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Abstract

This paper proposes a distributed PCA algorithm, with the theoretical guarantee
that any good approximation solution on the projected data for k-means clustering
is also a good approximation on the original data, while the projected dimension
required is independent of the original dimension. When combined with the dis-
tributed coreset-based clustering approach in [3], this leads to an algorithm in
which the number of vectors communicated is independent of the size and the di-
mension of the original data. Our experiment results demonstrate the effectiveness
of the algorithm.

1 Introduction
Clustering is a classical technique to analyze and summarize data sets, and k-means clustering is
probably the mostly widely used one. Most k-means clustering algorithms are designed for the
centralized setting, but many modern applications need to cluster large-scale high-dimensional data
distributed over different locations, such as distributed databases [17, 5], images and videos over
networks [16], surveillance [9] and sensor networks [4, 10].

To address this challenge, a distributed clustering algorithm has been proposed in [3], which is based
on distributed coreset construction. A coreset for a data set is a set of weighted points such that its
clustering cost on any set of centers approximates the cost of the data, i.e. a summarization of the
data with respect to the clustering task. The size of the coreset is independent of the size of the
original data, which is useful for large-scale applications. However, it is linear in the dimension of
the data, leading to high communication cost for high dimensional data.

In this paper, we propose a distributed PCA algorithm, and show that its output represents the orig-
inal data in the sense that any good approximation solution of k-means clustering on the output
projected data is also a good solution on the original data. When combined with the distributed
coreset approach in [3], this leads to an algorithm whose communication cost (in terms of the num-
ber of vectors communicated) is independent of the size and the dimension of the original data. Our
experiment results demonstrate that this significantly reduces the communication cost while hardly
comprising the quality of the k-means clustering solutions.

2 Background and Notations
Distributed Clustering Let d(p, q) denote the Euclidean distance between p, q ∈ Rd. The goal of
k-means clustering is to find a set of k centers x = {x1, x2, . . . , xk} which minimize the k-means
cost of data set P ⊆ Rd. Here the k-means cost is defined as cost(P,x) =

∑
p∈P d(p,x)2 where

d(p,x) = minx∈x d(p, x). For simplicity, we always assume that P is normalized (
∑
p∈P p = 0).

In the distributed clustering task, we consider a set of n nodes V = {vi, 1 ≤ i ≤ n} which
communicate on an undirected connected graph G = (V,E) with m = |E| edges. More precisely,
an edge (vi, vj) ∈ E indicates that vi and vj can communicate with each other. On each node vi,

1



there is a local set of data points Pi ⊆ Rd, and the global data set is P =
⋃n
i=1 Pi. The goal

is to find a set of k centers x = {x1, x2, . . . , xk} which optimize cost(P,x) while keeping the
computation efficient and the communication cost as low as possible. Our focus is to reduce the
total communication cost while preserving theoretical guarantees for approximating clustering cost.

PCA Principal Component Analysis is a classical tool for dimension reduction, and has been closely
related to k-means [6, 13]. Here we first use PCA on high dimensional data and then do distributed
clustering on the projected data, which leads to lower communication cost. We introduce the follow-
ing notations for PCA. View the local data Pi as a matrix, whose rows are data points. The global
data P is then a concatenation of the local data matrix, i.e. PT = [PT1 , P

T
2 , . . . , P

T
n ].

For a matrix X = [xij ], let ||X||22 =
∑
i,j x

2
i,j . We say that X has orthonormal columns if its

columns are orthogonal unit vectors. Let L(X) denote the linear subspace spanned by the columns
of X . For simplicity, for a set of points P , we denote d2(P,L(X)) =

∑
p∈P d(p, L(X))2.

For a point p, let pX(p) denote its projection to L(X). Note that for an orthogonal matrix X , the
projection of a point p to L(X) will be pX using the coordinates with respect to the column space
of X , and will be pXXT using the original coordinates.

Coreset A natural approach for distributed clustering is to generate a summary of the relevant infor-
mation. The idea of summarization for clustering is formalized by the concept of coresets [11, 7].

Definition 1 (coreset). An ε-coreset for a set of points P with respect to a center-based cost function
is a set of points S and a set of weights w : S → R such that there exists a constant c0 ≥ 0, and for
any set of centers x, (1− ε)cost(P,x) ≤∑p∈S w(p)cost(p,x) + c0 ≤ (1 + ε)cost(P,x).

A key property of the coreset is that an α-approximation solution for an ε-coreset is also a (1+3ε)α-
approximation for the original data.

