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Abstract
This work presents a novel global illumination algorithm which concentrates computation on important light
transport paths and automatically adjusts energy distributed area for each light transport path. We adapt statis-
tical framework of Population Monte Carlo into global illumination to improve rendering efficiency. Information
collected in previous iterations is used to guide subsequent iterations by adapting the kernel function to approxi-
mate the target distribution without introducing bias intothe final result. Based on this framework, our algorithm
automatically adapts the amount of energy redistribution at different pixels and the area over which energy is
redistributed. Our results show that the efficiency can be improved by exploring the correlated information among
light transport paths.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Raytracing

1. Introduction

To generate a physically correct image involves the esti-
mation of a large number of integrals of path contributions
falling on the image plane. It is well known that the inte-
grals have highly correlated integrands. However, a standard
Monte Carlo rendering algorithm evaluates the integrals in-
dependently. As a result, even a small but important region in
the domain is located during the process. This information is
lost to other samples because of the independent sampling.
Sample reuse is an important technique to reduce the vari-
ance by exploiting the correlation between integrals. Markov
Chain Monte Carlo algorithms for global illumination, such
as Metropolis Light Transport [Vea97] and Energy Redistri-
bution Path Tracing [CTE05], enable sample reuse by mutat-
ing existing samples into new ones, but the choice of good
mutation strategies is non-trivial and has a major impact on
image quality. Population Monte Carlo (PMC) algorithms
provides us a tool to reuse the information collected in previ-
ous iterations. PMC energy redistribution, adapts the frame-
work of PMC to energy redistirbution algorithm, exploits in-
formation from important samples through reuse with a mu-
tation process whose mutation strategy is adapted on-the-fly.
It is self-tuning to a large extent.

The PMC energy redistribution algorithm iterates on a

population of light transport paths passing through the im-
age plane. The population paths are created by tracing the
view rays passing through stratified pixel positions on the
image plane by a general Monte Carlo ray tracing algorithm
such as path tracing and bidirectional path tracing. In our im-
plementation, we use a general path tracing algorithm. Any
information available in the previous iterations can be used
to adapt thekernel functionof each population path that pro-
duce a new population based on the current population. The
resampling process eliminates part of the population paths
and regenerate new paths to achieve ergocity. We carefully
design the resampling process to eliminate the well explored
or low-contribution paths from the current population and to
generate new paths according to the need of exploring the
image plane evenly for achieving unbiasedness. As a result,
new samples are designed to explore the image plane in an
even manner. The procedure is then iterated: sample, iterate,
resample, adapt, iterate, resample . . . . The result is a self-
tuning unbiased algorithm which can explore the important
paths locally.

Our contribution is a new rendering algorithm,PMC En-
ergy Redistribution(PMC-ER), based on the PMC frame-
work. The algorithm adapts the amount of energy redistribu-
tion at different pixels and the area over which energy is re-
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distributed. For example, pixels near a sharp shadow bound-
ary will not attempt to widely distribute energy, while those
in a smooth diffuse image region will distribute energy over
a wide area.

The remainder of this paper is organized as follows: sec-
tion 2 reviews a number of works related to this algorithm.
Section 3 presents the generic PMC frame work. Section 4
presents the PMC-ER in detail. Section 5 shows the results
generated by this algorithm. Section 6 discusses the limita-
tion and relation to the existing algorithm. Finally, section 7
gives the conclusion of our algorithm.

2. Related Work

Currently, most global illumination algorithms are based on
ray tracing and Monte Carlo integration. There exist two
catefories: unbiased methods such as [Kaj86,VG94,LW93];
and biased methods such as [WRC88,Hec90,Jen01]. Inter-
ested readers can refer to Pharr and Humphreys [PH04] for
an overview of Monte Carlo rendering algorithms. Here we
only focus on sample reuse which is directly related to this
work.

Sample reuse via Markov Chain Monte Carlo (MCMC)
algorithms is a powerful means of exploiting hard-to-find
light transport paths in global illumination. Metropolis Light
Transport (MLT) [Vea97] was the first algorithm to use this
approach. MLT replaces the Monte Carlo integrator used in
path tracing with a Metropolis sampler. The main advantage
of the Metropolis algorithm over Monte Carlo intergration is
the ability to preserve the sampling context. This is done by
using path mutation to explore path space in a localized way.
Thus, when high conbribution paths are found, nearby paths
will likely be explored as well.

