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Abstract

This work presents a novel global illumination algorithmighhconcentrates computation on important light
transport paths and automatically adjusts energy distiglouarea for each light transport path. We adapt statis-

tical framework of Population Monte Carlo into global il

lumation to improve rendering efficiency. Information

collected in previous iterations is used to guide subsegjiterations by adapting the kernel function to approxi-
mate the target distribution without introducing bias inte final result. Based on this framework, our algorithm
automatically adapts the amount of energy redistributiordiéferent pixels and the area over which energy is
redistributed. Our results show that the efficiency can lqgraved by exploring the correlated information among

light transport paths.
Categories and Subject Descriptascording to ACM CCS)

1.3.7 [Computer Graphics]: Raytracing

1. Introduction

To generate a physically correct image involves the esti-
mation of a large number of integrals of path contributions
falling on the image plane. It is well known that the inte-
grals have highly correlated integrands. However, a standa
Monte Carlo rendering algorithm evaluates the integrals in
dependently. As a result, even a small but important region i
the domain is located during the process. This informason i
lost to other samples because of the independent sampling.
Sample reuse is an important technique to reduce the vari-
ance by exploiting the correlation between integrals. Merk
Chain Monte Carlo algorithms for global illumination, such
as Metropolis Light TransporiMea97 and Energy Redistri-
bution Path Tracing@TEO0T, enable sample reuse by mutat-
ing existing samples into new ones, but the choice of good
mutation strategies is non-trivial and has a major impact on
image quality. Population Monte Carlo (PMC) algorithms
provides us a tool to reuse the information collected iniprev
ous iterations. PMC energy redistribution, adapts the éam
work of PMC to energy redistirbution algorithm, exploits in
formation from important samples through reuse with a mu-
tation process whose mutation strategy is adapted oniythe-fl
It is self-tuning to a large extent.

The PMC energy redistribution algorithm iterates on a
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population of light transport paths passing through the im-
age plane. The population paths are created by tracing the
view rays passing through stratified pixel positions on the
image plane by a general Monte Carlo ray tracing algorithm
such as path tracing and bidirectional path tracing. Inwur i
plementation, we use a general path tracing algorithm. Any
information available in the previous iterations can beduse
to adapt théernel functiorof each population path that pro-
duce a new population based on the current population. The
resampling process eliminates part of the population paths
and regenerate new paths to achieve ergocity. We carefully
design the resampling process to eliminate the well exglore
or low-contribution paths from the current population and t
generate new paths according to the need of exploring the
image plane evenly for achieving unbiasedness. As a result,
new samples are designed to explore the image plane in an
even manner. The procedure is then iterated: sample dterat
resample, adapt, iterate, resample .... The result is a self
tuning unbiased algorithm which can explore the important
paths locally.

Our contribution is a new rendering algorithRiyIC En-
ergy Redistribution(PMC-ER), based on the PMC frame-
work. The algorithm adapts the amount of energy redistribu-
tion at different pixels and the area over which energy is re-
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distributed. For example, pixels near a sharp shadow bound- photon mapping methods prevents the usage of advanced
ary will not attempt to widely distribute energy, while tlos ~ convergence test mechanism. Our PMC-ER algorithm auto-
in a smooth diffuse image region will distribute energy over matically adapts parameters in an ERPT-like algorithm and

a wide area. uses the adaptation of the kernel functions to locally exgplo
The remainder of this paper is organized as follows: sec- 'lﬂg?ar;aegt light transport paths. In addition, the algarits

tion 2 reviews a number of works related to this algorithm.
Section 3 presents the generic PMC frame work. Section 4  Ghosh, Doucet and HeidricksDHO€] applied the frame-
presents the PMC-ER in detail. Section 5 shows the results work of Sequential Monte Carlo algorithm to the problem of
generated by this algorithm. Section 6 discusses the imita sampling environment maps in animated sequences. Their
tion and relation to the existing algorithm. Finally, seati7 work re-uses samples from previous iteration and is a com-
gives the conclusion of our algorithm. plementary to our method. However, their work is limited to
the environment map. Our algortihm can be applied to more
eneral types of light transport paths.

