
Update Propagation of Replicated Data in Distributed
Spatial Databases

Jin Oh Choi1, Young Sang Shin2, Bong Hee Hong2

1 Department of Computer Engineering, Kyungdong University, Pongpo Li, Tosung Myun,
Gosung Goon, Kangwon Do, South Korea

jochoi@kyungdong.ac.kr
2 Department of Computer Engineering, Pusan National University, Jangjun Dong,

Kumjung Goo, Pusan, South Korea
{yosshin, bhhong}@hyowon.cc.pusan.ac.kr

Abstract. When spatial objects are replicated at several sites in the network, the
updates of a long transaction in a specific site should be propagated to the other
sites for maintaining the consistency of replicated spatial objects. If any two or
more transactions at different sites concurrently update some spatial objects
within a given region, two spatial objects having spatial relationships should be
cooperatively updated even if there are no direct conflicts of locking for them.
This paper deals with the problems of replication control of spatial objects. We
present the concepts of Region locking and Spatial Relationship-Bound Write
locking for enhancing parallelism of updating the replicated spatial objects. If
there are no spatial relationships between the two objects that are concurrently
being updated at different sites, parallel updates will be completely allowed.
We argue that concurrent updates of two spatial objects having spatial
relationships should be propagated and cooperated by using an extended two-
phase commit protocol, called Spatial Relationship-based 2PC protocol.

1 Introduction

The update of replicated spatial objects is an interactive transaction that requires
cooperative work with others. The update dependency between two interactive
transactions cannot be modeled by the existing locking techniques for concurrency
control, rather it is based on the user interaction with the two transactions.

The interactive updates of two replicated spatial objects at different sites should be
synchronized for concurrency control. In the interactive transactions, it is very
difficult to define the correctness criteria of concurrent transactions since the
displayed spatial objects cannot be isolated due to their spatial relationships. We
define a distributed spatial relationship as the binary spatial relation, for example,
disjoin, meets, equals, inside, covers, or overlaps, between two spatial objects which
are stored at different sites. Locks on two spatial objects do not conflict with each
other, since they are not copies. However, concurrent updates of two spatial objects
sometimes can make them inconsistent when they have a distributed spatial
relationship .

In the replicated spatial database, the characteristics of interactive transactions
make it difficult to exploit the traditional replication control approaches. As a
pessimistic approach, the existing locking-based replication control approach has the
following problems. First, locking objects in a long transaction makes other
transactions wait for a long time. Second, an interactive transaction that updates
spatial objects, has to lock the entire data set or at least a layer, because the replicated
spatial objects should be able to be displayed for interactively updating any objects in
a long transaction. Third, if two objects have a distributed spatial relationship, their
concurrent update should be restricted. For example, if the boundary of a spatial
object X is shared with the other spatial object Y, a transaction to update Y should be
forced to wait until the update of X is completed.

An optimistic approach, like the multi-version control approach [13], allows
concurrent updates on the replicated data at several sites, and then, merges the results
together. Independent updates of the their own data sets at each site will cause
conflicts between them; therefore, resulting in the inconsistent states, when they are
merged, calling for the need of rollback in the long transactions.

To deal with the issues of concurrent updates of replicated spatial data, we propose
region locking and s patial relationship-bound write locking , as new locking concepts.
We argue that new locking primitives should be introduced to achieve high
concurrency and to control the consistency of replicated spatial data. Region lock is an
extension of the shared lock, which provides a weak READ lock for a group of
replicated spatial objects. The region lock allows a new long transaction to start at any
time without waiting. The possible conflicts of concurrent updates of replicated data
are filtered by spatial relationship-bound write locking during the execution of
interactive transactions. The spatial relationship-bound write lock is an extension of
the exclusive lock to model the update dependency between two interactive
transactions due to distributed spatial relationships. The spatial relationship-bound
write locking allows the objects not having any distributed spatial relationships to be
concurrently updated.

We have introduced a new cooperative update protocol, which is designed on the
basis of the existing two-phase commit protocol. The basic protocol of the extended
2PC is the same with that of the existing 2PC except that the decision on collaborative
updates or independent updates is based on distributed spatial relationships. This
protocol is named, spatial relationship-based 2PC.

This paper is organized as follows. In section 2, we will briefly describe related
works. In section 3, we address the locking problems of spatial objects, which have a
distributed spatial relationship . To deal with the issues of concurrent updates of
replicated spatial data, new locking methods are introduced in section 4. Section 5
presents the update propagation protocol based on the distributed spatial relationship-
based locking. Section 6 describes an overview of our system implemented on top of
a GIS S/W, Gothic. Our conclusions are presented in section 7.

2 Related Work

In distributed databases, replication consistency can be maintained by the
synchronous [11] or asynchronous [5] replica control scheme . Synchronous replica
control keeps all replicas synchronized at all the sites by the 2PC protocol.
Asynchronous replica control propagates replication updates asynchronously to the
other sites after committing on a replica-server. In addition, there has been much
research to release restriction of synchronous replica control, such as a quorum-based
scheme, causality [2][9][12].

