
 1

GALANX: An Efficient Peer-to-Peer Search Engine System

Yuan Wang Leonidas Galanis David J. DeWitt
Computer Sciences Department, University of Wisconsin - Madison

1210 W. Dayton St.
Madison, WI 53706

USA
{ yuanwang, lgalanis, dewitt} @cs.wisc.edu

ABSTRACT
Although peer-to-peer systems have recently emerged as a
popular way to share data on the Internet, most applica-
tions still rely on centralized services, such as Google, to
find relevant data. This paper presents the design and im-
plementation of GALANX, a peer-to-peer search engine
that was implemented using the Apache HTTP server and
BerkeleyDB. GALANX directs user queries to relevant
nodes by consulting a local peer index that is maintained
on each node. The use of peer indices to direct searches
was experimentally evaluated using a 100 processor clus-
ter. A number of alternative query routing strategies were
also implemented and evaluated in the GALANX frame-
work. Experimental results clearly demonstrate that the
use of peer indices can significantly improve performance.

1. INTRODUCTION
Since NapsterTM [17] first made it possible for millions of
people to exchange MP3 files, peer-to-peer (P2P) file shar-
ing mechanisms have gained enormous popularity. P2P
systems have rapidly emerged as a popular choice to share
large amounts of data over the Internet. Compared to the
traditional client-server systems, P2P systems have demon-
strated some fundamental advantages:

1) Fault tolerance. P2P systems are structurally more ro-
bust than centralized systems, in terms of resilience to both
node and network failures.

2) Low cost. P2P systems distribute hardware and network
bandwidth costs among all the participants in the system.

3) Easy adaptation. P2P systems can dynamically adapt
when nodes join and leave, or even fail. Nodes autono-
mously connect to each other, with or without control from
a central authority.

Because data objects are stored on the nodes of a P2P sys-
tem and not in a centralized server, an important task is,
given a request from a user, to be able to efficiently locate
the desired objects. Currently, several different mecha-
nisms are used to route user requests to the appropriate
data source nodes.

1) Central directory services. The locations of all shared
data in the network are registered on a central server [17].
In this case, a node must access the central directory before
contacting the data source to process a user request. Obvi-
ously, this strategy requires central infrastructure and is
not in the spirit of pure P2P systems. It is vulnerable to
failures and is not scalable.

2) Flooding-based routing. This approach [4][6] does not
employ any centralized servers or any data location direc-
tories (although individual nodes can maintain a cache of
locations of previously requested data [4]). User requests
are broadcast to neighbor nodes in a non-selective way
such as breadth-first or depth-first. This method requires
minimal system state at the expense of network bandwidth
and CPU resources, causing scalability and efficiency prob-
lems.

3) Distr ibuted Hash Tables (DHT). In this approach
every shared data object has an associated hash value and
every node in the system is responsible for storing the data
objects whose hash values fall into a certain range
[3][19][24][29]. When a user asks for a file, the same hash
function will be applied on the request to determine which
peer holds the data.

In order to search in a large number of Internet sites peo-
ple currently almost always employ a centralized search
engine, such as Google, Yahoo, AltaVista, etc. Such ser-
vices periodically crawl the Internet in order to construct
indices against which search queries are processed. In a
large and dynamic peer-to-peer environment, it is, essen-
tially impossible to rely on such centralized search engines
to get recent results because crawlers are not capable of
providing up-to-date information. In addition, it is very
difficult, if not impossible, for such systems to retrieve data
that is stored in a database system and presented to the
user with a dynamically created html page. Even if they
can access the data [20], they may not be able to process
the same queries as the data source web sites do.

This paper presents GALANX, a peer-to-peer search en-
gine system that can efficiently route user queries to the
appropriate information source nodes. The key features of

 2

this system include:

• Potential Suppor t for complicated quer ies. Through
its design and implementation, the GALANX system does
not set any limits on the format of the data objects and
queries it can support. Each participating node publishes
an index about what data it shares and, hence, what que-
ries it can answer. GALANX helps peers to distribute and
exchange the indices for routing queries. We conduct
multi-term full text search in the experiments to illustrate
this feature.