2. Related Work 9 yp g portp
Currently, most global illumination algorithms are based o

- - - ) 3. D-Kernel Population Monte Carlo
ray tracing and Monte Carlo integration. There exist two

catefories: unbiased methods such Kaj§6,vVG94,LW93]; The Population Monte Carlo algorithr@{3MR04 provides
and biased methods such a&/RC88 Hec9qJen01. Inter- us an iterative importance sampling framework. The dis-
ested readers can refer to Pharr and Humph@mm for tlngu|sh|ng feature Of PMC iS that the kernel funCtionS are

an overview of Monte Carlo rendering algorithms. Here we Modified after each step based on information gathered from

only focus on sample reuse which is directly related to this Prior iterations. The kernels adapt to approximate thelidea
work. importance function based on the samples seen so far. While

) ] this dependent sampling may appear to introduce bias, it

Sample reuse via Markov Chain Monte Carlo (MCMC)  can pe proven that the result is either unbiased or consis-
algorithms is a powerful means of exploiting hard-to-find  {ent depending on whether certain normalizing constasts a
light transport paths in global illumination. Metropoligght known (in our case they are known). The generic D-Kernel

Transport (MLT) Mea97 was the first algorithm to use this  ppc sampling algorithmGMR053 DGMRO5H which is
approach. MLT replaces the Monte Carlo integrator used in g, eyolution of PMC is stated in Figule

path tracing with a Metropolis sampler. The main advantage
of the Metropolis algorithm over Monte Carlo intergratisni 1 generate the initial population= 0
the ability to preserve the sampling context. This is done by 2 fort=1,.--.T

using path mutation to explore path space in a localized way. 3 adapﬂ(i<t)(x<t) Ixt=1))

Thus, when high conbribution paths are found, nearby paths 4 fori=1,---,N

will likely be explored as well. 5 generateg(t) ~ Ki<t)(x|X,»<t_l>)
A number of extensions have been introduced since the 6 Wim = Tt(>(i(t))/Ki<t)(Xi<t)|Xi<tfl))
original 1997 paper. AKKO0Q] extended MLT to handle 7 resampling process: elimination and regeneration

participating media such as smoke and folKSKACO02] . - -
made the MLT algorithm more robust by mutating in an Figure 1: The generic D-Kernel Population Monte Carlo
abstract space of random numbers rather that on the ex-algorihtm.

pected quality. The start-up bias of the MLT was analyzed by

[SKDP99 and the analysi§ of the algorithm was presented in  The algorithm works on a population of samples denoted
[APSSOZ}. However, the disadvantage of MLT was and con- by {x](-t)7...7xfslt)}’ wheret is the iteration number and
tinues to be that very large numbers of samples are required,

and stratification is difficult. N is the population sizez to evaluqyéﬂ f(x)dx, where .is .
f(x) = (x)h(x) by sampling according to the target distri-
Energy redistribution path tracing (ERPTCTEO] at- butionTt(x).

tempted to address this problem by starting with a well- ) . o .
stratified set of initial samples and locally redistribgtin Thq algorithm ﬂrst creates .a set of initial population
energy using MCMC. The noise-reduction techniques they °Y using &0y tmf)lased sampling method.kémel func-
proposed introduce bias. In addition, the extent of redis- tion, K" (""" "), for each member in the population is
tribution was manually set. FICLO5 used the MLT sam- adapted in the outer loop. The responsibility of the mem-
pler to take visual importance into account with complete ber kernel fuction is to take the existing member sample,
paths from light to eye when distributing photons accord- Xi(t*l), as input and produces a candidate new samﬁfé,

ing to paths’ contribution on the final image. Their method as output (line 5). The resampling step in line 7 is designed t
solved the difficult path problem such as light passes thtoug cull candidate samples with low weights and promote high-
a small hole on the wall. However, the bias inherited from weight samples. The resampling process consists of two

(© The Eurographics Association and Blackwell Publishing200
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steps: elimination and regeneration. It is designed toielim
nate the samples with low contribution to the final result and
to explore new unexplored regions. The weight computed
for each samplewft), is essentially its importance weight.
At any given iteration, an estimator of the integral of iet&r
can be computed and is unbiasedfigh):

(0 = i) = & 5 wnix)
ek S W) = LS ek
1} n(x)h(x)

- NI;/;) Ki<t)(X|Xi<t_1))

It concludes thaft(h) is an unbiased estimator ath).

Before apply PMC to rendering problems, we must first
answer the following questions:

e What is the sampling domain and how big is population
size?

e What is the member function and what is the adaption
criteria?

e What techniques are used for sampling from the kernel
functions and resampling step?