A number of extensions have been introduced since the
original 1997 paper. [PKK00] extended MLT to handle
participating media such as smoke and fog. [KSKAC02]
made the MLT algorithm more robust by mutating in an
abstract space of random numbers rather that on the ex-
pected quality. The start-up bias of the MLT was analyzed by
[SKDP99] and the analysis of the algorithm was presented in
[APSS04]. However, the disadvantage of MLT was and con-
tinues to be that very large numbers of samples are required,
and stratification is difficult.

Energy redistribution path tracing (ERPT) [CTE05] at-
tempted to address this problem by starting with a well-
stratified set of initial samples and locally redistributing
energy using MCMC. The noise-reduction techniques they
proposed introduce bias. In addition, the extent of redis-
tribution was manually set. [FCL05] used the MLT sam-
pler to take visual importance into account with complete
paths from light to eye when distributing photons accord-
ing to paths’ contribution on the final image. Their method
solved the difficult path problem such as light passes through
a small hole on the wall. However, the bias inherited from

photon mapping methods prevents the usage of advanced
convergence test mechanism. Our PMC-ER algorithm auto-
matically adapts parameters in an ERPT-like algorithm and
uses the adaptation of the kernel functions to locally explore
important light transport paths. In addition, the algorithm is
unbiased.

Ghosh, Doucet and Heidrich [GDH06] applied the frame-
work of Sequential Monte Carlo algorithm to the problem of
sampling environment maps in animated sequences. Their
work re-uses samples from previous iteration and is a com-
plementary to our method. However, their work is limited to
the environment map. Our algortihm can be applied to more
general types of light transport paths.

3. D-Kernel Population Monte Carlo

The Population Monte Carlo algorithm [CGMR04] provides
us an iterative importance sampling framework. The dis-
tinguishing feature of PMC is that the kernel functions are
modified after each step based on information gathered from
prior iterations. The kernels adapt to approximate the ideal
importance function based on the samples seen so far. While
this dependent sampling may appear to introduce bias, it
can be proven that the result is either unbiased or consis-
tent, depending on whether certain normalizing constants are
known (in our case they are known). The generic D-Kernel
PMC sampling algorithm [DGMR05a,DGMR05b] which is
an evolution of PMC is stated in Figure1.

1 generate the initial population,t = 0
2 for t = 1, · · · ,T

3 adaptK(t)
i (x(t)|x(t−1))

4 for i = 1, · · · ,N

5 generateX(t)
i ∼ K(t)

i (x|X(t−1)
i )

6 w(t)
i = π(X(t)

i )/K(t)
i (X(t)

i |X(t−1)
i )

7 resampling process: elimination and regeneration

Figure 1: The generic D-Kernel Population Monte Carlo
algorihtm.

The algorithm works on a population of samples denoted

by
{

X(t)
1 , . . . ,X(t)

N

}

, where t is the iteration number and

N is the population size, to evaluate
R

D
f (x)dx, where is

f (x) = π(x)h(x) by sampling according to the target distri-
butionπ(x).

The algorithm first creates a set of initial population
by using any unbiased sampling method. Akernel func-

tion, K(t)
i (x(t)

i |x(t−1)
i ), for each member in the population is

adapted in the outer loop. The responsibility of the mem-
ber kernel fuction is to take the existing member sample,

X(t−1)
i , as input and produces a candidate new sample,X(t)

i ,
as output (line 5). The resampling step in line 7 is designed to
cull candidate samples with low weights and promote high-
weight samples. The resampling process consists of two
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steps: elimination and regeneration. It is designed to elimi-
nate the samples with low contribution to the final result and
to explore new unexplored regions. The weight computed

for each sample,w(t)
i , is essentially its importance weight.

At any given iteration, an estimator of the integral of interest
can be computed and is unbiased forπ(h):

f̃ (x) = π̃(h) =
1
N

N

∑
i=1

w(t)
i h(X(t)

i )

E [
1
N

N

∑
i=1

w(t)
i h(X(t)

i )] =
1
N

N

∑
i=1

E[w(t)
i h(X(t)

i )]

=
1
N

N

∑
i=1

Z

D

π(x)h(x)

K(t)
i (x|x(t−1)

i )

K(t)
i (x|x(t−1)

i )dx

=
1
N

N

∑
i=1

Z

D

π(x)h(x)dx

=
Z

D

f (x)dx

It concludes that̃π(h) is an unbiased estimator ofπ(h).

