 2010, Jaggi, 2013]

After O(1/ε) iterations, FW returns α s.t. f (α)− f (α∗) ≤ ε.
(figure adapted from [Jaggi, 2013])



Frank-Wolfe in the centralized setting
Use-case: sparsity constraint

I A solution to linear subproblem lies at a vertex of D

I When D is the `1-norm ball, vertices are signed unit basis
vectors {±ei}ni=1:

I FW is greedy: α(0) = 0 =⇒ ‖α(k)‖0 ≤ k
I FW is efficient: simply find max absolute entry of gradient

I FW finds an ε-approximation with O(1/ε) nonzero entries,
which is worst-case optimal [Jaggi, 2013]

I Similar derivation for simplex constraint [Clarkson, 2010]



Distributed Frank-Wolfe (dFW)
Sketch of the algorithm

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

1. Each node computes its local gradient

aj ∈ Rd



Distributed Frank-Wolfe (dFW)
Sketch of the algorithm

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

1. Each node computes its local gradient

aj ∈ Rd



Distributed Frank-Wolfe (dFW)
Sketch of the algorithm

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

2. Each node broadcast its largest absolute value

aj ∈ Rd



Distributed Frank-Wolfe (dFW)
Sketch of the algorithm

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

3. Node with global best broadcasts corresponding atom aj ∈ Rd



Distributed Frank-Wolfe (dFW)
Sketch of the algorithm

Recall our problem

min
α∈Rn

f (α) = g(Aα) s.t. ‖α‖1 ≤ β (A ∈ Rd×n)

Algorithm steps

4. All nodes perform a FW update and start over

aj ∈ Rd



Distributed Frank-Wolfe (dFW)
Convergence

I Let B be the cost of broadcasting a real number

Theorem 1 (Convergence of exact dFW)

After O(1/ε) rounds and O ((Bd + NB)/ε) total communication,
each node holds an ε-approximate solution.

I Tradeoff between communication and optimization error

I No dependence on total number of combining elements



Distributed Frank-Wolfe (dFW)
Approximate variant

I Exact dFW is scalable but requires synchronization
I Unbalanced local computation → significant wait time

I Strategy to balance local costs:
I Node vi clusters its ni atoms into mi groups
I We use the greedy m-center algorithm [Gonzalez, 1985]
I Run dFW on resulting centers

I Use-case examples:
I Balance number of atoms across nodes
I Set mi proportional to computational power of vi



Distributed Frank-Wolfe (dFW)
Approximate variant

I Define
I ropt(A,m) to be the optimal `1-radius of partitioning atoms in
A into m clusters, and ropt(m) := maxi r

opt(Ai ,mi )
I G := maxα ‖∇g(Aα)‖∞

Theorem 2 (Convergence of approximate dFW)

After O(1/ε) iterations, the algorithm returns a solution with
optimality gap at most ε+ O(Gropt(m0)). Furthermore, if
ropt(m(k)) = O(1/Gk), then the gap is at most ε.

I Additive error depends on cluster tightness

I Can gradually add more centers to make error vanish



Communication complexity analysis
Cost of dFW under various network topologies

v0 v1

v2

v4

v3

Star graph

v3

v4

v1

v2

v5 v6 v7

Rooted tree

v1

v2 v3 v4

v6v5

General connected
graph

I Star graph and rooted tree: O(Nd/ε) communication (use
network structure to reduce cost)

I General connected graph: O(M(N + d)/ε), where M is the
number of edges (use a message-passing strategy)



Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Communication complexity analysis
Matching lower bound

Theorem 3 (Communication lower bound)

Under mild assumptions, the worst-case communication cost of
any deterministic algorithm is Ω(d/ε).

I Shows that dFW is worst-case optimal in ε and d

I Proof outline:

1. Identify a problem instance for which any ε-approximate
solution has O(1/ε) atoms

2. Distribute data across 2 nodes s.t. these atoms are almost
evenly split across nodes

3. Show that for any fixed dataset on one node, there are T
different instances on the other node s.t. in any 2 such
instances, the sets of selected atoms are different

4. Any node then needs O(logT ) bits to figure out the selected
atoms, and we show that logT = Ω(d/ε)



Experiments

I Objective value achieved for given communication budget
I Comparison to baselines
I Comparison to distributed ADMM

I Runtime of dFW in realistic distributed setting
I Exact dFW
I Benefits of approximate variant
I Asynchronous updates



Experiments
Comparison to baselines

I dFW can be seen as a method to select “good” atoms

I We investigate 2 baselines:
I Random: each node picks a fixed set of atoms at random
I Local FW [Lodi et al., 2010]: each node runs FW locally to

select a fixed set of atoms

I Selected atoms are sent to a coordinator node which solves
the problem using only these atoms



