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Abstract

We present a novel global illumination algorithm which
distributes more image samples on regions with perceptu-
ally high variance. Our algorithm iterates on a popula-
tion of pixel positions used to estimate the intensity of each
pixel in the image. A member kernel function, which au-
tomatically adapts to approximate the target ditribution by
using the information collected in previous iterations, isre-
sponsible for proposing a new sample position from the cur-
rent one during the mutation process. The kernel function
is designed to explore a proper area around the popula-
tion sample to reduce the local variance. The resampling
process eliminates samples located in the low-variance or
well-explored regions and generates new samples to achieve
ergocity. New samples are generated by considering two
factors: the perceptual variance and the stratification of
the sample distributions on the image plane. Our results
show that the visual quality of the rendered image can be
improved by exploring the correlated information among
image samples.

1. Introduction

To generate images that are close to reality has become
more and more important in several different applications.
Monte Carlo (MC) integratons provide us a general solution
to solve integration problems involved in rendering. How-
ever, the efficiency of Monte Carlo methods is still the main
concern when applying it in practice. Generally, different
regions may require different numbers of samples to ren-

der a converged image. In standard MC estimators, pixel
samples are uniformly and evenly distributed on the image
plane. This is inefficient because low-variance regions only
need a small number of samples, and high-variance regions
may need a large number of samples in order to generate a
converged image. As a result, in order to guarantee generat-
ing a converged image, MC needs to use a large number of
samples among all regions even in low-variance regions. If
we can shift those extra samples in low-variance regions to
high-variance regions, we can improve the rendering qual-
ity. Our Population Monte Carlo path tracing (PMC-PT)
algorithm automatically distribute more image samples to
explores high variance regions .

Our algorithm iterates on a population of pixel positions
on the image plane. The initial population of samples are
evenly distributed on the image plane. Any information
available in the previous iterations can be used to adapt
memberkernel functionsthat produce a new population
based on the current population. The resampling process
eliminates part of the population samples and regenerates
new samples to achieve ergocity. We carefully design the
resampling process to eliminate the well-explored samples
from the current population and to generate new samples
by considering two factors: the perceptually-weighted vari-
ance among the samples in each pixel and the need to strate-
fiedly explore the image plane. As a result, new regenerated
samples are designed to locate in the perceptually important
areas or to distribute on the image plane in an even manner.
The procedure is then iterated: sample, iterate, resample,
adapt, iterate, resample . . . . The result is a self-tuning un-
biased algorithm which can locally explore the important
visual areas on the image plane. All pixel positions gener-
ated by mutation and regeneration are used to estimate the



intensity of each pixel by using a general MC ray tracing al-
gortihm such as path tracing and bidirectional path tracing
in order to generate an image. In our implementation, we
use a general path tracing algorithm.

Our contribution is a new rendering algorithm,PMC
Path Tracing(PMC-PT), based on the PMC framework.
This algorithm adapts the kernel functions to determine the
radius of local exploration with the information collected
in previous iterations. In addition, the resampling process
distributes the new samples over the entire image plane ac-
cording to the perceptual importance and stratification to
achieve ergocity. Samples kept during the elimination pro-
cess are located in regions with high variance.

The remainder of this paper is organized as follows: sec-
tion 2 reviews a number of works related to this algorithm.
Section 3 presents the generic PMC frame work. Section 4
present the PMC-PT in detail. Section 5 shows the results
generated by this algorithm. Section 6 discusses the limita-
tion and relation to the existing algorithm. Finally, section
7 gives the conclusion of our algorithms.

2 Related Work

Currently, most global illumination algorithms are based
on ray tracing and Monte Carlo integration. There exist two
categories: unbiased methods such as [?, ?, ?]; and biased
methods such as [?, ?, ?]. Interested readers can refer to
Pharr and Humphreys [?] for an overview of Monte Carlo
rendering algorithms. Here we focus on three specific areas
related to our work: adaptive image-plane sampling, per-
ceptual metrics, and sample reuse.

Typically, adaptive image-plane algorithms initially ren-
der the image with a small number of samples per pixel. The
initial image is analyzed to label pixels as adaquately sam-
pled or in need of further refinement. Then, the algorithms
iterate on pixels requiring more samples [?, ?, ?, ?, ?, ?].
However, the label on the pixels based on an initial samples
introduces bias [?] into the final result, which is a problem
when physically accurate renderings are required. We care-
fully design the sample distribution probability with respect
to the perceptual importance and at the same time, avoid
bias during the resampling process.