3 Distributed PCA
Our distributed PCA algorithm is described in Algorithm 1, where ANNOUNCE is a shorthand for
communicating information to all other nodes. The algorithm performs local PCA on each local
data set, and communicates the t largest principal components. These are used to estimate the global
covariance matrix, which is then used to get the t largest global principal components. Finally, all
the local data are projected on these t global principal components. See Figure 1 for an illustration.

Several similar heuristic algorithms have been proposed in [18, 2, 14, 15]. However, they did not
provide any theoretical guarantee, or relate distributed PCA to k-means clustering. Here we provide
a theoretical analysis, which leads to a way to set the algorithm parameters, so that we will not
compromise much on the quality of the clustering obtained on the projected data. Formally,

Theorem 1. Let X be a d × j matrix whose columns are orthonormal. Let ε ∈ (0, 1] and t ∈ N
with d− 1 ≥ t ≥ j + d4j/εe − 1. Then the output of Algorithm 1 satisfies

0 ≤ ||PX||22 − ||P̂X||22 ≤ εd2(P,L(X)) and 0 ≤ ||PX − P̂X||22 ≤ εd2(P,L(X))

Intuitively, it implies that the squared distances to any low dimension subspace L(X) from the pro-
jected data and the original data are approximately equal when the number of principal components
used is sufficiently large compared to the dimension of L(X). As shown in the next section, this
guarantees that the projected data can act as a proxy for the original data in k-means clustering.

P=[
P1
⋮
Pn] [P1

(t )

⋮

Pn
(t )]=P(t)

P̂⋮

Local PCA

Local PCA

Global PCA

Figure 1: The key points of our distributed PCA algorithm. The local PCA is by SVD on the local
data, and the global PCA is by computing eigenvectors on the covariance matrix of P (t).
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Algorithm 1 Distributed PCA

1: Input: local data sets {Pi, 1 ≤ i ≤ n}, projected dimension t.
2: B Local PCA
3: Round 1: on each node vi ∈ V do
4: Compute local SVD: Pi = UiDi(Ei)

T .
5: Let D(t)

i be the matrix that contains the first t diagonal entries of Di and is 0 otherwise.
6: Let P (t)

i = UiD
(t)
i (Ei)

T . Let E(t)
i be the matrix that contains the first t columns of Ei.

7: ANNOUNCE: D(t)
i , E

(t)
i .

8: B Global PCA
9: Round 2: on each node vi ∈ V do

10: Use D(t)
i , E

(t)
i to compute S(t)

i = (P
(t)
i )TP

(t)
i . Set S(t) =

∑n
i=1 S

(t)
i .

11: Compute the eigenvectors for the estimated covariance matrix: S(t) = EΛET .
12: Let E(t) be the matrix that contains the first t columns of E.
13: Project P (t)

i on E(t), resulting in P̂i = P
(t)
i E(t)(E(t))T .

14: Output: P̂T = [P̂T1 , . . . , P̂
T
n ].

Proof Sketch of Theorem 1 The algorithm performs two projections: local PCA projecting Pi to
P

(t)
i , and global PCA projecting P (t)

i to P̂i. Let (P (t))T = [(P
(t)
1 )T , . . . , (P

(t)
n )T ]. To bound the

error between P and P̂ , we need to first bound the error between P and P (t), and then bound the
error between P (t) and P̂ . The following lemma is useful in bounding these errors.

Lemma 1. [Lemma 6.1 in [8]] LetA ∈ R`×d be an `×d matrix with singular value decomposition
A = UDET , whereD has diagonal entries

√
s1, . . . ,

√
sd sorted non-increasingly. LetX be a d×j

matrix whose columns are orthonormal. Let ε ∈ (0, 1] and t ∈ N with d− 1 ≥ t ≥ j + dj/εe − 1.
Let D(t) be the matrix that contains the first t diagonal entries of D and is 0 otherwise, and A(t) =

UD(t)ET . Then 0 ≤ ||(A−A(t))X||22 = ||AX||22 − ||A(t)X||22 ≤ ε
∑d
i=j+1 si ≤ εd2(A,L(X)).

Lemma 1 bounds ||PiX||22−||P (t)
i X||22 for each local PCA, and thus bounds ||PX||22−||P (t)X||22 =∑

i[||PiX||22− ||P
(t)
i X||22]. It also bounds ||P (t)X||22− ||P̂X||22 for global PCA. These then lead to

the first claim in the theorem. The second claim on ||PX − P̂X||22 can be proved similarly.

4 Distributed Clustering
In this section, we show that any good approximation solution on the projected data constructed by
the distributed PCA algorithm is also a good approximation on the original data.