The following sections describe an application of this
framework by mutating the energy redistribution algorithm
through answering each question properly. Then, we con-
clude with a general discussion on PMC for rendering prob-
lems.

4. PMC Energy Redistribution (PMC-ER)

PMC Energy Redistribution (PMC-ER) is an algo-
rithm motivated by energy redistribution path tracing
(ERPT) [CTEO] that adaptively selects pixels for redistri-

ERPT uses the estimation of the energy of the entire im-
age from the path contribution to determine how many con-
stant length chains are needed for every pixel, regardless o
how much it differs from its neighbors. In addition, the re-
distribution region is also fixed and manually set. This is
sub-optimal — some pixels that have high variance should
take more samples and more time to redistribute its energy,
while others are in a neighborhood where most light trans-
port paths are similar and redistribution achieves nothiing
address the former problem, Cline et &TEOS designed
filters that introduce bias into the calculation, makingithe
age darker than it should be.

Our PMC-ER algorithm uses the same basic premise as
ERPT: high-energy paths should be mutated to distribute the
information they carry to neighboring pixels. The sample
population is a set of light transport paths through thescen
The kernel functions mutate these paths to create new paths.
The resampling step removes low energy or well-distributed
paths, keeps high-energy paths and generates new paths to
evenly explore regions and adapts the kernel function for
each population path. The work is focused on the impor-
tant transport paths and correlated sampling of the integra
tion domain. In this section, we first present an overview of
our two energy redistribution algorithms. The remaining of
the section is to explore the implementation detail needed
for these two algorithms.

4.1. PMC-ER Equal Deposition Algorithm

Figure 2 shows the PMC-ER equal deposition algorithm.
In the preprocess phase, the algorithm first generates a pool
of stratified pixel positions used to explore the image plane
evenly. This pool of pixel positions is used to generatedhit
population paths and to generate new stratified replacement
paths during the resampling process in each iteration in or-
der to guarantee even exploration of the image plane. Then,
the algorithm estimates the average energy contained in the
image,E, and the deposition energsy, for each mutation
which are discussed in sectidn3. An initial population of
paths are created by using the path tracing alogirhtm, the
rays of which shoot from the camera and pass through the
pixel position,(x,y), selected from the stratified pool. In this

work, a path)Y, is referred to as a light transport path start-

bution, and can also adapt algorithm parameters. ERPT asing from a light,L, scattering diffuselyD, or specularlys,
originally proposed traces a path into the scene from each inside the scene several times, and ending at the caiiera,

pixel, using path tracing to form complete light transport
paths from the eye to the light. For each pixel, the path is
used as the initial state for a Markov Chain Monte Carlo
(MCMC) sample chain that redistributes the path’s energy
to nearby pixels and finds additional light paths. The intu-
ition is that different pixels will find different initial pés,

and the information can then be conveyed to neighboring
pixels through the Markov Chain. Due to space limitations,

The path is denoted a§SD)*E. Interested readers can re-
fer to [Hec9QVea97 for detail. Figure 4 and 5 shows two
examples of such paths.

In each inner loop, we dblgqua Mutations at each path
in the population according to the path’s kernel function,
K& G [7~Y), discussed in sectiof.4. After mutation,

the acceptability probabilit)A(\?i’(t)|\?i<t_l>), is used to de-

we cannot discuss ERPT in detail; readers are referred to the termine whether the path in the population switches to the

original paper.

(© The Eurographics Association and Blackwell Publishing7200

new generated path?i’m, or stays as the original path,
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Yi(t_l) , before mutation. Thery energy is deposited on the ! g::z:::: iarl1iE[)ic;(IJl[:)(())fpsljtli:ttigf?)fpg(aetngitgn
fors=1,---,T

determinaxfs) for each perturbation
In the outside loop, the resampling process which is dis- fori=1,---,n

image plane at the pixel position of the new population path, g
4
5
cussed in sectiof.5is to eliminate well-distributed and low- 6 fort =1,---,Ngalance
7
8
9
1
1

v,

contribution paths, regenerate paths considering théfstra generate?i’<t) ~ Ki(5> (y(t)h?i(t*l))
cation, and adapt the weights for perturbations with déffeer depositEy — Ei,remairA(\?i/(t) |\?i<t_1))/Nba|ance0n ?i/(t)

radiuses. Ei remain— = Ed
1 generate a pool of stratified pixel position 0 Wi(t) = Ej remain
2 estimate th&, ey 1 resample the population: elimination and regeneration
3 generate initial population of pathstia= 0
4 fors=1,---,T Figure 3: The PMC-ER balance energy transfer iteration
5 determinexi(s) for each perturbation loop.
6 fori=1---,n
7 if Ei remain+U (0,1) > E
8 fort=1,---, ’(:lgwutati(zn)s 01
9 generaté/|") ~ K'¥ (FY YY) B / .
10 9O (U(0,1) < AT/ T 1)) 270 gD B = [ IH®)duE) 1)
. o (t

