Distributed k-median/k-means Clustering on General Topologies

Yingyu Liang

Joint work with Maria Florina Balcan, Steven Ehrlich Georgia Institute of Technology

To appear in NIPS 2013

k-median/k-means Clustering

• A set P of N objects, represented as points in \mathbf{R}^d

Find centers $\mathbf{x} = \{x_1, \dots, x_k\}$ to minimize $\sum_{p \in P} \operatorname{cost}(p, \mathbf{x})$

Widely used cost functions

- k-median: $cost(p, \mathbf{x}) = min_{x \in \mathbf{x}} d(p, x)$
- k-means: $cost(p, \mathbf{x}) = min_{x \in \mathbf{x}} d^2(p, x)$

Modern Challenge: Distributed Data

- Distributed databases
- Images and videos on the Internet
- Sensor networks

...

Distributed Clustering

- Communication graph G with n nodes and m edges: an edge indicates that the two nodes can communicate
- Global data P is divided into local data sets P_1, \ldots, P_n

Goal: efficient distributed algorithm for k-median/k-means with guarantees for clustering cost and communication cost

Related Work

- 1 Direct adaptation of non-distributed algorithms,
 - e.g. Lloyd's method [Forman et al., 2000; Datta et al., 2005]
 - no consideration on the communication cost
- 2 Transmitting summaries of local data to central coordinator [Januzaj et al., 2003; Kargupta et al., 2001]
 - no guarantee on clustering cost
 - not for general communication topologies

Our Results

- A distributed algorithm for k-median/k-means that
 - **1** produces $(1 + \epsilon)\alpha$ -approximation, using any α -approximation non-distributed algorithm as a subroutine
 - 2 with total communication cost
 - independent of # points N
 - Inear in #clusters k and the dimension d
 - Inear in #nodes n and #edges m

Our Results

Two stages of our distributed algorithm

- 1 Constructs a global summary of the data
 - each node constructs a local portion of the summary
- 2 Compute approximation solution on the summary
 - each node broadcasts its local portion

Outline

1 Global Summary Construction

- 2 Communication on General Topologies
- 3 Experiments

Coreset

Weighted points whose cost approximates that of the original data

Coreset [Har-Peled and Mazumdar, 2004]

An ϵ -coreset for a set of points P with respect to a cost objective function is a set of points D and a set of weights $w: D \to \mathbf{R}$ such that for any set of centers \mathbf{x} ,

 $(1-\epsilon)\operatorname{cost}(P,\mathbf{x}) \le \sum_{p\in D} w_p \operatorname{cost}(p,\mathbf{x}) \le (1+\epsilon)\operatorname{cost}(P,\mathbf{x}).$

Coreset Construction in the Non-distributed Setting

Coreset construction [Feldman and Langberg, 2011]

- **1** Compute a constant approximation solution A
- **2** Sample points S with probability proportional to cost(p, A)
- 3 Let the coreset $D = S \cup A$ (with weights specified later)

Naïve Adaptation in Distributed Setting

COMBINE

- 1 Compute a coreset for each local data set
- 2 Combine these local coresets to get a global coreset
- Need to transmit n coresets
- Can we do with 1 coreset?

Distributed Coreset Construction

Algorithm 1: Distributed coreset construction

- **1** Compute a constant approximation solution A_i for P_i
- **2** Broadcast the costs $cost(P_i, A_i)$

Sample $S_i |S_j| = \sum_j \operatorname{cost}(P_j, A_j)$, Sample S_i from P_i with probability proportional to $\operatorname{cost}(p, A_i)$

4 Let the coreset $D = igcup_i (S_i \cup A_i)$ (with weights specified later)

Distributed Coreset Construction

Algorithm 1: Distributed coreset construction

Distributed Coreset Construction

Algorithm 1: Distributed coreset construction

- **1** Compute a constant approximation solution A_i for P_i
- **2** Broadcast the costs $cost(P_i, A_i)$
- **3** Let $\frac{|S_i|}{\sum_j |S_j|} = \frac{\cot(P_i, A_i)}{\sum_j \cot(P_j, A_j)}$; Sample S_i from P_i with probability proportional to $\cot(p, A_i)$
- 4 Let the coreset $D = \bigcup_i (S_i \cup A_i)$ (with weights specified later)

Coreset Construction Analysis Intuition for Sampling

Sample a set S uniformly at random from P. Let $B(x,r) = \{p : d(x,p) \le r\}.$

• For fixed B(x,r), w.h.p. $\frac{|B(x,r)\cap S|}{|S|} = \frac{|B(x,r)\cap P|}{|P|} \pm \epsilon$ when $|S| = \tilde{O}(1/\epsilon^2)$

Coreset Construction Analysis Intuition for Sampling

Sample a set S uniformly at random from P. Let $B(x,r) = \{p : d(x,p) \le r\}.$

• For any B(x,r), w.h.p. $\frac{|B(x,r)\cap S|}{|S|} = \frac{|B(x,r)\cap P|}{|P|} \pm \epsilon$ when $|S| = \tilde{O}(\log[\# \text{distinct } B(x,r)\cap P]/\epsilon^2)$

Let F be a set of functions from P to $\mathbf{R}_{\geq 0}$. For $f \in F$, let $B(f,r) = \{p : f(p) \leq r\}$.