Many metrics have been proposed for the test to trigger
additional sampling. Lee et al. [?] used a sample variance
based metric. Dippé and Wold [?] estimated the change
in error as sample counts increase. Painter and Sloan [?]
and Purgathofer [?] used a confidence interval test, which
Tamstorf and Jensen [?] extended to account for the tone
operator. Mitchell [?] proposed a contrast based criteria be-
cause humans are more sensitive to contrast than to abso-
lute brightness, and Schlick [?] included stratification into
an algorithm that used contrast as its metric. Bolin and
Meyer [?], Ramasubramanian et al. [?] and Farrugia and

Péroche [?] used models for human visual perception, of
which we use a variant. Most recently, Rigau et al. [?, ?]
introduced entropy-based metrics.

Our PMC-PT algorithm uses the adaptation of the mem-
ber kernel function to locally explore perceptual important
regions and uses resampling to achieve ergocity and explo-
ration of high percetual variance regions. In addition, it is
unbiased.

3 D-Kernel Population Monte Carlo

The Population Monte Carlo algorithm [?] is an adap-
tive algorithm that calibrates the proposed distribution to the
target distribution at iteration by learning from the perfor-
mance of the previous proposal distributions. The generic
D-Kernel PMC sampling algorithm [?] which is an evolu-
tion of PMC. Our algorithm, an adaptation of the generic
D-Kernel PMC algorithm, is stated in Figure 1. Our algo-
rithm adapts the kernel function for each population path
instead of a single kernel function for the entire population.

1 generate the initial population,t = 0
2 for t = 1, · · · , T

3 adaptK(t)
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7 resampling process: elimination and regeneration

Figure 1. The generic D-Kernel Population
Monte Carlo algorihtm.

Assume we have a population of samples denoted by
{

X
(t)
1 , . . . , X

(t)
N

}

, wheret is the iteration number andN is

the population size, and we wish to sample according to the
target distribution,π(x), where isf(x) = π(x)h(x) in or-
der to evaluate

∫

D
f(x)dx. We start the algorithm by creat-

ing the initial population with any method that can generate
these samples provided that any sample with non-zero prob-
ability underπ(x) can be generated, and the probability of
doing so is known. The outer loop is responsible for adapt-
ing a memberkernel function, K

(t)
i (x

(t)
i |X

(t−1)
i ), for each

member in the population, (line 3) using information from
the previous iterations. The kernel fuction is used to gener-
ate a new population sample, given the current one. The in-
ner loop takes an existing sample,X

(t−1)
i , as input and pro-

duces a candidate new sample,X
(t)
i , as output (line 5). The

resampling step in line 7 consists of two steps: elimination
and regeneration. It is designed to eliminate the samples
with low contribution to the final result and to explore new
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unexplored regions. The weight computed for each sample,
w

(t)
i , is essentially its importance weight. At any given it-

eration, an estimator of the integral can be computed and is
unbiased forπ(h):

f̃(x) = π̃(h) =
1

N

N
∑

i=1

w
(t)
i h(X

(t)
i ) (1)

Before applying PMC to rendering problems, several de-
cisions must be made:

• Decide the sampling domain and population size.

• Define kernel functions and their adaption criteria.

• Choose the techniques for sampling from the kernel
functions and resampling step.

The following sections describe the application of this
framework by mutating the general path tracing algorithm.
This algorithm uses kernel functions with metrics to accu-
mulate, eliminate, and regenerate samples. Then, we con-
clude with a general discussion on PMC for rendering prob-
lems.

4 Population Monte Carlo Path Tracing
(PMC-PT)

To render an image, the intensity,Ii,j , of each pixel must
be computed using Equation 2. MC in Equation 3 uses a set

of path samples,
{

X̃1, . . . , X̃N

}

, sampled from an impor-

tance functionp(x̃) to estimates the intensity,Ii,j .

Ii,j =

∫

I

Wi,j(X̃)L(X̃)du(X̃) (2)

Îi,j =
1

n

N
∑

k=1

Wi,j(X̃k)L(X̃k)

p(X̃k)

=
1

n

N
∑

k=1

Wi,j(X̃k)E [L(X̃k)] (3)

whereI is the image plane,Wi,j(X̃) is the measure-
ment function for pixel(i, j) – non-zero if the lens edge,
xn−2xn−1 passes through the support of the reconstruction
filter at (i, j) wheren is the total number of vertices in the
path – andL(X̃) is the radiance bringing on the path,X̃.
MC can prove thatlimN→∞ Îi,j = Ii,j .