E I(Ej‘eposllef in:drgy OnYi( Where|L(§/)| is thg iIIuminancg deposited by the paih,

® ,remain on the image plane i.e. the illuminance of the radiah¢g),
12 Wi = Ei remain transported from the light to the camera. We can estimate

resample the population: elimination and regeneratiofne image energy by computing the expected value of the
image energy, from a set of valid sample paths using the
following two equations:

Figure 2: The PMC-ER equal deposition iteration loop.
U(0,1) generates a random number uniformly distributed
between0 and 1, and E e f; is the energy left in the pop-
ulation path, i, after the innter energy redistribution o2

E(Y) = oo (7) =[L(Y)|Ap @
- 1N
E = N E(Yi) ©)

4.2. PMC-ER Balance Energy Transfer Algorithm

) . whereE(Y) is the image energy estimated from a valid
The PMC-ER balance energy transfer algorithm is presented v

o i | path, pip(Y) is the probability for the path to pass through
in flgu_re 3. Th_e_ first step still gener_ates a pool of strgt_— that specific pixel positionAp is the physical area of the
ified pixel positions. The next step is to generate an ini- film. From Monte Carlo theory, we know that I E_

. g WL o0 E =

tial popl;]Iatlon of paths. Notice that tCihgre I'I1$ no step tg €S- Eip. As aresult, we can also estimate the deposition energy,
timate the average energy contained in the imagean ey, for the equal deposition algorithm which is:
this saves us a little computation time. In each inner loop, ~

we doNggjanceperturbations at each population path accord- E (4)

- €& =
ing to the kernel functiori,(i<s) (y<t> |Yi(tfl)). After mutation, Nmutations

Eq = Ei,remair‘A(Yi/(t)|Yi(til))/NBalance energy is deposited whereNmutationsiS the expected total number of mutations

on the pixel position of the newly mutated path and the same which should be multiplication of the total number of iter-

amount of energy is removed from the population path. The ations, the total number of samples in the population, and

resampling process is similar to the PMC-ER equal deposi- Ngg,,. With this value, the PMC-ER equal deposition algo-

tion algorithm. rithm can directly render the final image from the accumula-
tion of energy without the need to calibrate the total energy

) . of the accumulation image.

4.3. Energy Estimation

When applying MCMC method, the count of samples falling 4 4 The Kernel Function for Each Path

in each pixel is proportional to the real energy i.e. the-illu

minance of that pixel. Thus, we must estimate the energy The kernel function for each population path is a conditiona

contained in the image which is kernel, Ki<s) (§/<t)|\?i<t71)), that generates a sample patim

(© The Eurographics Association and Blackwell Publishing200
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Figure 5: The top is a path with the form of LDSSDE and
used to demostrate the caustic perturbation. We woulddike t
replace the caustic subpathy,ysysys of the form DSSDE.
At the head vertex of the caustic subpath, we perturbed

Figure 4: The top is a path with the form of LDDSSE and
used to demostrate the lens perturbation. We would like to
replace the lens subpatysysysyoy1 of the form of ESSD. i - Rt A
We first perturb the pixel position of the original pathyat the outgoing light ray dII’ECEIOI’l by an anglé, uniformly
by uniformly choosing a point from the perturbing disk and Sa@mpled from0, Bmax to gety; as showed in the bottom. We

then cast a view ray to pass through the new pixel position elxtend the subpath through the same specular bounces at

as showed in the bottom to gg}. We extend the subpath Y2 andys as the correspondingzandys to getyj. Theny
through the same specular bounces/aandy} as the cor- andy; are linked to form a new complete caustics-perturbed

respondingys andys to gety). Then,y} andy are linked path with the same form of LDDSSE as the original one.

to form a new lens-perturbed path with the same form of
LDDSSE as the original one.