The optimistic approach, such as the lazy replication scheme [8], which belongs to
the asynchronous replica control method, allows an object to be independently
updated at each site. In this approach, locking is not used. Instead, the multi-version
concept [13] is employed to control concurrency and ensure the serializability.
Concurrent updates of two spatial objects having distributed spatial relationships may
make them inconsistent even if their READ locks or WRITE locks do not conflict
with the other. Thus, the traditional optimistic scheme is difficult to be applied on
replica control of spatial objects.

For the increase of the concurrency of long transactions, we have developed a new
protocol, named, the mid-commit protocol based on the existing 2PC [1]. The main
premise of our earlier work was to use the delta-merge protocol to resolve the update
conflict problem of long transactions. The work on this paper is an extension of the
mid-commit protocol for supporting replica control and concurrency of long
transactions, which can guarantee the serializability of concurrent updates of spatial
objects that are replicated.

3 The Locking Problems of Spatial Objects

We will describe the problems of concurrently updating replicated spatial objects, and
identify update dependencies among interactive transactions to support the replication
control and concurrency control of replicated data.

Fig. 1 shows a scenario of updating two spatial objects. Two interactive
transactions, TA and TB, update replicated data, ‘property’ and ‘road’ respectively. If
TA and TB are executed sequentially, as Fig. 1 (a) or (b), these serially scheduled
transactions preserve a correct state.

Not all concurrent execution of long transactions result in a correct state. Consider
the schedule of Fig. 1 (c). Since the WRITE locks (property 1, property 2) of TA do
not conflict with the WRITE lock (road 1) of TB, the locking protocol does not delay
any of two transactions. However, the schedule (c) leads to an incorrect state. The
schedule leads to an undesirable result because two objects, property 1 and road 1, are
independently updated in spite of having a spatial relationship, ‘meets’.

Because of the possibility of giving an incorrect state, two spatial objects having a
spatial relationship should not be updated concurrently. This is an update constraint of
two different spatial objects, which have a spatial relationship. The traditional locking

protocol can not ensure the serializability of concurrent updates of two spatial objects
with the dependency due to this spatial relationship.

TA : update property1, property 2

property 1

road 1
TB : update road 1

(a) TATB

road 1road 1

road 1road 1

(b) TBTA

road 1

(c) TA,TB: parallel execution

equal

property 2

property 2 property 2

property 2 property 2 property 2

property 1property 1

property 1 property 1 property 1

Fig. 1. Updating the objects that have spatial relationships

A spatial relationship is defined as a relationship between two spatial objects
having Egenhofer’s spatial relations. In [6], Egenhofer classified spatial relationships
into 8 types, Disjoint, Meets, Equals, Inside1, Inside2, Covers1, Covers2, and
Overlaps. Fig. 2 shows an example of a spatial relationship, ‘Inside’.

house1 (X)

residential_district 1 (Y)
X Inside Y

Spatial Relationship

house layerresidential_district layer

X

Y

Fig. 2. An example of a spatial relationship ‘Inside’

A spatial relationship dependency can also be defined for remote spatial objects.
Now, we define distributed-SR dependency as follows:

Definition 1. Two objects, Oi and Oj are distributed-SR dependent if and only if two
objects have a spatial relationship except 'Disjoint' relation, and where Oi and Oj are
the objects to be updated by Ti and Tj at remote sites Si and Sj respectively.

If two objects are distributed-SR dependent , concurrent update of them does not

guarantee a correct state. For example, in Fig. 2, if X and Y are individually updated
at different sites, they are distributed-SR dependent. Because X and Y are replicated
across two sites, parallel updates of them also may produce an incorrect state shown
in Fig. 1. Therefore, when two objects, Oi and Oj, are distributed-SR dependent, two
transaction, Ti and Tj, that update two objects, must update them cooperatively.

4. Region Locking and SR-Bound Write Locking

We propose region locking and SR-bound write locking, which are extensions of two-
phase locking. The key idea upon which the extensions are based, is to restrict the unit
of concurrency control of interactive transactions to a window of spatial objects
displayed on the screen.

4.1 The Definition of Region Locking and SR-Bound Write Locking

Region locking sets shared locks on all the objects within the region that is
interactively defined by users. Region lock is a weak shared lock because the lock
allows us to set WRITE locks on some objects in the region later on. This lock mode
is similar to share intention exclusive lock (SIX lock) in multiple granularity locking.
When a replicated spatial object is being updated at a remote site, it is desirable to
allow interactive transactions to be able to display it at the same time in order to
access or update some spatial objects by interacting with displayed objects. The mode
of a region lock is a weak SIX lock , and define it as follows:

Definition 2. A weak SIX lock is a lock mode that holds locks on a set of objects in the
shared mode and allows the other transactions to acquire exclusive locks on some of
the objects. It tolerates shared locks and weak SIX locks of other transactions.

The definition of the region lock using definition 2 is as follows:

Definition 3 . Let D be the whole data set of a map, R be the entire region of the map,
Ri be sub-region of R viewed by users who are running a long transaction Ti , and DRi
be all the objects which is totally contained in Ri. We define the Region lock of Ti as a
set of weak SIX lock s on DRi.