Theorem 2. Let x be a set of k centers in Rd. Let ε ∈ (0, 1] and t ∈ N with d − 1 ≥ t ≥
k + d50k/ε2e. Then there exists a constant c0 ≥ 0, such that the output of Algorithm 1 satisfies
(1− ε)cost(P,x) ≤ cost(P̂ ,x) + c0 ≤ (1 + ε)cost(P,x).

The analysis follows the ideas in [8]. LetX ∈ Rd×k has orthonormal columns that span x. The cost
of P can be decomposed into two parts: the squared distances d2(P,L(X)) to the subspace spanned
by X , and the squared distances

∑
i d

2(pX(pi),x) between the projection of the points on L(X)

and x. The cost of P̂ can be decomposed similarly. Their difference in the first part (compensated
by c0 = ||P ||22 − ||P̂ ||22) can be bounded by ||PX||22 − ||P̂X||22. The difference in the second part
can be bounded approximately by

∑
i d

2(pX(pi), pX(p̂i))/ε = ||PX− P̂X||22/ε. Then the theorem
follows from Theorem 1. The complete proof is provided in the appendix.

By Theorem 2, the distributed coreset construction algorithm in [3] can be applied on the projected
data to get a coreset of size independent of the original dimension. Then we get an algorithm with
low communication cost for high dimensional data, which is summarized in Theorem 3.

Theorem 3. Given an α-approximation algorithm for k-means as a subroutine, there exists an al-
gorithm that with probability at least 1−δ outputs a (1+ε)α-approximation solution for distributed
k-means clustering. The total communication cost is O(m(k

2

ε6 + 1
ε4 log 1

δ ) +mnk log nk
δ ) vectors.
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Figure 2: k-means cost (normalized by baseline) v.s. communication cost when the projection
dimension varies. Rows: random graphs, and grid graphs. Columns: Daily and Sports Activities,
MNIST, and Bag of Words data sets. In each subfigure, the x-axis represents the communication
cost, the y-axis represents the k-means cost, and the number labels are the projection dimensions.

5 Experiments

In these experiments we seek to understand how well the projected data approximates the original
data, by measuring the k-means costs of the clustering solutions obtained after dimension reduction.

Dataset We choose the following real world data sets from [1]: Daily and Sports Activities data
(9210 points in R5625), MNIST handwritten digits (70, 000 points in R784). We use k = 10 for
these data sets. We further choose Bag of Words (NYTimes) (300, 000 points in R102660) and use
k = 20 for this data set.

Experimental Methodology Following the setup in [3], we first generate a communication graph,
which can be a grid graph, or a random graph that includes each edge independently with probability
0.3. For Daily and Sports Activities data set, we use random graphs with 10 nodes and 3 × 3 grid
graphs. For the other data sets, we use random graphs with 100 nodes and 10×10 grid graphs. Then
we distribute the data over the graphs using weighted partition, where each data point is distributed
to the local sites with probability proportional to the site’s weight chosen from |N(0, 1)|.
For each projection dimension, we first construct a coreset on the projected data, using the COM-
BINE or distributed coreset algorithm in [3]. The COMBINE algorithm builds a coreset for each
local data set and then combines them to get one global coreset, while the distributed coreset algo-
rithm considers the different contributions of the local data to the k-means cost when it builds the
global coreset (see [3] for details). After building the coreset, we then run Lloyd’s method on it to get
a k-means clustering solution. Finally, we compute the ratio of its cost to the k-means cost obtained
by running Lloyd’s method on the original data. The average results over 10 runs are reported. We
lower the projection dimension until there is a significant increase in the k-means costs.

Results Figure 2 shows the results of the data sets. The plots show the increase in k-means cost ratio
upon decreasing the dimension of the data. We can observe that there is a slight increase compared
to the huge reduction in dimension and thus communication cost. For example, on Daily and Sports
Activities data, the k-means cost increases less than 4% when the dimension is reduced from 5625
to as low as 40. This is even more significant on higher dimensional data: on Bag of Words, the di-
mension can be reduced from 102660 to around 20. Such reduction then lowers the communication
cost by magnitudes. The plots also indicate that the distributed coreset algorithm in [3] performs
better than the COMBINE algorithm, when applied with our distributed PCA algorithm.
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A Proof of Lemma 1

The proof comes from [8]. We first have

||AX||22 − ||A(t)X||22 = ||UDETX||22 − ||UD(t)ETX||22
= ||DETX||22 − ||D(t)ETX||22 = ||(D −D(t))ETX||22.

where the second equality follows since U has orthonormal columns, the third equality follows since
for M = ETX we have

||DM ||22 − ||D(t)M ||22 =

d∑
i=1

d∑
j=1

sim
2
ij −

t∑
i=1

d∑
j=1

sim
2
ij =

d∑
i=t+1

d∑
j=1

sim
2
ij = ||(D −D(t))M ||22.