(t-1)

iterationt, ¥/, given samplei in iterationt — 1, V|

(see Figure and 3). we use a mixture distribution:

o)

GUP ) = ;afs)r@mw“‘” ) (5)
i

Each component (§|Y : d), mutates an existing path to
generate a new one for exploration of the path space ac-
cording to the perturbing radiusl. Since the ergocity of
the algorithm is achieved by tracing paths at stratifiedIpixe
positions, the mutation is only used for local exploration.
Therefore,T(§/|\? - d) is only designed to perform gertur-
bationon the member path based on the perturbation radius,
d. Lens and caustic perturbation are two good candidates for
this job. The following is simple description of these two
mechanisms:

e Lens perturbation:

Figure4 shows an example of lens perturbation. The lens
perturbation is to replace a subpgth ; - - - yi of the form
EDS'(L|D). The perburbation takes the existing path and
moves the image point which it passes. In our case, the
new pixel location is uniformly sampled within a disk of
radius, d, a parameter of the kernel component. The re-
mainder of the path is reconstructed to pass through the
new image point and extend the subpath through addi-
tional specular bounces to be the same length as the orig-

(© The Eurographics Association and Blackwell Publishing7Z200

inal path. The transition probability for lens pertubation
can be computed as

G(yll']—l7yll"|—2) n—k-2 G(ylj 7y/j+l)
Ad j=n—2 | COSGj’.in'

whereG(yj,Y] 1) is the geometric term betwegs and
yGH, Aq is the area of the perturbation, afig i, is the
angle between the normal of the surface and the direction
of the incoming light ray ay/.

Td,lens(vlw) =

e Caustic perturbation Figure 5 shows an example of

caustic perturbation. The caustic perturbation is to re-
place a caustic subpath with a suffix- - - yx of the form
(DIL)S'DTE. To do this, we generate a new subpath
starting from the verteym, the head vertex of the caus-
tic subpath. The direction of the segmemt — ymy1 iS
perturbed by a random amou(#, ¢) uniformly sampled
from [0,Bmay and [0, 21 where the central axi§ = 0,
corresponds to the direction of the original ray and extend
the subpath through additional specular bounces to be the
same length as the original one, agax is the range of
sampling angle computed from correpsonding perturba-
tion radius d, by the following equation from\[ea97:

O 0(d) L Y-zl ©)
S|k — Vi1l

where0(d) is the angle through which the rgy — yn_1
needs to be perturbed to change the image location by a
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distance ofl pixels. The transition probability for caustic
perturbation can be computed as

Glym,Ym-1) ™ & 2G(Y],Yjs+1)

T. YY) =
d,causticd Y 1Y) 2MBmaxCOSBm,out j:m_1|0039j/,out|

where 8j ot is the angle between the normal of the
surface and the direction of the leaving light rayy’?.t

In original ERPT work, the size of the pertubation was a
parameter to be fixed at startup. In PMC-ER, we can choose
a reasonable set of different sized perturbations in the mix
ture which is three in our case. The large pertubation is ef-
fective at redistributing information over a wide area, Mahi
the smallest is benefit for image regions where illumination
is changing quickly.

When using the kernel function to perturb a path, we first
choosel according to the weightai@, whered is the radius

of the lens perturbation ar@dj/ afﬁj, = 1. And then either
lens or caustic perturbation is chosen accordingstg = 0.1

and Yeaustic= 0.9 in our case which is set to prefer caus-
tic perturbation when it is possible. We can then perturb the
current path to generate a new perturbed path. The accept-
ability is to determine whether a path switches to the newly
generated path and calculated accordingly as follow:

AY'IY) = @)

_ f
min(1.0,
f

where f(Y) is the path contribution defined invV{97).
When evaluating the acceptability probablllty, all possib
proposals that might generafé from Y should be consid-
ered which is:

K& (V] %, ( ViensTa, tens V1Y) (8)

\?):;afﬁ ,

1

+ Vcaustichj/,caustio(qlw))

However, it is also acceptable to consider only the func-
t~ion derived from the proposal strategy chosen to generate
Y’ [Tie98:

V) =

In this work, we use Equatiof to avoid the computa-
tion of other possible transition functions to improve tfie e
ficiency of mutation.

Ki<S) (V Td,-, opftype(v/w) (9)

4.5. Resampling

The resampling step in this algorithm achieves three pur-
poses: it carries forward to next round samples that have hig

energy remaining without flowing out, it provides an oppor-
tunity to add some completely new paths into the population
for evenly exploring the image space, and the information
about which perturbations are chosen inside the inner loop
guides the adaption of the kernel functions.