Before apply PMC to rendering problems, we must first
answer the following questions:

• What is the sampling domain and how big is population
size?

• What is the member function and what is the adaption
criteria?

• What techniques are used for sampling from the kernel
functions and resampling step?

The following sections describe an application of this
framework by mutating the energy redistribution algorithm
through answering each question properly. Then, we con-
clude with a general discussion on PMC for rendering prob-
lems.

4. PMC Energy Redistribution (PMC-ER)

PMC Energy Redistribution (PMC-ER) is an algo-
rithm motivated by energy redistribution path tracing
(ERPT) [CTE05] that adaptively selects pixels for redistri-
bution, and can also adapt algorithm parameters. ERPT as
originally proposed traces a path into the scene from each
pixel, using path tracing to form complete light transport
paths from the eye to the light. For each pixel, the path is
used as the initial state for a Markov Chain Monte Carlo
(MCMC) sample chain that redistributes the path’s energy
to nearby pixels and finds additional light paths. The intu-
ition is that different pixels will find different initial paths,
and the information can then be conveyed to neighboring
pixels through the Markov Chain. Due to space limitations,
we cannot discuss ERPT in detail; readers are referred to the
original paper.

ERPT uses the estimation of the energy of the entire im-
age from the path contribution to determine how many con-
stant length chains are needed for every pixel, regardless of
how much it differs from its neighbors. In addition, the re-
distribution region is also fixed and manually set. This is
sub-optimal — some pixels that have high variance should
take more samples and more time to redistribute its energy,
while others are in a neighborhood where most light trans-
port paths are similar and redistribution achieves nothing. To
address the former problem, Cline et al. [CTE05] designed
filters that introduce bias into the calculation, making theim-
age darker than it should be.

Our PMC-ER algorithm uses the same basic premise as
ERPT: high-energy paths should be mutated to distribute the
information they carry to neighboring pixels. The sample
population is a set of light transport paths through the scene.
The kernel functions mutate these paths to create new paths.
The resampling step removes low energy or well-distributed
paths, keeps high-energy paths and generates new paths to
evenly explore regions and adapts the kernel function for
each population path. The work is focused on the impor-
tant transport paths and correlated sampling of the integra-
tion domain. In this section, we first present an overview of
our two energy redistribution algorithms. The remaining of
the section is to explore the implementation detail needed
for these two algorithms.

4.1. PMC-ER Equal Deposition Algorithm

Figure 2 shows the PMC-ER equal deposition algorithm.
In the preprocess phase, the algorithm first generates a pool
of stratified pixel positions used to explore the image plane
evenly. This pool of pixel positions is used to generate initial
population paths and to generate new stratified replacement
paths during the resampling process in each iteration in or-
der to guarantee even exploration of the image plane. Then,
the algorithm estimates the average energy contained in the
image,Ẽ, and the deposition energy,ed, for each mutation
which are discussed in section4.3. An initial population of
paths are created by using the path tracing alogirhtm, the
rays of which shoot from the camera and pass through the
pixel position,(x,y), selected from the stratified pool. In this
work, a path,Ỹ, is referred to as a light transport path start-
ing from a light,L , scattering diffusely,D, or specularly,S,
inside the scene several times, and ending at the camera,E.
The path is denoted asL(S|D)∗E. Interested readers can re-
fer to [Hec90,Vea97] for detail. Figure 4 and 5 shows two
examples of such paths.

In each inner loop, we doNEqual mutations at each path
in the population according to the path’s kernel function,

K(s)
i (ỹ(t)|Ỹ(t−1)

i ), discussed in section4.4. After mutation,

the acceptability probability,A(Ỹ′(t)
i |Ỹ(t−1)

i ), is used to de-
termine whether the path in the population switches to the

new generated path,̃Y′(t)
i , or stays as the original path,
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Ỹ(t−1)
i , before mutation. Then,ed energy is deposited on the

image plane at the pixel position of the new population path,

Ỹ(t)
i .