The only difference among all pixels is the term of
Wi,j(X̃k). Providedp(X̃) is known in each path which
passes through the valid image plane, the global nature of
p(X̃) is not important. Thus, the rendering equation can

be transformed to evaluate the expected radiance,E [L(X̃)],
carried by each sampled path and then accumulate this ra-
diance in pixels whose support of reconstruction includes
the path-passing pixel position. At the final step of ren-
dering, the accumulation in each pixel is averaged by the
total number of samples dropped in the support of the pixel.
Therefore, the unbiasedness can be achieved under two con-
ditions: first, the estimator of expected path radiance is un-
biased; and second, there are infinite samples falling in the
support of each pixel’s recontruction filter as the total num-
ber of samples goes to infinity.

When applying Equation 3 to render an image, the sam-
ple distribution on the image plane is uniform. However,
the complexity of lighting varies from region to region on
the image. Thus, each region requires diffrent number of
samples to achieve a converged values. It is inefficient to
put a large number of samples on regions with low variance
due to the need of regions with high variance. PMC-PT is
designed to distribute more samples for further exploration
of regions with high variance. The variance of the illumi-
nance among a population sample and its kernel-proposed
descendants is used to determine the need of exploration.
The higher the variance is, the higher the need of samples
is. In this section, we first discuss the algorithm itself fol-
lowing with the detailed discussion of the adaptation and
resampling process.

4.1 PMC-PT Algorithm

Figure 2 shows the steps using PMC-PT algorithm to
render an image. In the preprocess phase, the algorithm
first generates a pool of stratified pixel positions used to dis-
tribute the population samples evenly on the image plane.
This pool is asked to give a population of initial samples
and to generate new stratified replacement samples during
the resampling process in each iteration in order to guaran-
tee that every pixel has the chance to be explored.

The resampling step in line 9 is designed to cull candi-
date samples located in perceptually low-variance regions
and keep samples located in perceputally high-variance re-

gions. It takes the candidate population,
{

X
(s)
1 , . . . ,X

(s)
n

}

,

and produces a new population ready for the next iteration.
The kernel adaption (lines 4 and 10) need not be done on
every iteration. Our examples demonstrate such cases. Af-
ter exploring several values forTR, we found a wide range
of values to be effective. The optimal value depends on the
population size and the relative cost of kernel perturbations
compared to resampling. The aim of adding new samples
in the resampling process is to eliminate the possibility of
overexploring a few regions with very high variance during
the mutating process in order to guarantee the unbiasedness
of our algorithm. Adding new samples in this way does not
add bias, because neither the mutated population nor the

3



1 generate a pool of stratified pixel positions
2 generate initial population of samples int = 0
3 for s = 1, · · · , T

4 determineα(s)
i

5 for i = 1, · · · , n
6 for t = 1, · · · , TR

7 generateX(t)
i ∼ K

(s)
i (x(t)|X

(t−1)
i )

8 Computew(s)
i = σ2

i /Nused

9 resample: elimination and regeneration

10 adaptβ(s)
x,y

Figure 2. The PMC-PT iteration loop. TR is
the number of kernel iterations per resam-
ple step. σ2

i computes the variance of the ith
population sample and all mutated descen-
dent samples after it has been regenerated
and this value is used to calculate the weight,
w

(t)
i , for elimination, and Nused is the num-

ber of resampling loop this sample has been
used since it has been regenerated.

new samples are biased, so their union is not biased. After
deciding the new pixel position either in regeneration or in
mutation process, we use a path tracing algorithm to eval-
uate the expected radiance along the ray from eye to the
pixel position,IL = E [L(PT (X)] wherePT (X) generate
a valid path,X̃, passing through the pixel position,X, by
using the path tracing algorithm. We only needs the prob-
ability, p(PT (X)), to evaluate the expected path radiance,
IL, T (x|X : d) is not important and is only used to dis-
tribute the samples.