• No requirements on data relocation. Most DHT-
based P2P systems employ a deterministic data location
function that forces a shared data object to be stored on a
particular node. Those P2P systems that rely on flooding to
route queries require data to be cached for future accesses
in order to obtain reasonable performance. The GALANX
system does not move or duplicate any shared data objects
for the following reasons:

1. Different peers may provide different query interfaces
so that a peer may not be able to answer queries on
another peer’s data.

2. A peer’s data may reside in a database system, which
may be difficult to export.

3. Even though a peer may be willing to share its infor-
mation (by processing user queries) it does not mean
that it will be willing, or even able, to share the under-
lying source data. In such cases, we may have to re-
spect the data ownership.

On the other hand, if a data cache is needed in order to in-
crease system availability or to balance the load among
nodes, the GALANX system just treats the cached data as
newly inserted data.

• Peers have great freedom to decide metadata stor -
age. Many peer-to-peer data sharing systems construct
data lookup indices to help route user queries. DHT-based
strategies force indices to be distributed to every node by
applying a hash function. In GALANX, every node can
cache part of, or even entire indices published by other
nodes. Any node can make its own decision about what
pieces of indices it wants to cache based on its storage ca-
pacity and processing capability. As will be demonstrated
in Section 5, the ability to cache portions of another node’s
indices can significantly improve performance.

• Efficient query routing. The GALANX system pro-
vides more efficient query routing solutions than mecha-
nisms that use either flooding or DHTs. Our preliminary
experiments show that GALANX’s indexing strategies
significantly reduce the communication traffic in the sys-
tem by eliminating intermediate routing hops.

The remainder of the paper is organized as follows. Re-
lated work is described in Section 2. Section 3 formulates
the peer-to-peer search engine problem and discusses both
advantages and disadvantages of current query routing
techniques. Section 4 presents the details of the design and
implementation of the GALANX system. Section 5 evalu-
ates GALANX against other routing strategies and gives
some preliminary performance results. Section 6 summa-
rizes our conclusions and discusses future research direc-
tions.

2. RELATED WORK
Although peer-to-peer computing is not exactly a new idea,
the design and implementation of P2P systems has only re-
cently become an active research area. Napster® [17] was
the major force that propelled the popularity of P2P sys-
tems. Ironically, its request routing approach is not peer-
to-peer. When a user computer joins the system, it first
registers its shared data on the Napster central directory
server, which records the locations of all shared data ob-
jects in the system, along with the user’s IP address and
network connection speed. An MP3 file request is first sent
to the server where it is matched against the file directory.
The query results, including a list of users who have the
file, are sent back to the user, so the user computer can
open a direct connection with the peer. Notice that the cen-
tral server itself does not share or cache files from other
peers. Rather, it just maintains the index of shared files.

Other P2P media sharing systems, such as KazaA® [15]
and Morpheus® [16], employ a hybrid server approach in
which a central server registers the users in the system and
facilitates the peer discovery process. When a peer joins
the system, the server provides it with the address of one or
more "super-nodes" to which the peer then connects for
service. Note a “super-node" is a peer in the system that
has been selected to become a super-node because it has
sufficient bandwidth and processing power. A super-node
indexes the files shared by the peers that connect to it and
proxies search requests on behalf of those peers. A file re-
quest is sent to a super node, which may, in turn, contact
other super nodes to resolve the location of a file. Once a
peer receives its list of super-nodes from the central server,
little further communication with the central server is re-
quired.

Both the central directory and the hybrid approaches can
be categorized as employing centralized indexing and rout-
ing in that all users and shared data must be registered in
the network. Although it locates files quickly, it is not
scalable and it is vulnerable to point failures and censor-
ship.

In Gnutella [6], every node connects to a number of other
nodes when it joins the system. When a node receives a

 3

user request, it forwards the request to all of its neighbors
if it doesn’ t have the requested file. Each request message
in Gnutella contains a Descriptor Header that carries a
Time-to-Live (TTL) field to specify the maximum number
of hops the request can be forwarded.

Similarly, in the Freenet system [4], to search for a file, a
peer sends a request message specifying the key and a hop-
to-live value. However, Freenet is more restrained in the
traffic generated than Gnutella. When a Freenet client re-
ceives a request it cannot satisfy, it forwards the request to
a single neighbor. If the client receives a failure notice be-
cause no further systems are known down the line, or if the
client fails to get a response because the time-to-live timed
out, it tries another one of its neighbors. If the requested
data is ultimately found and returned, the node on the
pathway will pass the data back to the upstream requestor,
caching the file in its own database for future requests.