Experiments
Comparison to baselines

I Experimental setup
I SVM with RBF kernel on Adult dataset (n = 32K , d = 123)
I LASSO on Dorothea dataset (n = 100K , d = 1.15K )
I Atoms distributed across 100 nodes uniformly at random

I dFW outperforms both baselines

0 1 2 3 4 5

x10
4

0

1

2

3

4

5
x10

−3

Communication

O
b
je
c
ti
v
e

dFW
Local FW
Random

(a) Kernel SVM results

0.5 1 1.5 2 2.5 3

x 10
6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Communication

M
S
E

Local FW

Random

dFW

(b) LASSO results



Experiments
Comparison to distributed ADMM

I ADMM [Boyd et al., 2011] is popular to tackle many
distributed optimization problems

I Like dFW, can deal with LASSO with distributed features
I Parameter vector α partitioned as α = [α1, . . . ,αN ]
I Communicates partial/global predictions: Aiαi and

∑N
i=1 Aiαi

I Experimental setup
I Synthetic data (n = 100K , d = 10K ) with varying sparsity
I Atoms distributed across 100 nodes uniformly at random



Experiments
Comparison to distributed ADMM

I dFW advantageous for sparse data and/or solution, while
ADMM is preferable in the dense setting

I Note: no parameter to tune for dFW

LASSO results (MSE vs communication)



Experiments
Realistic distributed environment

I Network specs
I Fully connected with N ∈ {1, 5, 10, 25, 50} nodes
I A node is a single 2.4GHz CPU core of a separate host
I Communication over 56.6-gigabit infrastructure

I The task
I SVM with Gaussian RBF kernel
I Speech data with 8.7M training examples, 41 classes
I Implementation of dFW in C++ with openMPI1

1http://www.open-mpi.org

http://www.open-mpi.org


Experiments
Realistic distributed environment

I When distribution of atoms is roughly balanced, exact dFW
achieves near-linear speedup

I When distribution is unbalanced (e.g., 1 node has 50% of the
data), great benefits from approximate variant

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1
x 10

−3

Runtime (seconds)

O
b
je
c
ti
v
e

dFW, N=1
dFW, N=5
dFW, N=10
dFW, N=25
dFW, N=50

(a) Exact dFW on uniform distribution

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1
x 10

−3

Runtime (seconds)

O
b
je
c
ti
v
e

dFW, N=10, uniform
dFW, N=10, unbalanced
Approx dFW, N=10

(b) Approximate dFW to balance costs



Experiments
Real-world distributed environment

I Another way to reduce synchronization costs is to perform
asynchronous updates

I To simulate this, we randomly drop communication messages
with probability p

I dFW is fairly robust, even with 40% random drops

0 100 200 300 400
0

0.005

0.01

0.015

0.02

Iteration number

O
b
je
c
ti
v
e

dFW, N=10, p=0
dFW, N=10, p=0.1
dFW, N=10, p=0.2
dFW, N=10, p=0.4

dFW under communication errors and asynchrony



Summary and perspectives

I The proposed distributed algorithm
I is applicable to a family of sparse learning problems
I has theoretical guarantees and good practical performance
I appears robust to asynchrony and communication errors

I See arXiv paper for details, proofs and additional experiments

I Future directions
I Propose an asynchronous version of dFW
I A theoretical study in this challenging setting

I Could potentially build on recent work in distributed
optimization that assumes or enforces a bound on the age of
the updates [Ho et al., 2013, Liu et al., 2014]



References I

[Boyd et al., 2011] Boyd, S. P., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011).
Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122.

[Clarkson, 2010] Clarkson, K. L. (2010).
Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms, 6(4):1–30.

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956).
An algorithm for quadratic programming.
Naval Research Logistics Quarterly, 3(1-2):95–110.

[Gonzalez, 1985] Gonzalez, T. F. (1985).
Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306.

[Ho et al., 2013] Ho, Q., Cipar, J., Cui, H., Lee, S., Kim, J. K., Gibbons, P. B.,
Gibson, G. A., Ganger, G. R., and Xing, E. P. (2013).
More Effective Distributed ML via a Stale Synchronous Parallel Parameter Server.
In NIPS, pages 1223–1231.



References II

[Jaggi, 2013] Jaggi, M. (2013).
Revisiting Frank-Wolfe: Projection-Free Sparse Convex Optimization.
In ICML.

[Liu et al., 2014] Liu, J., Wright, S. J., Ré, C., Sridhar, S., and Bittorf, V. (2014).
An Asynchronous Parallel Stochastic Coordinate Descent Algorithm.
In ICML.

[Lodi et al., 2010] Lodi, S., Ñanculef, R., and Sartori, C. (2010).
Single-Pass Distributed Learning of Multi-class SVMs Using Core-Sets.
In SDM, pages 257–268.