4.2 Kernel Functions

The kernel function for each population member is
a conditional kernel,K(s)

i (x(t)|X
(t−1)
i ), that generates a

sample positioni in iterationt, X(t)
i , given samplei in iter-

ationt − 1, X(t−1)
i . we use a mixture distribution:

K
(s)
i (x

(t)
i |X

(t−1)
i ) =

∑

dj

α
(s)
i,dj

T (x(t)|X(t−1) : dj) (4)

Each component,T (x|X : d), mutates an existing sam-
ple to generate a new one for exploration of the image space
according to the perturbing radius,d. There is a set of per-
turbing radiuses,di, given as parameters to the algorithm
and each is good for different occasions.α’s values are used
to choose a radius for the current sample path and their val-
ues are adapted through iterations for each path. Once we

choose adi, the perburbation takes the existing pixel posi-
tion and moves to a new pixel positions uniformly sampled
within a disk of radius,d, a parameter of the kernel compo-
nent.

4.3 Resampling

The resampling step in this algorithm achieves three pur-
poses: samples that locate in regions with higher variance
are carried forward to the next round, it provides an oppor-
tunity to add some completely new samples into the popula-
tion for exploring unexplored or perceptually high-variance
regions, and the information about which perturbations are
chosen inside the inner loop guides the adaption of the ker-
nel functions. The following sections give the detail of three
steps

4.3.1 Eliminate samples from the population

The weight,w(s)
i , for each sample is used to determine

the probability of survival of the path during the elimina-
tion phase. At each inner loop, we tag the expected radi-
ance computed by the PT algorithm ,I

(t)
Li

, for each member
and then in elimination process, we evaluate the variance of
these illuminances,σ2

i . The higher variance a member has,
the higher the chance it is kept in the population. This can
achieve the goal of continuing to explore high-variance re-
gions. However, we would like to avoid over-exploring the
samples located in high-variance regions in order to give
more chance for other samples. Thus, we weigh the vari-
ance down by the total iterations which it has being used for
perturbations. Thus, the final weight isw

(s)
i = σ2

i /Nused

4.3.2 Regenerate new samples into the population

Regeneration is to maintain the constant number of sam-
ples in the population. It also gives us the chance to decide
where we would like to explore in the next iterations. Our
algorithm considers two aspects: the stratification of pixel
positions and the perceptual variance of the intermediate re-
sult.

1. Stratification :

Pharr [?] demostrates how important sampling
evenly on the image plane is in reducing the variance.
Thus, in the preprocess phase, we compute the total
stratified number of pixel positions needed for the
entire process.Then a pool of stratified pixel positions
is generated according to that number. During the
regeneration process, we keep asking the pool to give
us the next unused stratified pixel position. This is
also used to guarantee that every pixel gain its chance
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to be explored to achieve the second requirement of
unbiasedness.

2. Perceptual variance:

In order to generate new sample paths in regions
with high perceptual variance. We use the value
β

(s)
i,j to indicate the degree of requirement for more

samples at pixel(i, j). Pixels that require further

exploration should have higherβ(s)
i,j . An appropriate

criteria assignsβ(t)
i,j proportional to an estimate of the

perceptually-weighted variance at each pixel. The
algorithm tracks the sample variance in illuminance
seen among samples that contribute to each pixel. To
account for perception, the result is divided by the
threshold-versus-intensity functiontvi(I) introduced
by Ferweda et al. [?].

β′
i,j =

σ2
i,j

tvi(Ii,j)

β
(s)
i,j =

β′
i,j

∑

i′,j′∈IP β′

(i′,j′)

To get a pixel position, we first choose a pixel,(i, j)

according to the weight ofβ(s)
i,j and then perturb the

position by one pixel distance in each direction.

4.3.3 Adaptα’s Values to Propose a New Path

When exploring a region with little change in lighting such
as the diffuse wall far from a light, we would like to expand
the exploring area, i.e. have higher probability to choose
a larger perturbation radius. On the other hand, when ex-
ploring a region with complex change in lighting, such as a
glossy surface with a light located near the reflection glare
direction, we would like to shrink the exploring area, that
is, have a higher probability to choose a smaller perturba-
tion radius.