In the outside loop, the resampling process which is dis-
cussed in section4.5is to eliminate well-distributed and low-
contribution paths, regenerate paths considering the stratifi-
cation, and adapt the weights for perturbations with different
radiuses.

1 generate a pool of stratified pixel position
2 estimate thẽE,ed
3 generate initial population of paths int = 0
4 for s= 1, · · · ,T

5 determineα(s)
i for each perturbation

6 for i = 1, · · · ,n
7 if Ei,remain+U(0,1) > Ẽ
8 for t = 1, · · · ,Nmutations

9 generatẽY′(t)
i ∼ K(s)

i (ỹ(t)|Ỹ(t−1)
i )

10 Ỹ(t)
i = (U(0,1) < A(Ỹ′(t)

i |Ỹ(t)
i )) ?Ỹ′(t)

i : Ỹ(t−1)
i

11 deposited energy onỸ(t)
i

12 Ei,remain− = ed

13 w(t)
i = Ei,remain

14 resample the population: elimination and regeneration

Figure 2: The PMC-ER equal deposition iteration loop.
U(0,1) generates a random number uniformly distributed
between0 and 1, and Ei,le f t is the energy left in the pop-
ulation path, i, after the innter energy redistribution loops.

4.2. PMC-ER Balance Energy Transfer Algorithm

The PMC-ER balance energy transfer algorithm is presented
in figure 3. The first step still generates a pool of strat-
ified pixel positions. The next step is to generate an ini-
tial population of paths. Notice that there is no step to es-
timate the average energy contained in the image,Ẽ, and
this saves us a little computation time. In each inner loop,
we doNBalanceperturbations at each population path accord-

ing to the kernel function,K(s)
i (ỹ(t)|Ỹ(t−1)

i ). After mutation,

Ed = Ei,remainA(Ỹ′(t)
i |Ỹ(t−1)

i )/NBalance energy is deposited
on the pixel position of the newly mutated path and the same
amount of energy is removed from the population path. The
resampling process is similar to the PMC-ER equal deposi-
tion algorithm.

4.3. Energy Estimation

When applying MCMC method, the count of samples falling
in each pixel is proportional to the real energy i.e. the illu-
minance of that pixel. Thus, we must estimate the energy
contained in the image which is

1 generate a pool of stratified pixel position
2 generate initial population of paths int = 0
3 for s= 1, · · · ,T

4 determineα(s)
i for each perturbation

5 for i = 1, · · · ,n
6 for t = 1, · · · ,NBalance

7 generatẽY′(t)
i ∼ K(s)

i (ỹ(t)|Ỹ(t−1)
i )

8 depositEd = Ei,remainA(Ỹ′(t)
i |Ỹ(t−1)

i )/Nbalanceon Ỹ′(t)
i

9 Ei,remain− = Ed

10 w(t)
i = Ei,remain

11 resample the population: elimination and regeneration

Figure 3: The PMC-ER balance energy transfer iteration
loop.

EIP =
Z

I

|L(ỹ)|du(ỹ) (1)

where|L(ỹ)| is the illuminance deposited by the path,ỹ,
on the image plane i.e. the illuminance of the radiance,L(ỹ),
transported from the light to the camera. We can estimate
the image energy by computing the expected value of the
image energy,̃E, from a set of valid sample paths using the
following two equations:

E(Ỹ) =
|L(Ỹ)|

pIP(Ỹ)
= |L(Ỹ)|AIP (2)

Ẽ =
1
N

N

∑
i=1

E(Ỹ i) (3)

whereE(Ỹ) is the image energy estimated from a valid
path, pIP(Ỹ) is the probability for the path to pass through
that specific pixel position,AIP is the physical area of the
film. From Monte Carlo theory, we know that limN→∞ Ẽ =
EIP. As a result, we can also estimate the deposition energy,
ed, for the equal deposition algorithm which is:

ed =
Ẽ

Nmutations
(4)

whereNmutationsis the expected total number of mutations
which should be multiplication of the total number of iter-
ations, the total number of samples in the population, and
Nequal. With this value, the PMC-ER equal deposition algo-
rithm can directly render the final image from the accumula-
tion of energy without the need to calibrate the total energy
of the accumulation image.