(** Fig. 3 shows an example of a region lock . DRi are the objects totally contained
in Ri (that is, 1 road segment and 5 properties). The region, Ri, is defined by users for
updating some objects of DRi. Region locking sets weak SIX locks on DRi.

Middle school

Map of Road and Property layers

User-defined
region

DRi : 1 road, 5 propertiesRi
R D : all road and properties in R

Road
Property

Fig. 3. An example of region locking **)

If there exists a distributed-SR dependency between two objects at different sites,
concurrent update of the two objects should not be allowed. We introduce a new
WRITE lock mode based on distributed-SR dependency, and is defined as follows:

Definition 4. A DSRX lock (Distributed Spatial Relationship-bound eXclusive lock) is
a lock mode that sets the exclusive lock to the remote objects being distributed-SR
dependent on the locally updated object, and also holds an exclusive lock on it. It also
tolerates shared locks and weak SIX lock s of other transactions.

The definition of SR-bound write lock using DSRX lock is as follows:

Definition 5. Let X be a group of objects in a region lock of a transaction Ti. We
define Spatial Relationship-bound Write locks of Ti as DSRX locks on X.

Table 1. Compatibility Matrix for two-phase locks, weak SIX and DSRX

READ WRITE weak SIX DSRX
READ yes no yes yes
WRITE no no no no

weak SIX yes no yes yes
DSRX yes no yes no

Lock compatibility matrix is extended to include weak SIX lock and DSRX lock as

shown in Table 1. In the lock compatibility of Table 1, weak SIX lock and DSRX lock
modes are compatible with the READ lock mode.

4.2 Concurrency Control by Region Locking

We name the region lock of a transaction TA, as RGLA. When RGLA, the region lock
of transaction TA, and a RGLB, the region lock of transaction TB, are sent to remote
sites, two region locks might have eight kinds of relations, like distributed spatial
relationships. Except ‘Disjoint’ relationship, two region locks have non-disjoint area,
denoted as NDJAB (Non-DisJoint area of TA and TB). In the case of ‘Overlaps’,
NDJAB is the overlapped area (RGLA ∩ RGLB) as shown in Fig. 5. For ‘Meets’ and
‘Equals ’, NDJAB is the union of two regions (RGLA ∪ RGLB). If two region locks,
RGLA and RGLB, have NDJAB, we say, two transactions, TA and TB, are in the
relation, region-NDJ. If two region locks don’t have NDJ area, we say, two
transactions, TA and TB, are in the relation, region-DJ.

(**

TA
TB

RGLA

RGLB

NDJ AB

Replicated
Map(D,R)

DRB

DRA

TA
TBRGLA

RGLB

NDJAB

(a) ‘Overlaps’ relation (b) ‘Meets ’ relation
Fig. 4. Topology of region locking **)

In this paper, we assume that TA can only update the objects in DRA after acquiring
SR(Spatial Relationship)-bound write lock and there is only one transaction at each
site at a time. An object, which is updated by TA and is set to SR-bound write lock , is
called UDOA (UpDating Objects of TA, UDOA ⊂ DRA).

RGLA

RGLB

UDOA

NDJAB

UDOB

(f) Meets

RGLA

RGLB

NDJAB

(b) Overlaps 2

UDOBUDOA

RGLA

RGLB

NDJAB

(a) Overlaps 1

UDOB

UDOA

RGLB

NDJAB

(c) Overlaps 3

RGLA

UDOB

UDOA

RGLA

RGLB

NDJAB

(d) Inside 1

UDOB

UDOA

RGLA

RGLB

NDJAB

(e) Inside 2

UDOB
UDOA

RGLA

RGLB

NDJAB

(g) Equals

UDOB

UDOA

Fig. 5. NDJAB and update conflicts

If there exists a NDJ area between two region locks, update conflict can occur
between the two interactive transactions while updating the two regions. Fig. 5 shows

the examples of distributed-SR dependencies of region locks, when two region locks
are non-disjoint.

(b) Cooperative update is required(a) Parallel execution of TA and TB is guaranteed

TA TB TA TB

Fig. 6. Concurrency control by region locking

We use region locks as a means of synchronizing the read access of a group of
replicated spatial objects. In Fig. 6 (a), the two transactions, TA and TB, can be
executed concurrently, because there is no distributed-SR dependency between two
region locks. However, in Fig. 6 (b), concurrent execution of the two transactions
must be forbidden, because of the distributed-SR dependency between the two region
locks.

(** Region locking does not always limit the concurrent execution of two
transactions having distributed-SR dependency. Some transactions, which have a NDJ
between their two region locks, can be executed at the same time without affecting
each other. Fig. 7 (a) shows that if UDOA and UDOB are not distributed-SR
dependent, update conflict may not occur even if these are updated concurrently. Only
when there are the region lock conflict and distributed-SR dependency between two
transactions, concurrent execution of them should be delayed until they obtain
exclusive locks on the object to update.