Then ||AX||22 − ||A(t)X||22 = ||AX −A(t)X||22 ≥ 0 since U has orthonormal columns. Also,

||AX||22 − ||A(t)X||22 = ||(D −D(t))ETX||22 ≤ ||(D −D(t))||2S ||X||22 = jst+1

where the inequality follows because the spectral norm is consistent with the Euclidean norm. It
follows for our choice of t that

jst+1 ≤ ε(t− j + 1)st+1 ≤ ε
t+1∑
i=j+1

si ≤ ε
d∑

i=j+1

si.

By the property of singular value decomposition, we have
∑d
i=j+1 si ≤ d2(A,L(X)), which com-

pletes the proof.

B Proof of Theorem 1

Besides Lemma 1, the following fact is useful for our analysis.

Fact 1. ||A||22 = ||A(t)||22 +
∑d
i=t+1 si.

We now bound the errors of the local PCA and global PCA in the algorithm.

Lemma 2. Let X be a d× j matrix whose columns are orthonormal. Let ε ∈ (0, 1] and t ∈ N with
d− 1 ≥ t ≥ j + dj/εe − 1. Then

0 ≤ ||(P − P (t))X||22 = ||PX||22 − ||P (t)X||22 ≤ εd2(P,L(X)).

Proof. We first decompose the error on the global data into errors on the local data:

||PX||22 − ||P (t)X||22 =

n∑
i=1

[
||PiX||22 − ||P (t)

i X||22
]
.

Note that for each Pi, by Lemma 1 we have

0 ≤ ||PiX||22 − ||P (t)
i X||22 = ||(Pi − P (t)

i )X||22 ≤ εd2(Pi, L(X)).

This holds for any 0 ≤ i ≤ n. Then the lemma follows from ||(P − P (t))X||22 =
∑n
i=1 ||(Pi −

P
(t)
i )X||22 and

∑n
i=1 d

2(Pi, L(X)) = d2(P,L(X)).

Lemma 3. Let X be a d× j matrix whose columns are orthonormal. Let ε ∈ (0, 1] and t ∈ N with
d− 1 ≥ t ≥ j + dj/εe − 1. Then

0 ≤ ||P (t)X||22 − ||P̂X||22 = ||(P (t) − P̂ )X||22 ≤ ε(1 + ε)d2(P,L(X)).

Proof. By Lemma 1 we have

0 ≤ ||P (t)X||22 − ||P̂X||22 = ||(P (t) − P̂ )X||22 ≤ εd2(P (t), L(X)).
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So it suffices to show that

d2(P (t), L(X)) ≤ (1 + ε)d2(P,L(X)).

In fact, by Pythagorean Theorem, d2(P (t), L(X)) − d2(P,L(X)) = ||P (t)||22 − ||P (t)X||22 −
(||P ||22 − ||PX||22). By Fact 1, we have ||P (t)

i ||22 ≤ ||Pi||22, and thus ||P (t)||22 =
∑n
i=1 ||P

(t)
i ||22 ≤∑n

i=1 ||Pi||22 = ||P ||22. Then

d2(P (t), L(X))− d2(P,L(X)) = ||P (t)||22 − ||P (t)X||22 − (||P ||22 − ||PX||22)

≤ ||PX||22 − ||P (t)X||22 ≤ εd2(P,L(X))

where the last inequality follows from Lemma 2.

Applying Lemma 2 and 3 with accuracy ε/4, we have the theorem.

C Proof of Theorem 2

The analysis follows the ideas in [8], but is tailored for the distributed setting. We first begin with
the following lemma, showing that the cost of the projected data to any low dimension subspace
approximates that of the original data, compensated by a positive constant.
Lemma 4. Let X be a d× j matrix whose columns are orthonormal. Let ε ∈ (0, 1] and t ∈ N with
d− 1 ≥ t ≥ j + d4j/εe − 1. Then there exists c1 ≥ 0 such that

0 ≤ d2(P̂ , L(X)) + c1 − d2(P,L(X)) ≤ εd2(P,L(X)).