4.4. The Kernel Function for Each Path

The kernel function for each population path is a conditional

kernel,K(s)
i (ỹ(t)|Ỹ(t−1)

i ), that generates a sample pathi in
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Figure 4: The top is a path with the form of LDDSSE and
used to demostrate the lens perturbation. We would like to
replace the lens subpathy5y4y3y2y1 of the form of ESSD.
We first perturb the pixel position of the original path aty5
by uniformly choosing a point from the perturbing disk and
then cast a view ray to pass through the new pixel position
as showed in the bottom to gety′4. We extend the subpath
through the same specular bounces aty′4 andy′3 as the cor-
respondingy4 andy3 to gety′2. Then,y′2 andy1 are linked
to form a new lens-perturbed path with the same form of
LDDSSE as the original one.

iteration t, Ỹ′(t)
i , given samplei in iteration t − 1, Ỹ(t−1)

i
(see Figure2 and 3). we use a mixture distribution:

K(s)
i (ỹ(t)

i |Ỹ(t−1)
i ) = ∑

dj

α(s)
i,dj

T(ỹ(t)|Ỹ(t−1) : d j ) (5)

Each component,T(ỹ|Ỹ : d), mutates an existing path to
generate a new one for exploration of the path space ac-
cording to the perturbing radius,d. Since the ergocity of
the algorithm is achieved by tracing paths at stratified pixel
positions, the mutation is only used for local exploration.
Therefore,T(ỹ|Ỹ : d) is only designed to perform apertur-
bationon the member path based on the perturbation radius,
d. Lens and caustic perturbation are two good candidates for
this job. The following is simple description of these two
mechanisms:

• Lens perturbation:

Figure4 shows an example of lens perturbation. The lens
perturbation is to replace a subpathyn−1 · · ·yk of the form
EDS∗(L|D). The perburbation takes the existing path and
moves the image point which it passes. In our case, the
new pixel location is uniformly sampled within a disk of
radius, d, a parameter of the kernel component. The re-
mainder of the path is reconstructed to pass through the
new image point and extend the subpath through addi-
tional specular bounces to be the same length as the orig-

Figure 5: The top is a path with the form of LDSSDE and
used to demostrate the caustic perturbation. We would like to
replace the caustic subpathy1y2y3y4y5 of the form DSSDE.
At the head vertex of the caustic subpath,y1, we perturbed
the outgoing light ray direction by an angle,θ, uniformly
sampled from[0,θmax] to gety′2 as showed in the bottom. We
extend the subpath through the same specular bounces at
y′2 andy′3 as the correspondingy2andy3 to gety′4. Then,y′4
andy1 are linked to form a new complete caustics-perturbed
path with the same form of LDDSSE as the original one.

inal path. The transition probability for lens pertubation
can be computed as

Td,lens(Ỹ
′|Ỹ) =

G(y′n−1,y
′

n−2)

Ad

n−k−2

∏
j=n−2

G(y′j ,y
′
j+1)

|cosθ j′,in|

whereG(y′j ,y
′

j+1) is the geometric term betweeny′j and
y′j+1, Ad is the area of the perturbation, andθ j′,in is the
angle between the normal of the surface and the direction
of the incoming light ray aty′j .

• Caustic perturbation Figure 5 shows an example of
caustic perturbation. The caustic perturbation is to re-
place a caustic subpath with a suffixym · · ·yk of the form
(D|L)S∗D+E. To do this, we generate a new subpath
starting from the vertexym, the head vertex of the caus-
tic subpath. The direction of the segmentym → ym+1 is
perturbed by a random amount(θ,φ) uniformly sampled
from [0,θmax] and [0,2π] where the central axis,θ = 0,
corresponds to the direction of the original ray and extend
the subpath through additional specular bounces to be the
same length as the original one, andθmax is the range of
sampling angle computed from correpsonding perturba-
tion radius,d, by the following equation from [Vea97]:

θmax= θ(d)
|yn−1− yn−2|

∑n−1
k=m |yk− yk−1|

(6)

whereθ(d) is the angle through which the rayyn → yn−1
needs to be perturbed to change the image location by a
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distance ofd pixels. The transition probability for caustic
perturbation can be computed as

Td,caustics(Ỹ
′|Ỹ) =

G(ym,ym−1)

2πθmaxcosθm,out

m−k−2

∏
j=m−1

G(y′j ,y
′

j+1)

|cosθ j′,out|

where θ j′,out is the angle between the normal of the
surface and the direction of the leaving light ray aty′j .