RGLA

RGLBUDOA

NDJAB
RGLA

RGLB

NDJAB

UDOB

(a) Parallel execution should be allowed (b) Cooperative update is required

UDOA
UDOB

Fig. 7. Concurrency control based on distributed-SR dependency **)

4.3 Concurrent Update Using SR-Bound Write Locking

We will describe an extension of the existing cooperative transaction model for
increasing concurrency of updating spatial objects. A newly defined cooperative
spatial transaction model introduces several new transaction operators as shown in
Fig. 8. A transaction TA sets region lock and sends it to remote sites (set-region-lock
operation). When a user points or clicks an object to update it in the region lock , TA
sends a lock request message to remote sites to acquire SR-Bound Write lock (set-

SRBW-lock operation). After receiving an acknowledge signal from the remote sites,
TA can update the object, and then, propagates the intermediate result to remote sites
(mid-commit operation). When an update of a specific object is completed, TA
releases SR-bound write lock (release-SRBW-lock operation). When all the update
cycles are completed, TA releases region lock (release-region-lock operation) and
commits the transaction entirely.

start
set-region-lock(RGLA)
 set-SRBW-lock(UDOA1)
 (Update on UDOA1)
 :
 mid-commit (UDOA1)
 release-SRBW-lock(UDOA1)

 set-SRBW-lock(UDOA2)
 (Update on UDOA2)
 :
release-region-lock(RGLA)
commit TA

TA

an update cycle

Fig. 8. Transaction model

'An update cycle' shown in Fig. 8 is a unit of update and propagation. If a
transaction is decomposed into one or more update cycles, updates can be processed
incrementally. The incremental updates are required to set the SR-bound write locks
on not all the spatial objects within a given region lock , but just on a spatial object
specified by a user. The SR-bound write locks thus can deal with the problems of
interactive transactions.

(**

set-region-lock
 set-SRBW-lock(DRA)
 (Update UDOA)
 :

 mid-commit(UDOA)
 :

TA

set-region-lock
 set-SRBW-lock(DRB)
 (decision)

 (wait) (continue)
 (Update UDOB)
 :
 (resume)
 (Update UDOB)
 :

TB

Fig. 9. Concurrency control by SR-bound write locking

Now, let us consider how concurrency is guaranteed through SR-bound write
locking . Fig. 9 shows an example that two transactions, TA and TB, are updating their
specific regions, and then notifying the other site that region locks and SR-bound
write locks are held on the updated data. When TB requests a permission to get a new

SR-bound write lock on the object updated by TA, whether TB will ‘wait ’ or
‘continue’, is determined by examining the distributed-SR dependency between
UDOA and UDOB. Even if two region locks of TA and TB are non-disjoint (NDJAB),
concurrent update can be allowed if there is no distributed-SR dependency between
Updating Objects (UDOA and UDOB) (Fig. 9). When there exists distributed-SR

dependency, the waiting time of a transaction is limited to the duration of one update
cycle (Fig. 9). **)

4.4 A Change in the Distributed-SR Dependency

During execution of a transaction, distributed-SR dependency between two spatial
objects can be dynamically deleted or created according to the changes of geometry.
Thus, the concurrency control using SR-bound write locking, should reflect the run-
time change of distributed-SR dependency.

before_update

(SRbefore)

after_update X

(SRafter1)

Y

TBTA

after_update Y

(SRafter2)

X

YX

YX

Y

TBTA

X

YX

YX

(a) (b)
Fig. 10. The changes of distributed-SR dependencies

Here, we define SRbefore as a distributed spatial relationship before update, and
SRafter as a distributed spatial relationship after update. In Fig. 10 (a), the mode of
distributed-SR dependency is set to independent from dependent by updating of the
geometry of X. Fig. 10 (b) shows the reverse case of Fig. 10 (a). In these cases, the
correctness of updated map cannot be automatically determined. An approach to
address and find solutions to the issues of concurrent control of interactive
transactions, is to use the 2PC protocol for supporting cooperative transactions.

(** We assume that TA is executed before TB, and also, when TA is executed in
parallel with TB, TA is committed before TB. When a distributed spatial relationship
at SRbefore or SRafter is dependent, the simple merge of two transactions may lead to
an incorrect state. Therefore, the mid-commit of a transaction should be done in the
2PC for merging. The mid-commit protocol also should be applied to temporary SR-
independent state, as in Table 2 (b), (c), and (d). In addition, when a distributed-SR
dependency is newly created after carrying out the mid-commit operation of a
transaction, TA, the second transaction, TB, should cooperate with TA in
synchronizing the result of TA with that of TB, as in Table 2 (e), (f), (g).

