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k-median/k-means Clustering

A set P of N objects, represented as points in Rd

sports fashion

Find centers x = {x1, . . . , xk} to minimize
∑

p∈P cost(p,x)

Widely used cost functions

k-median: cost(p,x) = minx∈x d(p, x)
k-means: cost(p,x) = minx∈x d

2(p, x)



Modern Challenge: Distributed Data

Distributed databases

Images and videos on the Internet

Sensor networks

...



Distributed Clustering

Communication graph G with n nodes and m edges:
an edge indicates that the two nodes can communicate

Global data P is divided into local data sets P1, . . . , Pn

P1 P2
P3 P4

P8

P6

P7

P5

Goal: efficient distributed algorithm for k-median/k-means
with guarantees for clustering cost and communication cost



Related Work

1 Direct adaptation of non-distributed algorithms,
e.g. Lloyd’s method [Forman et al., 2000; Datta et al., 2005]

no consideration on the communication cost

2 Transmitting summaries of local data to central coordinator
[Januzaj et al., 2003; Kargupta et al., 2001]

no guarantee on clustering cost
not for general communication topologies



Our Results

A distributed algorithm for k-median/k-means that

1 produces (1 + ε)α-approximation, using any α-approximation
non-distributed algorithm as a subroutine

2 with total communication cost

independent of #points N
linear in #clusters k and the dimension d
linear in #nodes n and #edges m



Our Results

Two stages of our distributed algorithm

1 Constructs a global summary of the data

each node constructs a local portion of the summary

2 Compute approximation solution on the summary

each node broadcasts its local portion



Outline

1 Global Summary Construction

2 Communication on General Topologies

3 Experiments



Coreset

Weighted points whose cost approximates that of the original data

Coreset [Har-Peled and Mazumdar, 2004]

An ε-coreset for a set of points P with respect to a cost objective
function is a set of points D and a set of weights w: D → R such
that for any set of centers x,

(1− ε)cost(P,x) ≤
∑
p∈D

wpcost(p,x) ≤ (1 + ε)cost(P,x).



Coreset Construction in the Non-distributed Setting

Coreset construction [Feldman and Langberg, 2011]

1 Compute a constant approximation solution A

2 Sample points S with probability proportional to cost(p,A)

3 Let the coreset D = S ∪A (with weights specified later)



Näıve Adaptation in Distributed Setting

COMBINE

1 Compute a coreset for each local data set

2 Combine these local coresets to get a global coreset

Need to transmit n coresets

Can we do with 1 coreset?



Distributed Coreset Construction

Algorithm 1: Distributed coreset construction

1 Compute a constant approximation solution Ai for Pi

2 Broadcast the costs cost(Pi, Ai)

3 Let |Si|∑
j |Sj | =

cost(Pi,Ai)∑
j cost(Pj ,Aj)

;

Sample Si from Pi with probability proportional to cost(p,Ai)

4 Let the coreset D =
⋃

i(Si ∪Ai) (with weights specified later)

A1

A2 A3



Distributed Coreset Construction

Algorithm 1: Distributed coreset construction

1 Compute a constant approximation solution Ai for Pi

2 Broadcast the costs cost(Pi, Ai)

3 Let |Si|∑
j |Sj | =

cost(Pi,Ai)∑
j cost(Pj ,Aj)

;

the size of the local sample is proportional to the local cost

Sample Si from Pi with probability proportional to cost(p,Ai)

4 Let the coreset D =
⋃

i(Si ∪Ai) (with weights specified later)

A1

A2 A3

 

  

S1

S2 S3



Distributed Coreset Construction

Algorithm 1: Distributed coreset construction

1 Compute a constant approximation solution Ai for Pi

2 Broadcast the costs cost(Pi, Ai)

3 Let |Si|∑
j |Sj | =

cost(Pi,Ai)∑
j cost(Pj ,Aj)

;

Sample Si from Pi with probability proportional to cost(p,Ai)

4 Let the coreset D =
⋃

i(Si ∪Ai) (with weights specified later)

A1

A2 A3

 

  

S1

S2 S3



Coreset Construction Analysis
Intuition for Sampling

Sample a set S uniformly at random from P .
Let B(x, r) = {p : d(x, p) ≤ r}.

For fixed B(x, r), w.h.p. |B(x,r)∩S|
|S| = |B(x,r)∩P |

|P | ± ε
when |S| = Õ(1/ε2)

B(x, r )



Coreset Construction Analysis
Intuition for Sampling

Sample a set S uniformly at random from P .
Let B(x, r) = {p : d(x, p) ≤ r}.

For any B(x, r), w.h.p. |B(x,r)∩S|
|S| = |B(x,r)∩P |

|P | ± ε
when |S| = Õ(log[#distinct B(x, r) ∩ P ]/ε2)

B(x, r )
B(x' , r ')



Coreset Construction Analysis
Sampling Lemma for General Functions

Let F be a set of functions from P to R≥0.
For f ∈ F , let B(f, r) = {p : f(p) ≤ r}.

Special case:B(fx, r) = B(x, r) when fx(p) = d(x, p)



Coreset Construction Analysis
Sampling Lemma for General Functions

Let F be a set of functions from P to R≥0.
For f ∈ F , let B(f, r) = {p : f(p) ≤ r}.

Sampling Lemma (weighted sampling, general functions)

Let mp = maxf∈F f(p). Sample S from P with probability

proportional to mp, and let wp =
∑

q mq

mp|S| .

If |S| = Õ(log[#distinct B(f, r) ∩ P ]/ε2), then w.h.p.