Both Gnutella and Freenet are decentralized and symmet-
ric but neither can guarantee reliable and efficient content
location.

In contrast to the flooding-based routing approaches, sev-
eral research systems such as CAN [19], Chord [24], Pas-
try [3], and Tapestry [13][29], proposed independently,
construct a distributed hash table (DHT) over the peer
network in an effort to provide efficient query routing. In a
DHT-based system, every shared file is associated with a
key, either its name or a system id. All keys are hashed to a
common key-space. Every peer is responsible for a portion
of the key-space and stores the files whose keys fall into
that key-space. Thus, every file request can be forwarded to
the specific peer that corresponds to the file’s key.

DHT-based data sharing systems route user requests to
data source nodes more quickly because the destination of
any request can be determined by the submitting node.
However, DHT-based systems have their own limitations.
Ratnasamy et al. [21] proposed a list of open questions to
be studied in DHT systems. Harren et al. [11] discuss the
possible architectures that can run complex queries in a
DHT-based peer-to-peer database network. Huebsch et al.
[12] present the PIER system that intends to move tradi-
tional database query processing utilities into a highly dis-
tributed environment. The PIER system processes SQL-
like queries utilizing a DHT-based routing mechanism.
Galanis et al. evaluate several different routing strategies
and indices in a large peer-to-peer environment [9], and
present a peer-to-peer XML data sharing system that em-
ploys the Chord system to direct XPath structure lookups
[10].

Daswani et al. [2] study existing peer-to-peer systems and
propose some future research directions. Gribble et al. [5]
discuss the data placement issue in peer-to-peer systems.

Yang and Garcia-Molina [28] propose iterative deepening,
directed breadth-first search, and local indices techniques
to improve query routing performance in a Gnutella-like
P2P network. Crespo and Garcia-Molina [1] also introduce
three types of routing indices to enhance routing perform-
ance comparing to the flooding-based approaches.

Most recently, Tsoumakos and Roussopoulos [27] analyze
and simulate several typical search techniques. They ob-
serve the trade-off between search efficiency and update
cost of flood-based schemes and informed (index-based)
methods. Suel et al. [25] propose ODISSEA, a distributed
search engine architecture, that constructs and distributes a
global inverted index in a local P2P network and executes
search queries within the network.

The JXTA project [14] provides an open source, language
neutral, system independent platform for implementing
peer-to-peer applications. It provides services such as in-
dexing, searching and sharing of content over the basic
functions of peer groups, peer monitoring and security.

3. ROUTING QUERIES IN PEER-TO-PEER
SEARCH ENGINE SYSTEMS
Designing and implementing a peer-to-peer system is a
challenging task and many open problems still remain [2].
The GALANX system focuses on one of the most interest-
ing tasks of P2P systems, the query routing problem.

This section motivates the need of peer-to-peer search en-
gines and formulates the query routing problem. Several
existing approaches will be described and their pros and
cons discussed.

3.1. Problem Overview
There are currently hundreds of thousands of web sites that
update their content very frequently, as often as every day
or even every second. GoogleTM, on the other hand, only
crawls the Internet (partially) about once every two weeks
[22]. This makes searching for up-to-date information
through traditional centralized search engines virtually
impossible. Although Google News provides an instant
news searching service by monitoring about 5,000 news
websites, it still covers only a very small portion of the
Web. No single search engine can monitor the vast number
of dynamic websites that conduct business such as auc-
tions, stock markets, shopping, etc.1

Furthermore, many large websites rely on the use of a rela-
tional database system and provide only dynamically con-

1 At the time this paper is being written, GrubTM [8] is ex-
perimenting its distributed crawler system that aims at
monitoring the Web updates by running a crawler on every
participating node. This method still faces the next prob-
lem.

 4

structed html pages. On such sites, users typically search
for an item by typing in a query, and not by following a se-
ries of static links. In this case, it is hard for web crawlers
to access the information stored in the databases, not to
mention that such crawler-based search engines have to
provide different query interfaces for different web sites.