Table 2. Transaction action table based on Distributed-SR dependency

before TA

updates
(SRbefore)

TB acts
after TA

updates
(SRafter1)

TB acts
after TB

updates
(SRafter2)

TB acts

(a) dependent 2PC with TA

(b) dependent 2PC with TA
independent 2PC with TA

(c) dependent 2PC with TA

(d)

dependent wait
independent 2PC with TA

independent 2PC with TA

(e) dependent 2PC with TA

(f) dependent 2PC with TA
independent 2PC with TA

(g) dependent 2PC with TA

(h)

independent parallel
update

independent parallel update independent No 2PC **)

5. Update Propagation Scheme

In this section, we will discuss an SR-based 2PC protocol to propagate an update of
any given object to all secondary copies. We will illustrate an example of update
propagation scenarios.

(** 5.1 Transaction Operations

We extend the locking-based distributed transaction operations by including the SR-
based locking. The transaction operations can be issued manually by users, or issued
automatically by a system.
? set-region-lock to set a group of READ locks to all the objects contained within a

user-specified area and notify the region lock to relevant remote sites.
- reply-region-NDJ to reply that a receiver has a relation, region-NDJ, over its

source object.
- reply-region-DJ to reply that a receiver has a relation, region-DJ, over its source

object.
? set-SRBW-lock to set an SR-bound write lock to an object to be updated within the

area of the region lock and notify the SR-bound write lock to all the remote sites
having a relation, region-NDJ, with its source site.

- reply-SRBW-conflict to reply that a receiver already has the SR-bound write lock ,
which conflicts with its source object, in response to set-SRBW-lock .

- reply -SRBW-ok to reply that a receiver doesn’t have the SR-bound write lock ,
which conflicts with its source object, in response to set-SRBW-lock .

? mid-commit to propagate DELTA to all of the sites and start SR-based 2PC.
- reply-mid-accept to reply “OK” to the sender.
- reply-mid-reject to reply “Not OK” to the sender.
- send-global-commit to send a global commit to all the sites, if all replies are

“OK”.
- send-global-abort to send a global abort to all the sites, if any reply is “Not OK”.

? mid-rollback to roll the most recent mid-commit back and to propagate it to all of
the sites.

? release-region-lock to release the region lock and commit a transaction.
- pre -released to inform of the start of the release-region-lock to the message

sender.
- post-released to inform of the end of the release-region-lock to the message

sender.
? release-SRBW-lock to release the SR-bound write lock and awake the blocked

transactions.
? rcv-“any-operation” when “any-operation” operation is propagated to remote sites,

the receiver executes the rcv-“any-operation” operation. **)

5.2 The Algorithm of Transaction Operations

In this section, we describe the notification and release of region locks and SR-bound
write locks, the propagation of mid-update (mid-commit), and the rollback of
committed mid-update (mid-rollback). We define some terminology used for
describing these algorithms as follows:
? Coordinator : a site to notify or propagate any transaction operation to

participating sites.
? all-sites : all participating sites except a Coordinator.
? Participants : any participating site having a relation, region-NDJ, with a

Coordinator.
? Others : any participating sites having a relation, region-DJ, with a Coordinator.

5.2.1 Notification and Release of Region Lock

set-region-lock {

 define Region and get RGLA

 notify RGLA to all-sites

 FOR(timeout)

 wait for response

 FOR(all responses)

 IF(reply-region-NDJ)

 THEN write to log as Participants

 write its own RGLA to log

}

rcv-set-region-lock(RGL A) {

 IF(there is its own RGLB)

 THEN check Non Disjoint state

 IF(Non Disjoint)

 THEN send reply-region-NDJ
 ELSE send reply-region-DJ

 write RGLA to log

}

Fig. 11. The algorithm of region locking

The set-region-lock operation defines a region lock , notifying it to all-sites in order to
get Participants, and writes these to a log, as shown in Fig. 11. The rcv-set-region-
lock operation is automatically executed at the sites that receive the message set-
region-lock . rcv-set-region-lock checks if there is a relation, region-NDJ, between a
sender and a receiver, and returns an answer reply-region-NDJ or reply-region-DJ to
the sender.

When there are no more objects to be updated under a region lock , the release-
region-lock , shown in Fig. 12, will be invoked to release the region lock and finish the
long transaction. However, if the transaction had any Participants after notifying the
set-region-lock , the transaction should not be terminated independently. Some
transactions having a relation, region-NDJ, should be coordinated by the extended
2PC, because their distributed spatial relationships may be dynamically changed
according to their updates (note that, in Table 2 (g), the mode of SRafter2 can be
changed from ‘independent’ to ‘dependent’). Therefore, the termination of the
release-region-lock should be suspended until all Participants are finished.

release-region-lock (RGLA) {

 propagate pre-released to all-sites

 FOR(all Participants)
 IF(not pre-released state)
 THEN wait for pre-released

 propagate post-released to all-sites

 delete RGLA from log

}

Fig. 12. The algorithm of releasing a region lock

5.2.2 Notification and Release of SR-Bound Write Lock

set-SRBW-lock {

 define the object set for DSRX lock and get UDOA

 propagate UDOA to Participants

 FOR(timeout)

 wait for response

 IF(receive any reply-SRBW-conflict)

 THEN write conflict transactions to log

 FOR(all conflict transactions)

 wait for release-SRBW-lock

 write its own UDOA to log

}

rcv-set-SRBW-lock (UDOA) {

 IF(there is its own UDOB)