In original ERPT work, the size of the pertubation was a
parameter to be fixed at startup. In PMC-ER, we can choose
a reasonable set of different sized perturbations in the mix-
ture which is three in our case. The large pertubation is ef-
fective at redistributing information over a wide area, while
the smallest is benefit for image regions where illumination
is changing quickly.

When using the kernel function to perturb a path, we first

choosed according to the weights,α(s)
i , whered is the radius

of the lens perturbation and∑dj′
α(s)

i,dj′
= 1. And then either

lens or caustic perturbation is chosen according toγlens= 0.1
and γcaustic= 0.9 in our case which is set to prefer caus-
tic perturbation when it is possible. We can then perturb the
current path to generate a new perturbed path. The accept-
ability is to determine whether a path switches to the newly
generated path and calculated accordingly as follow:

A(Ỹ′|Ỹ) = min(1.0,
f (Ỹ)K(s)

i (Ỹ′|Ỹ)

f (Ỹ′)K(s)
i (Ỹ|Ỹ′)

) (7)

where f (Ỹ) is the path contribution defined in [VG97].
When evaluating the acceptability probability, all possible
proposals that might generateỸ′ from Ỹ should be consid-
ered which is:

K(s)
i (Ỹ′|Ỹ) = ∑

dj′

α(s)
i,dj′

( γlensTdj′ ,lens(Ỹ
′|Ỹ) (8)

+ γcausticTdj′ ,caustic(Ỹ
′|Ỹ))

However, it is also acceptable to consider only the func-
tion derived from the proposal strategy chosen to generate
Ỹ′ [Tie98]:

K(s)
i (Ỹ′|Ỹ) = Tdj , op−type(Ỹ

′|Ỹ) (9)

In this work, we use Equation9 to avoid the computa-
tion of other possible transition functions to improve the ef-
ficiency of mutation.

4.5. Resampling

The resampling step in this algorithm achieves three pur-
poses: it carries forward to next round samples that have high

energy remaining without flowing out, it provides an oppor-
tunity to add some completely new paths into the population
for evenly exploring the image space, and the information
about which perturbations are chosen inside the inner loop
guides the adaption of the kernel functions.

The following decribes these three steps in detail:

• Elimination :
This step is to eliminate well-explored and low-
contribution samples from the popluation. When we
generate a new population path, the energy of the path,
E(Ỹ), is computed using the equation3 and set it to
Eremain. After each perturbation, we reduce the energy
remaining in the path byed for the equal energy depo-
sition method and by the amount of energy flowing out,
EremainA(Ỹ′(t)Ỹ(t−1)) for the balance energy transfer
method. The probability of the paths surviving in the
elimination process is proportional to the energy remain-
ing in the path,Eremain.

• Regeneration:
Regeneration is to maintain the constant number of paths
in the population. It also gives us the chance to decide
where we would like to explore in the next iterations. For
achieving unbiasedness, we need to evenly explore the
image plane. Thus, the regeneration of new paths is ac-
cording to the criteria of stratification. In the preprocess
phase, we compute the total stratified number of pixel po-
sitions needed for the entire process. Then a pool of strati-
fied pixel positions is generated according to that number.
During the regeneration process, we keep asking the pool
to give us the next unused stratified pixel position. A new
path is generated by tracing through the new pixel posi-
tion with the path tracing algorithm and the energy of the
path,E(Ỹ), is computed using the equation3 and set it to
Eremain.

• Adapt α’s Values
The purpose ofα’s valuse is to choose a proper perturba-
tion radius for deciding the area of exploration according
to the successes of the perturbations. Thus, when a new

path is generated, theα(s)
i,k is set to be a constant proba-

bility for each component, which allows us to uniformly
choose all perturbtations. After initialization, each pertur-
bation acceptability was tagged with the kernel mixture
component that generated it and the index of the path
in the population. At the adaptation step, we computate
the accumulation of the acceptability probabilities tagged
with k-th component for each member path and uses it to
adjust the mixture probabilities. We can then set:

α′

i,k = ∑A(t)
dj

(Ỹ′(t)
i |Ỹ(t−1)

i )δ j,k

α(s)
i,k = ε +

(1− ε)α′

i,k

∑n
k′=1 α′

i,k′

whereδ j,k = 1 if dk is chosen as the radius of perturbation
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Figure 7: A dragon scene computed using our PMC-ER
equal deposition at the top. The bottom left is the zoom-in
of the caustic part computed by PMC-ER equal deposition
and the bottom right is the same part computed by ERPT.
PMC-ER has fewer artifacts overall. By sharing more infor-
mation among paths and by better reusing the high contri-
bution paths, PMC-ER is an improvement over ERPT.

in step j , i.e. j = k

5. Results

The results from the PMC-ER balance energy transfer algo-
rithm show that although we can improve the bright spots
caused by the energy remaining in the original path by keep-
ing the energy that fails to be distributed in the path itselffor
further exploration at the next iteration, we realize that when
finding a high-energy path, the energy being distributed out
at the very first step is large comparing to the energy being
distributed out in the following iterations. This causes high
variance, which is showed as a bright spot, in the final result.
This motivate us to develop the PMC-ER equal deposition
algorithm. Thus, the results demostrated in this section are
generated from the PMC-ER equal deposition algorithm.

We observe that the deposition energy,ed, and perturba-
tion radiuses are two important factors for ERPT algorithm.

If the ed is too small, the algorithm becomes too slow and in-
efficient but it converges to smooth results. However, ifed is
too large, the algorithm generates bright spots because a path
must have high energy to pass the distribution criteria to run
a MC muation chain, which distributes its energy. However,
most paths fail to reach the criteria. In addition, the perturba-
tion radius affects the area where the energy can be diffused
to and the success rate of the diffuse operation. In the smooth
lighting area, we hope that this radius is large, in order to get
a smooth image as soon as possible. However, in complex
lighting areas such shadow, caustic regions, we hope that it
is small or the rate of success declines largely. Our algorithm
automatically adjusts these two aspects through the process
of resampling and adaptingα’s values.

We compared our PMC-ER equal deposition algorithm
with the energy redistribution path tracing (ERPT) algorithm
on the Cornell Box scene, a dragon scene, and a complex
room scene using the criteria of starting with a similar num-
ber of initial PT paths. In all three cases we used a population
size of 5000. There are three pertubation radiuses: 5, 10, and
50 pixels, respectively. The caustic perturbation is computed
with Eqn.6. In each step inside the inner loop, each member
generates 16 mutations, and 40% of the population is elim-
inated based on its remaining energy and regenerated using
the stratification mechanism. We also use 4 spps for estimat-
ing the energy contained in an image for both PMC-ER and
ERPT algorithms.

The Cornell Box image (Figure6) is rendered using
our PMC-ER equal deposition algorithm with 1000 itera-
tions which roughly has the same total number of initial PT
paths as the image rendered using the ERPT with 8 spps. We
can see that our algorithm removes the bright spot artifacts
from ERPT algorithm. When we compare our result with
an image rendered with ERPT with 16 spps, our image get
fewer artifacts. Observing the strategy image whose bright-
ness shows the perturbation count, we see that the proba-
bility of paths staying in the population for next iteration
are is proportion to its energy remaining. In other words, re-
gions such as the caustic area contained more high energy
paths get more number of mutations. In addition, the radius
of mutation near physical borders and lighting borders such
as, the shadow and caustic area and the light edge, automat-
ically adjusts to increase the success rate of flowing energy
out. However, generally, the average time for paths staying
in the population is short. Thus, our algorithm cannot have
enough time to adjust to the shortest radius at this area. We
can only observe a yellow color around the edge instead of
a red color for the edge. PMC-ER achieves a visually more
converged image compared to the corresponding image gen-
erated by the ERPT algorithm with the same number of ini-
tial PT paths.

The dragon scene (Figure7) was rendered at 900×900
with 12800 iterations and 20 mutations for each member in
the population inside the loop in comparison with image ren-
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Figure 6: The first image on the left is a Cornell Box image computed using PMC-ER equal deposition algorithm; the second
image is computed using ERPT with 9 spps; the third image is computed using ERPT with 16 spps; and the fourth image is the
mutation strategy used during the process. The strategy image shows that the mutation near the physical border and lighting
border will automatically adjust to increase the success rate of transfering image.