∀f ∈ F,

∣∣∣∣∣∣
∑
p∈P

f(p)−
∑
p∈S

wpf(p)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

mp.
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Let F be a set of functions from P to R≥0.
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mp|S| .
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f(p)−
∑
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wpf(p)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

mp.

Proof idea: replace p with mp copies p′; let f(p′) = f(p)/mp



Coreset Construction Analysis
Sampling Lemma for General Functions

Let F be a set of functions from P to R≥0.
For f ∈ F , let B(f, r) = {p : f(p) ≤ r}.

Complexity of F : log[#distinct B(f, r) ∩ P ]
Connection to VC-dimension:

If,r(p) =

{
+1 if p ∈ B(f, r)

−1 otherwise

log[#distinct B(f, r) ∩ P ] ≤ O(1)VC-dimension({If,r}).



Coreset Construction Analysis
Sampling Lemma for k-median

Natural attempt: fx(p) = cost(p,x)
Fail since fx(p) unbounded

Another attempt:
For p ∈ Pi, let bp denote its nearest center in Ai.
Set fx(p) = cost(p,x)− cost(bp,x), then mp = cost(p,Ai).



Coreset Construction Analysis
Sampling Lemma for k-median

Natural attempt: fx(p) = cost(p,x)
Fail since fx(p) unbounded

Another attempt:
For p ∈ Pi, let bp denote its nearest center in Ai.
Set fx(p) = cost(p,x)− cost(bp,x), then mp = cost(p,Ai).

p

bp

x
mp

cost (p ,x)

cost (bp , x)



Coreset Construction Analysis
Sampling Lemma for k-median

For p ∈ Pi, let bp denote its nearest center in Ai.
Set fx(p) = cost(p,x)− cost(bp,x), then mp = cost(p, bp).

By Sampling Lemma,

∀x,

∣∣∣∣∣∣
∑
p∈P

fx(p)−
∑
p∈S

wpfx(p)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

mp.

= |∑p∈P cost(p,x)−∑p∈D wpcost(p,x)|



Coreset Construction Analysis
Sampling Lemma for k-median

For p ∈ Pi, let bp denote its nearest center in Ai.
Set fx(p) = cost(p,x)− cost(bp,x), then mp = cost(p, bp).

By Sampling Lemma,

∀x,

∣∣∣∣∣∣
∑
p∈P

fx(p)−
∑
p∈S

wpfx(p)

∣∣∣∣∣∣ ≤ ε
∑
p∈P

mp.

= ε
∑

i cost(Pi, Ai) = O(ε)OPT



Coreset Construction Analysis

Algorithm 1: Distributed coreset construction

1 Compute a constant approximation solution Ai for Pi;

2 Broadcast the costs cost(Pi, Ai)

3 Sample Si from Pi with probability proportional to cost(p,Ai)

4 Let the coreset D =
⋃

i(Si ∪Ai)

Theorem (Distributed Coreset Construction)

Algorithm 1 produces an ε-coreset. The size of the coreset is
Õ(kd+ nk) for constant ε.

By a geometric argument [Feldman and Langberg, 2011],
log[#distinct B(f, r) ∩ P ] = O(kd)
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General Communication Topologies

Message-Passing

B Broadcast messages {Ij}nj=1, where Ij is on node j
On each node i do:

1 Initialize Ri = {Ii} and send Ii to all neighbors.

2 When Ri 6= {Ij}nj=1,
if receive Ij 6∈ Ri,
then Ri = Ri ∪ {Ij} and send Ij to all neighbors.

Total communication cost: O(m
∑n

j=1 |Ij |)



Distributed Clustering on General Topologies

Algorithm 2: Distributed Clustering

1 Call the distributed coreset construction algorithm

2 Broadcast the local coreset portions by Message-Passing

3 Compute an approximation solution on the coreset

Theorem (Distributed Clustering on General Graphs)

Given any α-approximation algorithm as a subroutine, Algorithm 2
computes a (1 + ε)α-approximation solution.
The total communication cost is Õ(m(kd+ nk)) for constant ε.



Distributed Clustering on General Topologies

Our algorithm: Õ(m(kd+ nk))

1

2 3

1 

2 
 3

COMBINE: Õ(mnkd)

1

2 3

D1

D2 D3



Distributed Clustering on Rooted Trees

Algorithm 3: Distributed Clustering on Rooted Trees

1 Call the distributed coreset construction algorithm

2 Send the local coreset portions to the root

3 Compute an approximation solution on the coreset

Theorem (Distributed Clustering on Rooted Trees)

Given any α-approximation algorithm as a subroutine, Algorithm 3
computes a (1 + ε)α-approximation solution.
The total communication cost is Õ(h(kd+ nk)) for constant ε,
where h is the height of the tree.



Distributed Clustering on Rooted Trees

Our Algorithm:
Õ(h(kd+ nk))

5 6

3

1

2 43 4 

6 5 

2 

1 

[Zhang et al., 2008]:
Õ(h2nkd) for k-median
Õ(h4nkd) for k-means

5 6

3

1

2 4 D4D356D2

D6D5

D1
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Experiment Setup

Data set: YearPredictionMSD (≈ 0.5m points in R90)

Communication graphs: random, grid, preferential

Partition into 100 local data sets;
Partition methods: uniform, weighted, similarity/degree-based

Evaluation criteria:
k-means cost (k = 50) at the same communication budget



Experiments for Distributed Clustering
On Graphs
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Experiments for Distributed Clustering
On Spanning Trees

 

 

Zhang et al.
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Current Work

Improve communication cost

More experiments on high dimensional data

Distributed optimization

min
x

∑
i

∑
p∈Pi

fx(p)



Thanks!
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