 THEN check distributed-SR dependency

 IF(dependent)

 THEN send reply-SRBW-conflict
 write blocked transaction to log

 ELSE send reply-SRBW-ok

 write UDOA to log

}

Fig. 13. The algorithm of SR-bound write locking

The set-SRBW-lock operation defines UpDating Objects(UDO), propagates them to
all the Participants of which region locks may conflict with their sources, as shown in
Fig. 13. Lock conflicts between a Coordinator and its Participants mean that
Participants already hold the SR-bound write lock on some of UDO. In such cases,
the Coordinator writes Participants to log, and should wait until the SR-bound write
lock is released. rcv-set-SRBW-lock operation returns the message, reply-SRBW-
conflict or reply-SRBW-ok, according to lock compatibility.

The release of the SR-bound write lock is done by the release-SRBW-lock
operation. This operation is invoked after executing the mid-commit, and the lock
release signal is notified to Participants.

5.2.3 SR-based 2PC
We have introduced the mid-commit operation to accomplish two purposes:
replication control and collaborative work. First, we have to deal with the update
propagation problem of replicated data in two or more long transactions. The idea is
to decompose an interactive transaction into sub-transactions which contain only one
update cycle each, and then perform update propagation incrementally. Second, the
collaborative work is required to guarantee the correctness of long transactions. The
collaborative work is performed by propagating the DELTA of an updated object to
others.

For these purposes, we extend the traditional 2PC for implementing the
collaborative work. The basic protocol of the extended 2PC is same with that of
existing 2PC. However, the scope of participant sites communicating with the sender
is determined by identifying distributed-SR dependencies. The extended 2PC, named
as SR-based 2PC, is operated between a Coordinator and its SR-based Participants.
In this paper, we assume that there is no communication faiure and all the sites are
always available to limit the scope of this paper.

mid-commit (UDOC){C

 get DELTAC from UDO C

 propagate DELTAC to all-sites

 IF(there are no participants)

 THEN propagate send-global-commit to all-sites

 write DELTAC to stack

 return

 FOR(timeout)
 wait for response of participant
 IF(any reply-mid-reject)

 THEN propagate send-global-abort to all-sites

 cancel DELTAC

 IF(all reply-mid-accept)

 THEN propagate send-global-commit to all-sites

 write DELTAC to delta stack

}

participant(DELTAC) {

 display DELTAC and check conflict

 IF(conflict)

 THEN send reply-mid-reject

 delete DELTAC

 return
 ELSE send reply-mid-accept

 FOR(timeout)

 wait for response
 IF(send-global-abort)

 THEN delete DELTAC

 IF(send-global-commit)

 THEN merge DELTAC

 write DELTAC to delta stack

}

ParticipantCoordinator Others

others(DELTAC) {

 FOR(timeout)

 wait for response
 IF(send-global-abort)

 THEN delete DELTAC

 IF(send-global-commit)

 THEN merge DELTAC

 write DELTAC to delta stack

}

C

C

Fig. 14. The algorithm of SR-based 2PC

The SR-based 2PC operates among the Coordinator, Participants, and Others. The
Coordinator is a site who issues the mid-commit. Participants are those updating the
remote objects which are distributed-SR dependent or could be potentially
distributed-SR dependent on the object being updated by the Coordinator. Others are
the sites who are neither the Coordinator nor Participants. The algorithm of SR-based
2PC is shown in Fig. 14.

(** 5.2.4 mid-rollback
After the updated object is propagated to all the remote sites, they may be canceled
because of errors found later. We don’t take the recovery problem caused by the
failure of a communication link or a site into consideration, and concentrate on the
cancellation of updates after propagation.

At first, we must determine how far the update transaction should be rolled back. It
is undesirable to roll a whole long transaction back, since the cost of rollback is too
large. Because the updated object is propagated after finishing ‘an update cycle’, the
‘an update cycle’ is not only the unit of mid-commit but also one of rollback.

Now, we focus on how the mid-rollback operation cancels the last update
committed by the mid-commit operation. To ensure the global consistency, the mid-
rollback operation must satisfy following requirements, to roll the most recent mid-
commit back:
? all sites must maintain their own DELTA stacks to return to the previous state.
? If a transaction TA issues the message mid-rollback , all the transactions that

receive the message mid-rollback from TA must also be rolled back.
? Once TA issues the message mid-rollback , any transaction TB that has updated the

value of some object updated by TA, must also be rolled back. This is called a
cascade-rollback.

mid-rollback (DELTAA) {
 propagate the rollbacked DELTA A to all-sites

 delete the rollbacked DELTAA from delta stack
 undo the DELTA A from the merge

}

rcv-mid-rollback(DELTA A) {
 undo the DELTA A from the merge

 IF(the receiver is Others)
 THEN return

 IF(the receiver is Participant)
 THEN IF(UDOB is not mid-committed)
 THEN redo update of UDO B

 ELSE execute cascade-rollback
 //i.e. execute mid-rollback (DELTAB)

}

Fig. 15. The algorithm of mid-rollback

The algorithm of the mid-rollback operation is shown in Fig. 15. The mid-rollback
operation propagates the DELTA to all-sites. Then, the DELTA is removed from the
delta stack, and then the merge is cancelled. Any site that receives the message mid-
rollback executes the rcv-mid-rollback operation. First, the rcv-mid-rollback rolls the
propagated DELTA back. Then, the rcv-mid-rollback checks whether it is a
Participant or one of the Others in the mid-commit of UDOA. If the site is a
Participant, undoing current updates or cascading the rollback may be required
according to the mid-commit of UDOB.