When a new sample is generated in the regeneration pro-
cess, theα(s)

i,k is set as a constant probability for each com-
ponent which allows us to uniformly choose any of the per-
turbations. Since the goal is to decide the exploration ac-
cording to the lighting detail. After initialization, the ex-
pected illuminance,I(t)

Li
, of each new mutated path was

tagged with the kernel mixture component that generated
it and its index in the population,i. At adaptation step, we
uses the tagged illuminance to evaluate the perceptual vari-
ance for each component of each member in the population
to adjust theα’s values according to:

Figure 3. A Cornell Box image computed us-
ing PMC-PT with 250 iterations on the left,
and the image represents the mutation strat-
egy (red represents perturbation of radius 5
pixels, green represents pertubation of ra-
dius 10, and blue represents the perturba-
tion of 50 pixels) used during the process
on the right in the first row. To compute a
converged value at the caustic part is dif-
ficult. Hence, we show the cropped image
of the caustic region. The left image in the
second row is the cropped image of the im-
age rendered by our algorithm. The right im-
age is the cropped image of an image com-
puted with a PT algorithm with 64 spps. The
strategy image shows that our algorithm will
adjust the perturbed radius according to the
lighting change and physical edges. The im-
age also shows that our algorithm will put
more samples on the high perceptual vari-
ance regions such as the light’s edge and the
caustic and shadow regions under the glass
ball.

α′
i,k =

{

0 if σi,k = 0
1

σ2

i,k

if σi,k 6= 0

α
(s)
i,k = ǫ +

(1 − ǫ)α′
i,k

∑n

k′=1 α′

(i,k′)

whereσ2
i,k is the variance of a set of illuminances tagged

with the k-th mixture component fori-th member in the
population.

5 Results

We compared PMC-PT with the path tracing algorithm
on two Cornell Box scenes and a room scene with roughly
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Figure 4. Another Cornell Box image with complex pattern of s pecular light transport paths. The
left image is computed using PMC-PT with 1000 iterations; th e middle image is generated using a
PT algorithm by 256 spps; the right image represents the muta tion strategy used in our PMC-PT
algortihms. Generally, our algorithm gets a better perform ance at the caustic and shadow regions.
The strategy image shows that our algorithm almost evenly ex plores all caustic and shadow regions,
and it adjusts to shorter radiuses which is showed as a yellow color but the paths do not stay in the
population to adjust to the shortest radius which is showed a s a red color like the result of Figure 3

the same number of rays shooting out from the camera. One
Cornell Box scene is with a glass ball and other surfaces
such as walls, being Lambertian; and the other Cornell Box
scene is with a glass ball in the front, a mirror ball in the
back, one mirror surfaces on the right side of the box, and
the remaining surfaces being Lambertian. The room scene
contains several complex objects and a glossy table to de-
mostrate the usage of the algorithm for a complex scene. In
all three cases we used a population size of 5000. There
are three pertubation radiuses: 5, 10, and 50 pixels, re-
spectively. In each step inside the inner loop, each mem-
ber generates 16 resampling perturbations, and 40% of the
population is eliminated and regenerated. 50% of regener-
ated samples are created using the stratification mechanism,
and 50% are generated using the perceptual variance mech-
anism. The Cornell box scenes were rendered at 640×480
resolution and the room scene were rendered at 720×405
resolution. The first Cornell Box scene is rendered with 250
iterations and theα’s andβ’s values are updated every 100
iterations. The second one is rendered with 1000 iterations
and theα’s andβ’s values are updated every 200 iterations.
The room scene is rendered with 3400 iterations and theα’s
andβ’s values are updated every 200 iterations.

The images (Figure 3) demonstrate that PMC-PT ex-
pends more effort on the difficult regions – the region in
the ceiling near the light, the caustic and shadow region un-
der the glass ball – and hence has a lower variance in those
regions, at the expense of a slightly higher variance in other
parts of the image. This is a recurring property of the PMC-
PT algorithm: PMC produces a more even distribution of
noise, with lower noise levels overall but higher in some
parts of the image that are over-sampled with non-adaptive

techniques. The strategy image shows that our adaptation
strategy automatically adjusts the perturbed radius near the
highly changing lighting boundary such as the caustic and
shadow region or the physical edges, such as the corners.
These regions also generate higher perceptual variance. As
a result, the algorithm puts more samples on these regions
showed as brighter illuminace in the strategy image. The
overall result is a more perceptually pleasant image com-
pared to the corresponding image rendered by the PT algo-
rithm using 64 spps, which is roughly the same total number
of sample paths shooting from the eye.