Figure 8: A room scene computed using our PMC-ER equal deposition at the left and ERPT at the right. PMC-ER has fewer
artifacts overall. By sharing more information among pathsand by better reusing the high contribution paths, PMC-ER isan
improvement over ERPT.

dered using ERPT with 32 spps and 20 mutations to each ini-
tial PT path. We can see that image rendered using PMC-ER
has fewer artifacts than the image rendered using ERPT.

The room scene (Figure8) was rendered at 720×405 with
19200 iterations and 20 mutations for each member in the
population inside the loop in comparison with image ren-
dered using ERPT with 128 spps and 20 mutations to each
initial PT path. We can see that image rendered using PMC-
ER has fewer artifacts than the image rendered using ERPT.
Note that for all PMC-ER equal deposition and ERPT imple-
mentations, we did not use the filter proposed in the original
ERPT paper to smooth the final image.

The statistics for three rendered images is presented in
Table1. We use the mean squared efficiency (Eff) metric for
comparing algorithms, computed as:

Err =
∑pixelse

2

Npixels
, Eff =

1
T ×Err

wheree is the difference in intensity between a pixel, the
ground truth value,T is the running time of the algorithm
on that image andNpixels is the overal pixel count. Eff is
a measure of how much longer (or less) you would need to
run one algorithm to reach the quality of another [PH04]. We

Image Method Time (s) Err Eff
Box1 ERPT(8) 4401.8 0.85 2.7e-4

ERPT(16) 8935.7 0.526 2.1e-4
PMC-ER 5281.2 0.37 5.4e-4

Dragon ERPT(32) 88596.1 1.13 1.0e-5
PMC-ER 97455.7 0.46 2.3e-5

Room ERPT(128) 82656.5 0.052 2.3e-4
PMC-ER 96575.1 0.010 1e-3

Table 1: Measurements comparing energy redistribution
path tracing (ERPT) with PMC-ER, for a roughly equal
number of sample rays.

can see that our algorithm gets better efficiency than ERPT
algorithm does.

6. Discussion

The most important variable parameter in our algorithms is
the resample rate. A small resample rate reduces the number
of samples kept in the population, which results in a faster
exploration of the sample domain but at the cost of a large
amount of iteration information being lost during the regen-
eration process. On the other hand, a larger resample rate
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means that more iteration information related to paths is kept
during the iteration. However, the rate to explore the entire
sample domain is slow.

Many PMC kernels in the literature are mixture models.
Mixtures are typically formed by combining several compo-
nents that are each expected to be useful in some cases but
not others. The adaption step then determines which compo-
nent are useful for a given input. Mixtures allow otherwise
unrelated functions to be combined, such as the perturbati-
ion with different sized radiuses. We would prefer the kernel
function having many components. However, when the ker-
nel function contains many adaptable parameters, each iter-
ation would requires high adaptive sample counts for gath-
ering proper information to adapt the kernel function. This
prevents us from using a larger number of different perturb-
ing radiuses. Such a strategy would be appealing for effi-
ciently rendering a scene with geometries having very dif-
ferent sizes appearing on the image plane, but the adaptive
sample count required to adequately determine the mixture
component weights would be too large. Instead we use three
perturbation radiuses for all images rendered.

7. Conclusion

A new global illumination algorithm, PMC-ER, is presented
by applying PMC framework to energy redistribution al-
gorithms. PMC-ER learns to become an effective sampler
based on the information collected from early iterations. The
algorithm automatically explores the important light paths
found in the previous iteration, adjusts the area of explo-
ration according to results of previous muations, and also
uses resampling to achieve ergocity. There are several future
research directions. The PMC-ER should be able to use the
perceptual variance as regeneration criteria to focus on the
high perceptual variance area. However, the energy brought
by a variance path generated this way should also be ad-
justed accordingly. Also, how to identify a variance coming
from an artifact of rendering not from physical and lighting
discontinuity is another question. In addition, all paths ini-
tialized theα’s values to a constant value. However, we can
record the alpha used previously in an image because spa-
cial correlation will give us similarα’s values in most places
in the image plane. We can reuse theα information to re-
duce the process of probing to estimate a proper set ofα’s
values. Based on the framework of Population Monte Carlo,
PMC-ER can improve the rendering efficiency. PMC should
be able to provide further research opportunities for global
illumination community.
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