5.3 An Example of Update Propagation Scenarios

In this section, we will illustrate an example where SR-based locking is required. Fig.
16 shows an example where two transaction, TA and TB, update two spatial objects, a
polygon and a line, at the same time. We assume that the 'property' layer and 'road'
layer are updated by TA and TB at sites A and B, respectively, and the update of the
'property 1’ is followed by the update of the 'road 1'.

TA : update property 1

property 1

road 1

TB

TA

TB : wait TB : update road 1

TA

Fig. 16. Concurrent updates of two spatial objects, a polygon and a line

An example of update propagation scenarios is shown in Fig. 17. We divide the
update propagation protocol into three phases for simplifying the scenarios: locking
phase, mid -commit phase, and lock releasing phase. Each phase of a transaction TB is
as follows:

Phase 1 : locking phase (denoted as in Fig. 17)

1. Set region lock , RGLB, which contains a spatial object ‘road 1’, and notifies it to
TA. The return message of TA informs that two region locks RGLA and RGLB
are non-disjoint (reply-region-NDJ).

2. Set SRBW lock on ‘road 1’, and notifies it to TA. The return message of TA
signals that TA have the same lock on ‘road 1’ or on the distributed-SR
dependent object. TB is blocked until the lock is released.

Phase 2 : mid-commit phase (denoted as in Fig. 17)

1. Propagate the DELTAB of ‘road 1’ to the Participant , TA, and start the SR-based
2PC. The Participant TA votes ‘accept’ because the DELTAB includes no errors
(phase 1 of SR-based 2PC).

2. After the Participant (TA) replies ‘accept’, the Coordinator sends a signal send-
global-commit (phase 2 of SR-based 2PC).

3. After receiving the send-global-commit, TA merges the DELTAB into its own
data set.

Phase 3 : lock-releasing phase (denoted as in Fig. 17)

1. Propagate the message release-SRBW-lock on ‘road 1’ to TA, after completing
the update of ‘road 1’.

2. Propagate the message release-region-lock of TB to TA, when there are no more
objects to be updated in RGLB.

TB

set-region-lock

set-region-lock

set-SRBW-lock

set-SRBW-lock

mid-commit(property 1)
reply-mid-accept

(wait)

Update property 1

mid-commit(road 1)

(merge property 1)

reply-mid-accept

send-global-commit

TA

Update road 1

send-global-commit(merge road 1)

reply-SRBW-conflict block

release-SRBW-lock (property 1)

(wait)

release-SRBW-lock (road 1)

release-region-lock(RGLA)

release-region-lock(RGLB)

commit commit

wakeup

property 1

road 1

pre-released

pre-released
post-released post-released

RGLA

RGLB

rcv-set-SRBW-lock

rcv-set-region-lock
reply-region-DJ

rcv-set-SRBW-lock
reply-SRBW-ok

reply-region-NDJ
rcv-set-region-lock

rcv-mid-commit

rcv-mid-commit

rcv-release-region-lock

rcv-release-region-lock

DELTAB

DELTAA

start transaction

Fig. 17. SR-based 2PC for Participants voting accept **)

6. Implementation

For building the replicated spatial database, we have decided to use an object-oriented
spatial database system, called ‘Gothic 3.0’ [14], being operated on two workstations
(HP C200 and DEC 500/400). The Gothic system still provides no concurrency
control scheme for updating spatial objects. The system sets a WRITE lock on the
entire data set before starting any update transactions. We assume that two sites can
store and update replicated spatial objects.

We have developed the Replication Manager (R-manager in Fig. 18) on top of the
Gothic. The Replication Manager is composed of 5 modules. User Interface, Lock
Manager, Protocol Processor, Message Processor, and Catalog Manager.

(** The implementation issues are how to realize region locking, SR-bound write
locking , and SR-based 2PC. The detail implementation techniques and processing
mechanisms are as follows:

? region locking and SR-bound write locking: The User Interface module allows
users to define the region to set READ locks to a set of display objects, and passes
it to the Protocol Processor module. The lock compatibility, for example, whether
SR-bound write lock could be allowed or not, is checked by the Lock Manager
module. The Lock Manager module represents and manages locking information.