• Special case: $B(f_x, r) = B(x, r)$ when $f_x(p) = d(x, p)$

Let F be a set of functions from P to $\mathbf{R}_{\geq 0}$. For $f \in F$, let $B(f,r) = \{p : f(p) \leq r\}$.

Sampling Lemma (weighted sampling, general functions)

Let $m_p = \max_{f \in F} f(p)$. Sample S from P with probability proportional to m_p , and let $w_p = \frac{\sum_q m_q}{m_p |S|}$. If $|S| = \tilde{O}(\log[\# \text{distinct } B(f, r) \cap P]/\epsilon^2)$, then w.h.p.

$$\forall f \in F, \left| \sum_{p \in P} f(p) - \sum_{p \in S} w_p f(p) \right| \le \epsilon \sum_{p \in P} m_p.$$

Let F be a set of functions from P to $\mathbf{R}_{\geq 0}$. For $f \in F$, let $B(f,r) = \{p : f(p) \leq r\}$.

Sampling Lemma (weighted sampling, general functions)

Let $m_p = \max_{f \in F} f(p)$. Sample S from P with probability proportional to m_p , and let $w_p = \frac{\sum_q m_q}{m_p |S|}$. If $|S| = \tilde{O}(\log[\# \text{distinct } B(f, r) \cap P]/\epsilon^2)$, then w.h.p.

$$\forall f \in F, \left| \sum_{p \in P} f(p) - \sum_{p \in S} w_p f(p) \right| \le \epsilon \sum_{p \in P} m_p.$$

Proof idea: replace p with m_p copies p'; let $f(p') = f(p)/m_p$

Let F be a set of functions from P to $\mathbf{R}_{\geq 0}$. For $f \in F$, let $B(f,r) = \{p : f(p) \leq r\}$.

Complexity of $F: \log[\# \text{distinct } B(f, r) \cap P]$

Connection to VC-dimension:

$$I_{f,r}(p) = \begin{cases} +1 & \text{if } p \in B(f,r) \\ -1 & \text{otherwise} \end{cases}$$

 $\log[\# \text{distinct } B(f,r) \cap P] \le O(1) \text{VC-dimension}(\{I_{f,r}\}).$

- Natural attempt: $f_{\mathbf{x}}(p) = \operatorname{cost}(p, \mathbf{x})$ Fail since $f_{\mathbf{x}}(p)$ unbounded
- Another attempt:
 - For $p \in P_i$, let b_p denote its nearest center in A_i .
 - Set $f_{\mathbf{x}}(p) = \operatorname{cost}(p, \mathbf{x}) \operatorname{cost}(b_p, \mathbf{x})$, then $m_p = \operatorname{cost}(p, A_i)$.

- Natural attempt: f_x(p) = cost(p, x)
 Fail since f_x(p) unbounded
- Another attempt:

For $p \in P_i$, let b_p denote its nearest center in A_i .

Set $f_{\mathbf{x}}(p) = \operatorname{cost}(p, \mathbf{x}) - \operatorname{cost}(b_p, \mathbf{x})$, then $m_p = \operatorname{cost}(p, A_i)$.

For $p \in P_i$, let b_p denote its nearest center in A_i . Set $f_{\mathbf{x}}(p) = \operatorname{cost}(p, \mathbf{x}) - \operatorname{cost}(b_p, \mathbf{x})$, then $m_p = \operatorname{cost}(p, b_p)$.

By Sampling Lemma,

$$\forall \mathbf{x}, \left| \sum_{p \in P} f_{\mathbf{x}}(p) - \sum_{p \in S} w_p f_{\mathbf{x}}(p) \right| \le \epsilon \sum_{p \in P} m_p$$

For $p \in P_i$, let b_p denote its nearest center in A_i . Set $f_{\mathbf{x}}(p) = \operatorname{cost}(p, \mathbf{x}) - \operatorname{cost}(b_p, \mathbf{x})$, then $m_p = \operatorname{cost}(p, b_p)$.