Proof. We have from Pythagorean Theorem

d2(P̂ , L(X))− d2(P,L(X)) = ||P̂ ||22 − ||P̂X||22 − (||P ||22 − ||PX||22)

= ||PX||22 − ||P̂X||22 − c1
where c1 = ||P ||22 − ||P̂ ||22. Note that by Fact 1,

c1 =

n∑
i=1

[
||Pi||22 − ||P (t)

i ||22
]

+ ||P (t)||22 − ||P̂ ||22 ≥ 0.

Then the lemma follows from Theorem 1.

The next lemma shows that the projection of the projected data to any low dimension subspace
approximates the projection of the projected data in the sense that their distances are small.

Let pi denote the ith row of the data P , and let p̂i denote the ith row of P̂ .
Lemma 5. Let X be a d× j matrix whose columns are orthonormal. Let ε ∈ (0, 1] and t ∈ N with
d− 1 ≥ t ≥ j + d4j/εe − 1. Then

|P |∑
i=1

d(pX(pi), pX(p̂i))
2 ≤ εd2(P,L(X)).

Proof. Since X is orthogonal, pX(p) = pXXT . Then

|P |∑
i=1

d(pX(pi), pX(p̂i))
2 =

|P |∑
i=1

||piXXT − p̂iXXT ||22 = ||PXXT − P̂XXT ||22.

This can be simplified to ||(P − P̂ )X||22 since

||PXXT − P̂XXT ||22 = ||(P − P̂ )XXT ||22 = trace[(P − P̂ )XXTXXT (P − P̂ )T )]

= trace[(P − P̂ )XXT (P − P̂ )T )] = ||(P − P̂ )X||22.
The lemma then follows from Theorem 1.
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The above two lemmas are the key elements needed to show our final theorem. Before proving
the theorem, we further need the following “weak triangle inequality”, which is well known in the
coreset literature. The proof is included in the appendix for completeness.
Lemma 6. [Lemma 7.1 in [8]] For any 0 ≤ ε ≤ 1, a compact set C ⊆ Rd, and p, q ∈ Rd,

|d(p, C)2 − d(q, C)2| ≤ 12d(p, q)2

ε
+
ε

2
d(p, C)2.

Proof. Using the triangle inequality,

d(p, C)2 − d(q, C)2| = |d(p, C)− d(q, C)| · (d(p, C) + d(q, C))

≤ d(p, q)(2d(p, C) + d(p, q))

≤ d(p, q)2 + 2d(p, C)d(p, q). (1)

Either d(p, C) ≤ d(p, q)/ε or d(p, q) < εd(p, C). Hence,

d(p, C)d(p, q) ≤ d(p, q)2

ε
+ εd(p, C)2.

Combining the last inequality with (1) yields

|d(p, C)2 − d(q, C)2| ≤ d(p, q)2 +
2d(p, q)2

ε
+ 2εd(p, C)2 ≤ 3d(p, q)2

ε
+ 2εd(p, C)2.

Finally, the lemma follows by replacing ε with ε/4.

We are now ready to prove the theorem, which guarantees that a coreset for the output of the dis-
tributed PCA algorithm is also a coreset for the original data.
Theorem 2. Let x be a set of k centers in Rd. Let ε ∈ (0, 1] and t ∈ N with d − 1 ≥ t ≥
k + d50k/ε2e. Then there exists a constant c0 ≥ 0, such that the output of Algorithm 1 satisfies

(1− ε)d2(P,x) ≤ d2(P̂ ,x) + c0 ≤ (1 + ε)d2(P,x).

Proof. Let X ∈ Rd×k has orthonormal columns that span x. Let c0 be the constant c1 in Lemma 4.
Then by Pythagorean theorem we have

|d2(P̂ ,x) + c0 − d2(P,x)| =
∣∣∣∣d2(P̂ , L(X)) + c0 − d2(P,L(X)) +

|P |∑
i=1

[
d(pX(pi),x)2 − d(pX(p̂i),x)2

]∣∣∣∣.
By Lemma 4 we have∣∣∣d2(P̂ , L(X)) + c0 − d2(P,L(X))

∣∣∣ ≤ ε2

4
d2(P,L(X)). (2)

By Lemma 5 and Lemma 6 we have

|P |∑
i=1

∣∣d(pX(pi),x)2 − d(pX(p̂i),x)2
∣∣ ≤ |P |∑

i=1

[
12d(pX(pi), pX(p̂i))

2

ε
+
ε

2
d(pX(pi),x)2

]

≤ ε

4
d2(P,x) +

ε

2

|P |∑
i=1

d(pX(pi),x)2. (3)

Since d2(P,L(X)) ≤ d2(P,x) and d(pX(pi),x) ≤ d(pi,x), the theorem follows from (2)(3).
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