Peer-to-peer search engines seem to be a promising solu-
tion to these problems. Such a scenario requires that every
information provider is a participating node, sharing its
data and updates with the rest of the network. Since infor-
mation is pushed by its source nodes instead of being
pulled by a centralized server, the need for crawlers is at
least diminished, if not eliminated. Pushing also insures
that information stored in backend database systems will
also be accessible. In a P2P system, failure of one or more
nodes will also have much a lower impact on the entire
network.

Although peer-to-peer search engines appear to be the
right solution, there are a number of open problems that
prevent P2P search engines from competing with success-
ful centralized search engines in the real Internet. Prob-
lems [2] such as what topologies peers should follow when
constructing a P2P network in order to achieve efficiency
while preserving autonomy, how to provide the necessary
quality of service (QoS) to satisfy different kinds of users’
requests, and how to verify the authenticity of data objects
returned from a P2P system are certainly beyond what a
single paper could possibly address. In this paper, we focus
on a critical part of the entire picture – how to route user
queries to the appropriate information providers efficiently.

The GALANX system is designed to achieve high per-
formance in routing user requests only to the locations
where the desired data is stored. There are three features
that distinguish GALANX from many other P2P systems
and proposals,

1. It does not restrict user queries to be simple lookup re-
quests. In the experiments we demonstrate full-text
search queries.

2. It respects the ownership of the data shared in the
network and does not require data objects to be cached
on other nodes. All user queries are forwarded to the
node on which the data resides.

3. Every participating node in the GALANX system has
much freedom to decide what meta information (peer
indices that are described in Section 3.2) to store on its
local disk based on its own preferences and capabili-
ties.

Since query routing is the primary focus of this paper, we
have simplified the other two parts of the problem as fol-
lows:

1. The data objects stored on each node are simple text
files.

2. Each request is a conjunction query that consists of a
list of keywords. Every qualified result file must con-
tain all the keywords in the query.

Notice that peer-to-peer networks are usually dynamic by
nature. Nodes can join and leave the network at any time.
P2P systems should be able to adapt to such structure
changes. GALANX has adopted the approach advocated by
the JXTA system [14]. In this type of P2P network there
are two types of nodes. The first type of nodes is the major
information providers. Since the goal of such nodes is to
attract as many users as possible, they are usually stable.
The other nodes correspond to information “consumers” .
These nodes come and go. While the design of GALANX
assumes that the key information providers will be stable
for long periods of time, its design permits nodes to join,
leave, and fail gracefully.

3.2. Data Indices and Peer Indices
Before discussing different query routing techniques, we
first explain the indices that GALANX employs

• Data Indices -- We assume that each node stores a
large number of text files. In order to efficiently deter-
mine those documents that contain all keywords in a
query, an inverted list index [23] is constructed over the
data files on each node as shown in Figure 3.1. Given a
conjunctive query with multiple keywords, the query
engine intersects the document id lists of those key-
words to generate the qualified document id list.

• Peer Indices -- If the document id list of a keyword in
an inverted index is replaced with a list of peer ids on
which the keyword can be found, we can construct a
peer index, as shown in Figure 3.2. Using a peer index,
a node’s query engine can perform the same intersec-
tion operation to determine if a remote peer has rele-
vant documents. In order to determine whether a peer is
potentially relevant to a query, one only needs to check
whether it contains all keywords in a query. There are
more advanced IR techniques that can be applied to
generate more precise peer indices. This paper simply
uses the basic peer index as a way to illustrate alterna-
tive routing policies. More sophisticated IR methods
are beyond our focus for now and will not be discussed
here.

3.3. The State of the Art in Query Routing
In this section three common query routing approaches are
described.

I . Centralized Indices
Early peer-to-peer file sharing systems, such as Napster
[17], employed a centralized index for all data objects. In

 5

this type of system one or more dedicated servers are used
to hold the complete object index. As nodes join the net-
work they report the data that they want to share with oth-
ers to the central index server. When a peer receives a user
query, it simply contacts the server to determine which
peers the query should be sent to. Updates only need to be
reported to the central server. This approach does not re-
quire any routing capability among the peers.

I I . Flooding w/o Indices
Other peer-to-peer file sharing systems, such as Gnutella
[6], fully decentralize the data location process and do not
build any peer indices. All peers in the system self-
organize into an overlay network. A user request for a file
will be flooded to peers within a certain scope. More spe-
cifically, when a user submits a query, the query will be
sent to all neighbor peers (if it cannot be answered by the
submitting peer). The query will be forwarded to an expo-
nentially expanding collection of peers until either it is an-
swered or it reaches the hop limit set by the submitting
node.