By Sampling Lemma,

$$\forall \mathbf{x}, \left| \sum_{p \in P} f_{\mathbf{x}}(p) - \sum_{p \in S} w_p f_{\mathbf{x}}(p) \right| \leq \epsilon \sum_{p \in P} m_p.$$

$$= \epsilon \sum_i \operatorname{cost}(P_i, A_i) = O(\epsilon) OPT$$

Algorithm 1: Distributed coreset construction

- **1** Compute a constant approximation solution A_i for P_i ;
- **2** Broadcast the costs $cost(P_i, A_i)$
- **3** Sample S_i from P_i with probability proportional to $cost(p, A_i)$
- 4 Let the coreset $D = \bigcup_i (S_i \cup A_i)$

Theorem (Distributed Coreset Construction)

Algorithm 1 produces an ϵ -coreset. The size of the coreset is $\tilde{O}(kd + nk)$ for constant ϵ .

■ By a geometric argument [Feldman and Langberg, 2011], $\log[\# \text{distinct } B(f,r) \cap P] = O(kd)$

1 Global Summary Construction

2 Communication on General Topologies

3 Experiments

General Communication Topologies

Message-Passing

 \triangleright Broadcast messages $\{I_j\}_{j=1}^n$, where I_j is on node jOn each node i do:

1 Initialize $R_i = \{I_i\}$ and send I_i to all neighbors.

2 When
$$R_i \neq \{I_j\}_{j=1}^n$$
,
if receive $I_j \notin R_i$,
then $R_i = R_i \cup \{I_j\}$ and send I_j to all neighbors.

Total communication cost: $O(m \sum_{j=1}^{n} |I_j|)$

Distributed Clustering on General Topologies

Algorithm 2: Distributed Clustering

- 1 Call the distributed coreset construction algorithm
- 2 Broadcast the local coreset portions by Message-Passing
- 3 Compute an approximation solution on the coreset

Theorem (Distributed Clustering on General Graphs)

Given any α -approximation algorithm as a subroutine, Algorithm 2 computes a $(1 + \epsilon)\alpha$ -approximation solution.

The total communication cost is O(m(kd + nk)) for constant ϵ .

Distributed Clustering on General Topologies

Our algorithm: $\tilde{O}(m(kd+nk))$

COMBINE: $\tilde{O}(mnkd)$

Distributed Clustering on Rooted Trees

Algorithm 3: Distributed Clustering on Rooted Trees

- 1 Call the distributed coreset construction algorithm
- 2 Send the local coreset portions to the root
- 3 Compute an approximation solution on the coreset

Theorem (Distributed Clustering on Rooted Trees)

Given any α -approximation algorithm as a subroutine, Algorithm 3 computes a $(1 + \epsilon)\alpha$ -approximation solution. The total communication cost is $\tilde{O}(h(kd + nk))$ for constant ϵ , where h is the height of the tree.

Distributed Clustering on Rooted Trees

Our Algorithm: $\tilde{O}(h(kd+nk))$

[Zhang et al., 2008]: $\tilde{O}(h^2nkd)$ for k-median $\tilde{O}(h^4nkd)$ for k-means

Outline

1 Global Summary Construction

- 2 Communication on General Topologies
- 3 Experiments

Experiment Setup

- Data set: YearPredictionMSD (≈ 0.5 m points in \mathbf{R}^{90})
- Communication graphs: random, grid, preferential
- Partition into 100 local data sets;
 Partition methods: uniform, weighted, similarity/degree-based
- Evaluation criteria:

k-means cost (k = 50) at the same communication budget

Experiments for Distributed Clustering On Graphs

preferential graph, degree-based

grid graph, weighted

grid graph, similarity-based

Experiments for Distributed Clustering On Spanning Trees

preferential graph, degree-based

 $\times 10^{4}$

 $\times 10^4$

grid graph, weighted

grid graph, similarity-based

Current Work

- Improve communication cost
- More experiments on high dimensional data
- Distributed optimization

$$\min_{\mathbf{x}} \sum_{i} \sum_{p \in P_i} f_{\mathbf{x}}(p)$$

Thanks!

- Feldman, D. and Langberg, M. (2011).
 A unified framework for approximating and clustering data.
 In Proceedings of the Annual ACM Symposium on Theory of Computing.
- Har-Peled, S. and Mazumdar, S. (2004).
 On coresets for k-means and k-median clustering.
 In Proceedings of the Annual ACM Symposium on Theory of Computing.
- Zhang, Q., Liu, J., and Wang, W. (2008).
 Approximate clustering on distributed data streams.
 In Proceedings of the IEEE International Conference on Data Engineering.