The following decribes these three steps in detail:

Elimination:

This step is to eliminate well-explored and low-
contribution samples from the popluation. When we
generate a new population path, the energy of the path,
E(Y), is computed using the equatidhand set it to
Eremain After each perturbation, we reduce the energy
remaining in the path bgy for the equal energy depo-
sition method and by the amount of energy flowing out,
EremairA(Y' Y=Yy for the balance energy transfer
method. The probability of the paths surviving in the
elimination process is proportional to the energy remain-
ing in the pathEemain

e Regeneration

Regeneration is to maintain the constant number of paths
in the population. It also gives us the chance to decide
where we would like to explore in the next iterations. For
achieving unbiasedness, we need to evenly explore the
image plane. Thus, the regeneration of new paths is ac-
cording to the criteria of stratification. In the preprocess
phase, we compute the total stratified number of pixel po-
sitions needed for the entire process. Then a pool of strati-
fied pixel positions is generated according to that number.
During the regeneration process, we keep asking the pool
to give us the next unused stratified pixel position. A new
path is generated by tracing through the new pixel posi-
tion with the path tracing algorithm and the energy of the
path,E(\?), is computed using the equatiBrand set it to
Eremain

Adapt a’s Values

The purpose ofi’s valuse is to choose a proper perturba-
tion radius for deciding the area of exploration according
to the successes of the perturbations. Thus, when a new

path is generated, tm{sk) is set to be a constant proba-
bility for each component, which allows us to uniformly
choose all perturbtations. After initialization, eachtper
bation acceptability was tagged with the kernel mixture
component that generated it and the index of the path
in the population. At the adaptation step, we computate
the accumulation of the acceptability probabilities tatjge
with k-th component for each member path and uses it to
adjust the mixture probabilities. We can then set:

ik = ZAd Y)5j
) (1- ) ik
a = g4 X
hk Yh—10f

whered; \ = 1 if dy is chosen as the radius of perturbation

(© The Eurographics Association and Blackwell Publishing200
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Figure 7: A dragon scene computed using our PMC-ER
equal deposition at the top. The bottom left is the zoom-in
of the caustic part computed by PMC-ER equal deposition
and the bottom right is the same part computed by ERPT.
PMC-ER has fewer artifacts overall. By sharing more infor-

mation among paths and by better reusing the high contri-
bution paths, PMC-ER is an improvement over ERPT.

in stepj, i.e.j =k

5. Results

The results from the PMC-ER balance energy transfer algo-
rithm show that although we can improve the bright spots
caused by the energy remaining in the original path by keep-
ing the energy that fails to be distributed in the path itkmif
further exploration at the next iteration, we realize thhew
finding a high-energy path, the energy being distributed out
at the very first step is large comparing to the energy being
distributed out in the following iterations. This causeghi
variance, which is showed as a bright spot, in the final result
This motivate us to develop the PMC-ER equal deposition
algorithm. Thus, the results demostrated in this sectien ar
generated from the PMC-ER equal deposition algorithm.

We observe that the deposition energy, and perturba-
tion radiuses are two important factors for ERPT algorithm.

(© The Eurographics Association and Blackwell Publishing7200

If the gy is too small, the algorithm becomes too slow and in-
efficient but it converges to smooth results. Howevegy iis

too large, the algorithm generates bright spots becaustha pa
must have high energy to pass the distribution criteriamo ru

a MC muation chain, which distributes its energy. However,
most paths fail to reach the criteria. In addition, the pédu

tion radius affects the area where the energy can be diffused
to and the success rate of the diffuse operation. In the $moot
lighting area, we hope that this radius is large, in ordereto g

a smooth image as soon as possible. However, in complex
lighting areas such shadow, caustic regions, we hope that it
is small or the rate of success declines largely. Our algorit
automatically adjusts these two aspects through the psoces
of resampling and adaptirajs values.

We compared our PMC-ER equal deposition algorithm
with the energy redistribution path tracing (ERPT) aldunit
on the Cornell Box scene, a dragon scene, and a complex
room scene using the criteria of starting with a similar num-
ber of initial PT paths. In all three cases we used a populatio
size of 5000. There are three pertubation radiuses: 5, 0, an
50 pixels, respectively. The caustic perturbation is camgu
with Egn.6. In each step inside the inner loop, each member
generates 16 mutations, and 40% of the population is elim-
inated based on its remaining energy and regenerated using
the stratification mechanism. We also use 4 spps for estimat-
ing the energy contained in an image for both PMC-ER and
ERPT algorithms.