I I I . Distr ibuted Hashing Table (DHT) Indices
CAN [19], Chord [24], Pastry [3], and Tapestry [13][29]
each use a distributed hash table (DHT) in which every
data object shared is associated with a key, and every par-
ticipating node is responsible for storing the data objects
whose keys fall within a certain range of values. Although
their particular designs are quite different from one an-
other, they all provide two basic functions, put(key, data) –
insert a data object into the system given its key value, and
get(key) – return the data object which matches the key
value.

When a DHT mechanism is applied in the problem sce-
nario discussed in this paper in which data objects are al-
ways stored at their original source nodes, one can con-
struct peer indices on every node to map key values to lo-

cations as follows. First, each of the keywords in the global
peer index (as shown in Fig. 3.2) is hashed to produce a
key value. Then, the global peer index is partitioned and
distributed among nodes in the system using these key val-
ues. Thus, every node maintains a part of the index, which
corresponding to the keywords whose hash values fall into
the node’s responsible range.

When a peer receives a query, “Matrix movie review” , it
will first send three individual peer index requests to at
most three distinct nodes that hold the peer index listings
of the words, “Matrix” , “movie” , and “review” . After ob-
taining the three lists of peer ids, the node submitting the
query intersects the three lists to obtain a list of peers that
may have the desired files. Finally, the node sends the
query to all the peers on the list and waits for their an-
swers.

The DHT method uses a deterministic way to distribute
and locate data (or indices in our case). It is much more
scalable than the centralized directory service as all query
routing is conducted by the peers individually. Certainly,
it is also more scalable than routing strategies that use
flooding because every query follows a shorter path to only
the relevant nodes that can answer it.

However, this determinism of location that DHTs provide
incurs several undesirable side effects.

1. Participating nodes do not have a choice as to how
much or what data (or indices) they store, regardless
of their capabilities. A peer might also happen to hold
some very popular data or indices without being able
to handle the volume of requests that the data collec-
tion attracts.

2. It is hard, or at least inefficient, to route more complex
queries that may consist of multiple structured parts
because the number of index lookup messages rises
with the complexity of the query.

3. Hash functions are likely to place context-related data
objects on different nodes, increasing the overhead of
query processing. For example, in the peer index dis-
tribution discussed above, given a multi-keyword
query, the keywords in a query will most likely reside
on different nodes. Thus, the node to which the query
was submitted is likely to have to communicate with
several keyword-holding peers before it can decide
where to send the query.

4. THE GALANX SYSTEM
The goal of the GALANX project is to build a scalable
peer-to-peer search system that allows users submitting
complex search queries to find relevant information
quickly. The first step to achieving this goal is finding an
efficient solution to the simplified scenario presented in

Keyword1 Peer 1, 1, Peer 1, 2, …, Peer 1, k1

Keyword2 Peer 2, 1, Peer 2, 2, …, Peer 2, k2

… …

Keywordn Peer n, 1, Peer n, 2, …, Peer n, kn

Figure 3.2 The Global Peer Index

Figure 3.1 The Local Data Index

Keyword1 Doc1, 1, Doc1, 2, …, Doc1, k1

Keyword2 Doc2, 1, Doc2, 2, …, Doc2, k2

… …

Keywordn Docn, 1, Docn, 2, …, Docn, kn

 6

Section 3.1. The system should also provide a flexible en-
vironment for communicating among peers so that differ-
ent query routing mechanisms can be evaluated in the sys-
tem.

This section presents the GALANX query routing ap-
proach, along with the design and implementation of the
system.

4.1. Routing Quer ies in the GALANX System
Query routing is a process by which the node on which a
query is submitted routes the query to the relevant data
source node(s). Naturally, the fewer intermediate nodes in-
volved in the process, the better. In GALANX, every node
maintains a peer index table to assist in locating the rele-
vant documents.