The second Cornell Box contains complex specular tran-
port paths and has several caustic regions on the image.
The images (Figure 4) demonstrate that PMC-PT evenly
explores these difficult regions by distributing more sam-
ples on these areas. However, the direct lighting change
areas, such as the caustic regions under the glass ball and
the region in the ceiling near the light, have higher per-
ceptual variance than their corresponding reflection and get
more samples. Since high proportion of the population has
a high perceptual variance, there is a smaller chance to stay
in the valid population to adapt to the shortest radius which
is showed in the strategy image as a red color. However,
our algorithms still adjust the perturbed radius to the short-
est two of the three which is showed in the strategy im-
age as a yellow color, which is a combination of red and
green. The priminary lighting regions are an exception be-
cause they have a higher perceptual variance than the rest
of the reflecting high variance regions. The paths still stay
longer and have chance to adjust to the shortest radius which
can be observed at the edge of the specularity of the mirror
ball.
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Figure 5. A room scene computed using our PMC-PT at the left an d PT at the right. PMC-PT has fewer
artifacts overall. By giving more samples to the high varian ce regions, PMC-PT is an improvement
over PT.

Our algorithm improves the image quality at the shadow
and caustic regions, the reflections of these regions and even
the diffuse wall in the back. The strategy image shows that
there are more high variance regions, and thus the samples
are more evenly distributed around the image plane. Ar-
round the caustic region and the light source, we choose
a small radius algorithm to render the image. PMC-PT
achieves a more perceptually pleasant image compared to
the corresponding image rendered by the PT algorithm us-
ing 256 spps, which is roughly the same total number of
sample paths shooting from the eye.

Since the algorithm shifts extra samples from the low
variance regions to high variance regions. If the scene con-
tains a large number of high variance regions, such as this
example, the number of extra samples can be moved is
relatively small. Although we still can gain improvement
but the improvement is less obvious than those which have
fewer high variance regions.

Finally, Figure 5 demonstrate that PMC-PT can be used
to render a complex scene. We notice that the ceiling and
the wall near the long lamp contain higher variance in the
image rendered by PT algorithm. However, the PMC-PT
distributes more samples on these regions and thus, the re-
gions seem to be smoother. The overall artifact is smaller in
the image rendered by PMC-PT than in the image rendered
by PT using 1024 spps.

6 Discussion

The most important variable parameter in our algorithms
is the survival rate in the resampling process. A small sur-
vival rate reduces the number of samples kept in the pop-
ulation, which results in a faster exploration of the sam-
ple domain but at the cost of a large amount of iteration

information being lost during the resampling process. On
the other hand, a larger survival rate means that more itera-
tion information related to paths is kept during the iteration.
However, the rate to explore the entire sample domain is
slow.

The population size and resample rate can also further
affect the rendering speed and the final result. If the to-
tal number of variance-criteria resampling samples for the
TR-loop (i.eTR ∗NPopulation ∗ rResampling ∗ rV ariance) is
large enough, we can reduce the cost of generating a sample
from the variance image,β’s, by using a deterministic sam-
pling method. In addition to efficiency, with deterministic
sampling, the sample destribution is relatively stratifiedac-
cording to the sampling probability. Thus, we expect that a
large size of population can further improve the rendering
efficiency.

Mixtures are typically formed by combining several
components that are each expected to be useful in some
cases but not others. The adaption step then determines
which component are useful for a given input. The most no-
table limitation of PMC is the high adaptive sample counts
required for each iteration when the kernel has many adapt-
able parameters. This prevents us from using a larger num-
ber of different perturbing radiuses. Such a strategy would
be appealing for efficiently rendering a scene with geome-
tries having very different sizes appearing on the image
plane, but the adaptive sample count required to adequately
determine the mixture component weights would be too
large. Instead we use three perturbation radiuses for all im-
ages rendered.
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7 Conclusion

We have presented a novel approach, PMC-PT, by show-
ing how to adapt PMC method to distribute the samples
for a general path tracing algorithm. PMC-PT automati-
cally distributes more samples over regions with high per-
ceptual variance found in the previous iteration. It adjusts
the importance sampling density to generate better samples
for reducing perceptual variance of a high variance region
and also use resampling process to eliminate samples locat-
ing in low-variance or well-explored regions and regenerate
seed samples for achieving ergocity by the criteria of per-
ceptual variance and stratification. There are several future
research directions. Our PMC-PT only uses the information
related to the regions on the image plane but does not use
the correlation among similar paths. We would like to fur-
ther explore the possibility of the correlated sampling in this
aspect. In addition, all samples initialized theα’s values to
a constant value. However, we can record the alpha used
previously in an image because spacial correlation will give
us similarα’s values in most places in the image plane. We
can reuse theα information to reduce the process of prob-
ing to estimate a proper set ofα’s values. Population Monte
Carlo is new to the graphics society. We believe that it can
provide further research opportunities in Computer graphics
community.
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