The Cornell Box image (Figure6) is rendered using
our PMC-ER equal deposition algorithm with 1000 itera-
tions which roughly has the same total number of initial PT
paths as the image rendered using the ERPT with 8 spps. We
can see that our algorithm removes the bright spot artifacts
from ERPT algorithm. When we compare our result with
an image rendered with ERPT with 16 spps, our image get
fewer artifacts. Observing the strategy image whose bright
ness shows the perturbation count, we see that the proba-
bility of paths staying in the population for next iteration
are is proportion to its energy remaining. In other words, re
gions such as the caustic area contained more high energy
paths get more number of mutations. In addition, the radius
of mutation near physical borders and lighting borders such
as, the shadow and caustic area and the light edge, automat-
ically adjusts to increase the success rate of flowing energy
out. However, generally, the average time for paths staying
in the population is short. Thus, our algorithm cannot have
enough time to adjust to the shortest radius at this area. We
can only observe a yellow color around the edge instead of
a red color for the edge. PMC-ER achieves a visually more
converged image compared to the corresponding image gen-
erated by the ERPT algorithm with the same number of ini-
tial PT paths.

The dragon scene (Figui® was rendered at 9600
with 12800 iterations and 20 mutations for each member in
the population inside the loop in comparison with image ren-
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Figure 6: The first image on the left is a Cornell Box image computedguBMC-ER equal deposition algorithm; the second
image is computed using ERPT with 9 spps; the third imagengoted using ERPT with 16 spps; and the fourth image is the
mutation strategy used during the process. The strateggenshows that the mutation near the physical border anditight
border will automatically adjust to increase the succeds &f transfering image.

Figure 8: A room scene computed using our PMC-ER equal depositioredethand ERPT at the right. PMC-ER has fewer
artifacts overall. By sharing more information among pa#imsl by better reusing the high contribution paths, PMC-ERns
improvement over ERPT.

dered using ERPT with 32 spps and 20 mutations to each ini- Image Method Time (s) | Err Eff
tial PT path. We can see that image rendered using PMC-ER Box1 ERPT(8) 4401.8 | 0.85 | 2.7e-4
has fewer artifacts than the image rendered using ERPT. ERPT(16) | 8935.7 | 0.526 | 2.1e-4

PMC-ER 5281.2 | 0.37 | 5.4e-4
Dragon| ERPT(32) | 88596.1| 1.13 | 1.0e-5
PMC-ER 97455.7| 0.46 | 2.3e-5
Room | ERPT(128)| 82656.5| 0.052 | 2.3e-4
PMC-ER 96575.1| 0.010| 1e-3

The room scene (Figu® was rendered at 720405 with
19200 iterations and 20 mutations for each member in the
population inside the loop in comparison with image ren-
dered using ERPT with 128 spps and 20 mutations to each
initial PT path. We can see that image rendered using PMC-
ER has fewer artifacts than the image rendered using ERPT. Table 1: Measurements comparing energy redistribution
Note that for all PMC-ER equal deposition and ERPT imple- path tracing (ERPT) with PMC-ER, for a roughly equal
mentations, we did not use the filter proposed in the original number of sample rays.

ERPT paper to smooth the final image.

The statistics for three rendered images is presented in

Tablel. We use the mean squared efficiency (Eff) metric for can see that our algorithm gets better efficiency than ERPT
comparing algorithms, computed as: algorithm does.

Err = 5 pixels®” Eff L

Npixels = TxErm 6. Discussion
IX

The most important variable parameter in our algorithms is
wheree is the difference in intensity between a pixel, the the resample rate. A small resample rate reduces the number
ground truth valueT is the running time of the algorithm  of samples kept in the population, which results in a faster
on that image andNpixels is the overal pixel count. Eff is exploration of the sample domain but at the cost of a large
a measure of how much longer (or less) you would need to amount of iteration information being lost during the regen
run one algorithm to reach the quality of anotheHD4. We eration process. On the other hand, a larger resample rate

(© The Eurographics Association and Blackwell Publishing200
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means that more iteration information related to pathspg ke  [CGMRO04] CappPe O., GUILLIN A., MARIN J.-M.,
during the iteration. However, the rate to explore the entir RoBERTC.: Population Monte Carlalournal of Compu-
sample domain is slow. tational and Graphical Statistics 13 (2004), 907-929.