In the extreme case, every node would maintain a copy of
the complete global peer index that contains all keywords
occurring in all files shared in the network. In this case the
potential destination nodes of every query can be resolved
locally. The problem of this strategy is that, in a dynamic
P2P environment, it is too expensive to maintain such a
peer index on every peer. Whenever a node joins or leaves
the network, or a node adds a new keyword or drops a
keyword from its local inverted index, this update must be
propagated to every other node in the system. Also, the
complete peer index table may be very large considering it
may contain millions of keywords and hundreds of thou-
sands of peers.

In a system based on a DHT every node maintains a non-
overlapping piece of the complete peer index2. The advan-
tage of this approach is that every piece is relatively small,
and a keyword update is only sent to a single correspond-
ing peer. However, as discussed in Section 3.3, the use of
hashing tends to distribute keywords from the same text
file to multiple peers. Consider the example shown in Fig-
ure 4.1. A peer will most likely have to perform three indi-

2 In practice, a DHT system may store a piece of peer indi-
ces on multiple nodes to achieve high availability.

vidual peer index lookups to three different nodes before it
can locate peers that hold the information about “Matrix
movie review” .

Figure 4.2 illustrates the structure of the peer indices em-
ployed by GALANX. These indices consist of two parts,
the direct peer index and the indirect peer index. The di-
rect peer index portion contains keywords and full lists of
ids of their hosting peers. The indirect peer index portion
has the rest of keywords and for each such keyword the ids
of a few peers that hold the corresponding direct peer in-
dex. If constructed properly, this design can improve query
routing performance in two ways. First, when a node re-
ceives a query, it can resolve the data source nodes if all
keywords are in its direct peer index. Second, if any key-
words in a query are not in its direct peer index, they can
probably be found in the direct peer index on another node.
In such a case, only a single lookup message is needed to
locate the destination peer list.

One may argue that there are some popular words for
which the corresponding peer indices will be stored on es-
sentially every node. In this case an update to one of these
words must be broadcast to all the nodes in the network.
We believe that this cost is acceptable; the fact that a word
is popular means that it occurs frequently in user queries
everywhere. In turn, its peer index should be cached eve-
rywhere so that peers do not need to look it up on other
peers every time they get such queries.

Next we describe two techniques for constructing such peer
indices.

I . Direct Construction
When a peer-to-peer network starts with a small number of
participating nodes, the size of the complete peer index is
relatively small, and the overhead imposed by updates is
also relatively low. Thus, every node can host the complete
peer index, i.e., all keywords appear in the direct peer in-
dex while the indirect peer index is empty.

As the network grows, a node may decide not to maintain

Matrix Peer list

Movie Peer list

Review Peer list

Data Sources

Figure 4.1 A Query Routing Example

Figure 4.2 GALANX Peer Indices

Keywordj+1 Peer j+1, 1, Peer j+1, 2

Keywordj+2 Peer j+2, 1, Peer j+2, 2, Peer j+2, 3

… …

Keywordn Peer n, 1, Peer n, 2

Keyword1 Peer 1, 1, Peer 1, 2, …, Peer 1, k1

Keyword2 Peer 2, 1, Peer 2, 2, …, Peer 2, k2

… …

Keywordj Peer j , 1, Peer j , 2, …, Peer j , kj

Direct
Peer
Index

Indirect
Peer In-

dex

 7

the complete peer index. When it drops a keyword from
the direct peer index, the keyword is moved to the indirect
peer index. To do so, it randomly picks a few peers with
shared text files that contain the keyword as the lookup
peers for this keyword. It also notifies those nodes so it can
update the indirect peer index entry in case one of them
later drops the keyword. When a new node joins the net-
work, it obtains one of its neighbor’s peer indices which it
updates based on its own keyword set.

As discussed in Section 3.1, it is assumed that most nodes
(the major information providers) are stable for long peri-
ods of time, peer indices are updated primarily when key-
words are inserted and deleted. There are two cases when a
node gets a new keyword. First, if the word already exists
in the network, i.e., it has an entry in the peer index, the
update will be sent to its indexing nodes, which will add
this peer to the list. The second case occurs when the key-
word is new to the entire system. In this case the keyword
is broadcast to all nodes so that they can add a new entry to
their peer indices. Not all nodes may be interested in
knowing this new word as they may not need it until they
get a request for it. In this case the system can take a lazy
update strategy by having only a few designated peers up-
date their indices with the word. The rest will have a wild-
card entry to refer to these nodes so that when they receive
a request that contains an unknown word, they can always
go to one of the wildcard indexing nodes to lookup the
word. When a keyword is dropped from a node’s data set,
other nodes will learn this when their first query that con-
tains the keyword gets bounced back and then update their
peer indices.