? SR-based 2PC: The user’s decision in the SR-based 2PC is caught by the User
Interface module, and then passed to the Protocol Processor module. The
Coordinator in the Protocol Processor module propagates DELTA of the updated
object to remote sites and waits for the Participants’ votes. The Message Processor
module at a remote site receives the DELTA and passes it to the Participant in the
Protocol Processor module. The Participant gets a user’s decision from the User
Interface module, and returns it to the Coordinator. After the Coordinator gathers
all the Participants’ responses, it notifies the global decision to remote sites. The
Coordinator and Participants perform the process of delta-merge on the local data
set, when the global decision is ‘accept’. **)

Gothic

R-manager

Data

Server
Socket

newly added parts

Replicated
Spatial

 Data Set

Replicated
Spatial

Data Set

Workstation : HP C200 Workstation : DEC 400/500

Socket

R-manager

Data

Server

Gothic

Message
Processor

Protocol
Processor

Lock
 Manager

User
Interface

Catalog Manager

Message
Processor

Protocol
Processor

Lock
 Manager

User
Interface

Gothic
Transaction Manager

Gothic
Transaction Manager

Catalog Manager

Fig. 18. Architecture for Replicated Spatial Databases

The main implementation problem was how to forbid users’ attempts to update
objects on which the other site already holds SR-bound write locks, without affecting
the lock manager of Gothic. We resolved this problem by using event-processing
function of Gothic. A ‘reflex’ of Gothic is a method to be invoked when an object is
created, updated, or destroyed. Before updating an object, the ‘reflex’ method is
invoked. Thus, our Lock Manager can catch the control and decide whether the
update could be allowed or not.

7. Conclusions

In this paper, our goal was the development of new techniques for guaranteeing the
concurrency and replication control in replicated spatial databases. To achieve these
goals, we proposed new lock modes and an extended update propagation protocol.
Because region locking does not block the entire data set, it can maximize the
concurrency of long transactions. SR-bound write locking ensures the correct update

of spatial objects. We discovered that the distributed spatial relationships between
spatial objects are a new dependency factor in the environment of concurrently
updating replicated spatial data. SR-bound write locking could control the consistency
of replicated spatial data having the distributed spatial relationships.

The contributions of this paper are as follows: First, we discovered that replicated
spatial objects have distributed spatial relationships, and the objects are dependent on
each other when they are updated at the same time, although they are not the same
objects. Second, we proposed new distributed spatial relationship-based locking
(region locking and SR-bound write locking), which support concurrency and
replication consistency of long transactions. Third, we developed the extended update
propagation protocol for supporting cooperative work and replication control of
spatial data. The cooperative work is achieved by SR-based 2PC protocol.

Our implementation results showed that high concurrency could be achieved with
little overhead. The update conflict caused by distributed spatial relationships, could
be solved using SR-bound write locking and SR-based 2PC protocol .

References

1. Am-suk Oh, Jin-oh Choi, Bong-hee Hong:An Incremental Update Propagation Scheme for a
Cooperative Transaction Model. Int. Workshop on DEXA (1996) 353-362

2. P. Chundi, D.J. Rosenkrantz, S.S. Ravi: Deferred Updates and Data Placement in Distributed
Databases. Proc. Int. Conf. on Data Engineering (1996) 469-476

3. K. Stathatos, S. Kelly, N. Roussopoulos, J.S. Baras: Consistency and Performance of
Concurrent Interactive Database Applications. Proc. Int. Conf. on Data Engineering (1996)
602-608

4. A. Kemper, G. Moerkotte: Object-Oriented Database Management : Applications in
Engineering and Computer Science. Prentice Hall Press (1994)

5. G. Coulouris, J. Dollimore, T. Kindberg: Distributed Systems : Concepts and Design, 2ED.
Addison-Wesley Publishing (1994)

6. M.J. Egenhofer: Reasoning about binary topological relations. 2th Int. Symposium, SSD’91
(1991)

7. H.F. Korth, G.D. Speegle: Long-Duration Transaction in Software. Proc. Int. Conf. on Data
Engineering (1990) 568-574

8. J.Gray, P.Helland, D.Shasha: The Dangers of Replication and a Solution. Proc. of the 1996
ACM SIGMOD (1996) 173-182

9. E.Pitoura: A Replication Schema to Support Weak Connectivity in Mobile Information
Systems. Int . Workshop on DEXA (1996) 708-717

10. M.H. Nodine, S.B. Zdonic: Cooperative Transaction Hierarchies: A Transaction Model to
Support Design Applications. Proc. Int. Conf. on VLDB (1990) 83-94

11. P.A. Bernstein, N. Goodman: An Algorithm for Concurrency Control and Recovery in
Replicated Distributed Databases. ACM Tran. Database Systems, vol.9, no.4 (1984) 596-
615

12. D. Agrawal, A.E. Abbadi: The Tree Quorum Protocol: An Efficient Approach for
Managing Replicated Data. Proc. Int. Conf. on VLDB (1990) 243-254

13. H. berenson, P.Nernstein, J.Gray, J.Melton, E.O’Neil, P.O’Neil: A Critique of ANSI SQL
Isolation Levels. Proc. of the 1995 ACM SIGMOD (1995) 1-10

14. The Gothic Object Server Module Reference Manual. Laser Scan Ltd. (1998)