Many PMC kernels in the literature are mixture models. [CTEO5] CLINE D., TALBOT J., EGBERT P.. Energy
Mixtures are typically formed by combining several compo-  redistribution path tracing. ISIGGRAPH '05(2005),
nents that are each expected to be useful in some cases but pp. 1186-1195.
not others. The adaption step then determines which compo- [DGMR05a] Douc R., GUILLIN A., MARIN J. M.,
nent are useful for a given input. Mixtures allow otherwise ROBERT C. P.: Convergence of adaptive sampling
unrelated functions to be combined, such as the perturbati-  ¢-hemes Technical Report 2005-6, University Paris
ion with different sized radiuses. We would prefer the kérne Dauphine, 2005.
function having many components. However, when the ker-
nel function contains many adaptable parameters, each iter [PGMROSb]  Douc R., GUILLIN A., MARIN J. M.,
ation would requires high adaptive sample counts for gath- ~ ROBERT C. P.: Minimum variance importance sampling
ering proper information to adapt the kernel function. This  Via population Monte CarloTechnical report, University
prevents us from using a larger number of different perturb- ~ Paris Dauphine, 2005.

ing radiuses. Such a strategy would be appealing for effi- [FCLO5] Fan S., CHENNEY S., LAl Y.: Metropolis pho-
ciently rendering a scene with geometries having very dif-  ton sampling with optional user guidance.Rroc. of the

ferent sizes appearing on the image plane, but the adaptive  16th Eurographics Symposium on Rendel{2g05), Eu-
sample count required to adequately determine the mixture  rographics Association, pp. 127—-138.

component weights would be too large. Instead we use three

perturbation radiuses for all images rendered. [GDHOB] GHOSHA., DOUCET A., HEIDRICH W.: Se-

quential sampling for dynamic environment map illumi-
nation. InProc. Eurographics Symposium on Rendering
7. Conclusion (2006), pp. 115-126.

A new global illumination algorithm, PMC-ER, is presented [Hec90] HeCKBERT P. S.: Adaptive radiosity textures
by applying PMC framework to energy redistribution al-  for bidirectional ray tracing. I'SIGGRAPH '90(1990),
gorithms. PMC-ER learns to become an effective sampler ~ PP. 145-154.

based on the information collected from early iteratior®e T [3en01] &ENnSENH. W.: Realistic image synthesis using
algorithm automatically explores the important light gath photon mapping. AK Peters.

found in the previous iteration, adjusts the area of explo- ) . )

ration according to results of previous muations, and also [K&i86] KAJIva J. T.. The rendering equation. BIG-
uses resampling to achieve ergocity. There are severakfutu GRAPH '86(1986), pp. 143-150.

research directions. The PMC-ER should be able to use the [KSKAC02] KELEMEN C., SZIRMAY-KALOS L., AN-
perceptual variance as regeneration criteria to focus en th  7aL G., CsoNKAF.: A simple and robust mutation strat-
high perceptual variance area. However, the energy brought  egy for the metropolis light transport algorithm. vol. 21,
by a variance path generated this way should also be ad- pp. 531-540.

justed accordingly. Also, how to identify a variance coming [LW93] LAFORTUNE E. P., WLLEMS Y. D.: Bi-

gic;?oi:}nal;t,:fag 2;:;?3?r'ggsrt]i%tnfr?r?a%?iﬁ:)cnal ;Td;t?]g“ing directional path tracing. IRroceedings of Compugraph-
y q : »anp ics (1993), pp. 145-153.

tialized thea’s values to a constant value. However, we can
record the alpha used previously in an image because spa-[PHO04] PHARR M., HUMPHREYS G.: Physically Based
cial correlation will give us similao’s values in most places Rendering from Theory to Implementatidorgan Kauf-
in the image plane. We can reuse thenformation to re- mann, 2004.

duce the process of probing to estimate a proper seatsof [PKKOO]
values. Based on the framework of Population Monte Carlo,
PMC-ER can improve the rendering efficiency. PMC should
be able to provide further research opportunities for dloba
illumination community.

PauLy M., KoLLIG T., KELLER A.: Metropo-
lis light transport for participating media. Proc. of the
11th Eurographics Symposium on Render{2g00), Eu-
rographics Association, pp. 11-22.

[SKDP99] <ZIRMAY-KALOS L., DORNBACH P., RPUR-
GATHOFER W.: On the Start-up Bias Problem of
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