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Computation, Memory and Statistics Trade-off

Goal: scale kernel methods up with provable guarantee.
» Generality and simplicity. Applicable to many kernel methods.

» Efficient computation and low memory requirement.

Training Prediction
Computational Cost O(5dt”)|  O(dt)
Memory Cost O(t) O(t)

» Nonparametric. Model complexity increases when data increases

» Theoretical guarantee. 1), Algorithm updates in infinite-dimension space.
2), converges to the optimal RKHS function in optimal rate O(), same as
stochastic gradient for strongly convex optimization.

Duality Between Kernels and Random Processes

Theorem (Bochner) A continuous kernel k(x,x') = k(x — x') on R? is PD
if and only if k(x—x") is the Fourier transform of a non-negative measure P(w).

k(x — X) / el ) dP(w)= ﬂw[¢w(x)gbw(xl)].

Theorem If k(x,x') = |, ¢u(x)pu(x") dP(w) for a non-negative measure
P(w) on 2 and gbw( ): X — R from L,(2,IP), then k(x,x") is a PD kernel.

Kernel k(x — x') p(w)
Gaussian  exp( Hx_leug) 2% exp(—”c‘;”%)
Laplacian exp(—||x — x|l1) T[], W(liwlg)

Cauchy H,d:1 1+(Xi2—Xf)2 exp(—||wll1)

Doubly Stochastic Kernel Machines

Denote H as the RKHS associated with k(- -),

Kernel Machines: argmin R(f) := E(, ,p(x)l/(f(X),y)] + g Hng_[
feH

The functional gradient VR(f) is defined as,
R(f + eg) = R(f) + e (VR(f), g)s + O(c°).
Given (x, y) ~ P(x, y), the stochastic functional gradient of R(f) is
g(1) = I'(f(x), y)k(x, ) + vf(:) :==&(:) + vf(:).
The stochastic functional gradient update is
fer1(c) = fi(-) — 7ege() = £() — el (fe(xes1), yes1) k(xein, ) + VRG], (1)

frog =5 a;k(x;,) needs all the data, which results O(dt) memory cost.
Let w~P(w), the doubly stochastic functional gradient of R(f) w.r.t. f € H is

() = I'(f(x). y)ou(x)ou(-) + vf(:) == C(-) + vf(:).

() =EL[CC)] =
| = Ex ) Eulg(-)]

VR(f) = Ex.)lg(:)
Replace the g(-) with g(-) in update (1),

ft+1(') — ﬁ:() — Vt[//(ﬂ(xtﬂ)aYt+1)§bwt+1(xt+1)§bwt+l(') - Vﬁr()]
— (1 — %V)ft — ’Yt//(f;r(xtﬂ) yt+1)¢wt+1(xt+l)¢wt+1(')-

We have foi1(-) = S5 51000 ()| () = 2”1 (¢ (+) with update rule
a1 = =Vl (F(xer1), Yer1) P r (Xer1), =1 —7v)a;, j=1,...,t

We only need O(t) memory by saving {a;}!"{ and the seed for generating w.

Algorithm: Doubly SGD

Train: {o;};_, = Train(P(x, y))
Input: P(w), ¢,(x), I(f(x),y), v.
1: fori=1,...,tdo
2 Sample (Xiy)/i) ~ ]P)(ij)_ 1: Set f(X) = 0.
3: Sample w; ~ P(w) with seed /. 2 fori=1,...,tdo
. f(x;) = Predict(x;, {@J}J’;i) 3. Sample w;~P(w) with seed /.
5 4
6 5
,

Predict: f(x)=Predict(x,{c;}’,)
Input: P(w), ¢.(x).

a; = =il (F(;), y1)Pui(Xi). f(x) = f(x) + @igu,(x).
aj=(1—vv)a, j=1,...,i—1. 5 end for
. end for

Theoretical Guarantees

Assumption
» [here exists an optimal solution to the optimization, denoted as f..
» Loss function f(u,y) : R x R — R is L-Lipschitz smooth in terms of u.
» V{(x;, yi)}_y, AM > 0, such that |{'(f(x;), yi)| < M.
» dr, @ > 0, k(x,x) < K, |0u(x)ou(X)] < ¢, Vx,x € X,w € Q.

Theorem When v, = ¢ with @ > 0 such that 0v € Z., Vx € X, we have,

t
C
rr ([ (6) = £OP] <
G, In(2t/68) In?(t
fealx) — AP < 2N
and the generalization error Ry.o(f) = E(, ) [[(f(x), y)].

C3+/In(2t/6) In(t)
Rtrue(ﬂ“Jrl)_Rtrue(ﬁk) < \/E

where C1, Cy and (3 only depend on 0, v, Kk, ¢, L, M,

Proof idea The main technical difficulty is that 7., ; may not be in the RKHS
H. The key of the proof is constructing an intermediate function h; 1 € H,

hea() = he() = (&) +vh() = D BE(), VE>1 and hy(-) =0.

The error can be decomposed as
two terms

feri(x) = £(x)|°

< 2 ‘fH—l(X) — ht+1(X)|2
N—— —

e;— error due to random functions

. with probability 1—30,

. with probability 1—30,

+265 ||heg1 — f*”i(
N\’

eo—error due to random data

Verification for Convergence Rate

We verify the rate of convergence on a synthetic dataset with 2% data using
kernel ridge regression.

10 ‘ 5 10 ‘ §
: : ---1/t rate | —doubly SGD |
optimal function surface —|Ifi = fll5 ] NORMA ’
-2 o
10 ¢ Lfe = fill3 ¢ 102 —k-SDCA |
i © | @ 28r-sDCA |
Q | = 8 I
L il i f = © ] © — 8
SR w : ; "(7') "(7') 10 2° r-pegasos g
... T 107 / © 28 n—-pegasos|l
0 ] 10
10
///5/ e
0 S
-5 ~~~ 1 _
400 107° e e = 107°

10° 10" 0 10° 100 10° 10° 10°
number of iterations Training Time (sec)

(1) Synthetic Dataset ~ (2) Convergence Rate  (3) Accuracy vs. Time

Experimental results for kernel ridge regression on synthetic dataset.
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We fix ||f — £.||5 < €, and assume that the number of samples, n = O(1/¢).
The number of random features/ranks r will be O(n) = O(1/¢).

Algorithms Preprocessing Computation Cost Memory Cost
Computation | Training Prediction | Training Prediction

Doubly SGD O(1) O(d/e?) O(d/e) | O(1/e) O(1/¢)
NORMA O(1) O(d/e?) O(d/e) O(d/e) O(d/e)
k-SDCA O(1) O(d/e?) O(d/e) O(d/e) O(d/e)
r-Pegasos O(1) O(d/e?) O(d/e) O(1/e) O(1/¢)
r-SDCA O(1) O(d/e*) O(d/e) O(1/¢) O(1/¢)
n-Pegasos O(1/e) 0(d/e?) O(d/e) O(1/e) O(1/e)
n-SDCA O(1/e8) 0(d/e?) O(d/e) 0O(1/€) O(1/e)

» Comparison with kernel SVM solvers on classification datasets with two

criteria.
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Stopping Criterion 1: Stop algorithms when they pass through the entire
dataset once.
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Adult MNIST 8M 8 vs. 6 Forest.
Stopping Criterion 2: Stop algorithms within the same time budget.

» Comparison with neural nets on classification datasets.
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» Comparison with neu raI nets on regression datasets
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