I I . DHT-based Construction

The previous method builds peer indices incrementally as
the system evolves. An alternative is to build peer indices
using an existing DHT-based network. At first, the DHT
mechanism distributes the global peer indices in pieces to
every participating node while coping with the dynamic
structure evolution of the network. Every individual node
then starts to reshape its peer index as it receives user que-
ries.

At the beginning, a node’s direct peer index is purely the
portion of its corresponding key-space, and its indirect
peer index is empty. When a node sees a keyword for the
first time, if the word is not in its direct peer index, it ap-
plies the hash function of the DHT to locate the peer that
will hold the keyword its index. The keyword is then added
to the indirect peer index along with the id of the indexing
node. If the word occurs frequently in user queries, the
node will move the entry to the direct peer index table and
expand the peer list to contain all peers that have the rele-
vant data files. When updates occur, the methods in the
previous strategy also apply.

The initial construction in both strategies may sound ex-
pensive when a large number of nodes join the network,
but after the network turns stable, the maintenance cost (a
new node joins in once in a while and peers update their
data sets) is relatively low, which will be illustrated in the
experimental section.

4.2. The Implementation
In order to evaluate our query routing mechanism against
different existing approaches, we have implemented a pro-
totype GALANX system.

The architecture of the prototype is shown in Figure 4.3.
The Apache® HTTP server handles all communications
among peers and provides users a Google-like html query
interface. Both the local data index and the peer index are
stored in B+-Trees in the BerkeleyDB® Data Store which
we have integrated into the Apache Web server.

The query execution engine runs user queries over the lo-
cal data index as well as processes queries using the peer
indices to determine which nodes have relevant data files.
The query engine obtains a peer id list for each keyword
from the peer index and/or the index lookup results from
other peers (through the Apache HTTP server). The peer
administrator handles all peer information, such as main-
taining the neighbor list and sending and receiving peer
index update notifications about which keywords have
been added or dropped.

All system functions, including the query engine, the peer
administrator, and the user interface are implemented in C
and embedded as modules in the Apache HTTP Server. All
communications between peers are performed using only
http requests. For example, node A asks node B for the
peer index of a keyword through an http request. The
Apache server on node B gets this request and calls the in-

Figure 4.3 The GALANX System Architecture

Users

Data Index

BerkeleyDB Data Store

Peer Index

Query Exec.
Engine

Peer
Admin

Apache HTTP Server
Other
Peers

Other
Peers

 8

dex-lookup module to handle the request.

Note that the Apache HTTP server (version 1.3.27) em-
ployed in the prototype system runs in a multi-process
mode, i.e., each user query, which is an http request, is
handled by an individual httpd process. Due to lack of API
documentation, we are not able to use the Apache HTTP
sever version 2.x that runs in a hybrid multi-process multi-
threaded mode. This multi-process query execution mode
forces BerkeleyDB to also be accessed in its multi-process
mode, which significantly hurts the system performance, in
terms of how many users can be served on each node. As
will be shown in Section 5.2, in our experiments Berke-
lyDB has to be set to allow at most 4 processes for concur-
rent access in order to achieve maximum performance.
User queries will be queued when the database access
count is full.

The entire system is written in C and has about 16,000
lines of code.

5. EXPERIMENTS AND PERFORMANCE
EVALUATION
In this section, we present the experimental results that
compare the GALANX query routing mechanism against
other routing techniques. Section 5.1 describes the experi-
mental setup, including the data set, the query set, and the
peer-to-peer network environment. Then we introduce the
performance evaluation metrics in Section 5.2. Finally,
Section 5.3 presents the results and evaluates the routing
mechanisms.

5.1. Exper imental Setup
There are five components in our P2P experiments, the
network, the data set, the query set, the users, and several
competing routing strategies.

5.1.1. The Network
The experiments were conducted on a 100-node computer
cluster. Every machine runs RedHat® Linux 7.2 on a Pen-
tium® III 933MHz or 550 MHz CPU with 1GB memory.
All nodes are connected by a 100base-T LAN. The
GALANX system is installed on every node.

5.1.2. The Data Set
The nature of this peer-to-peer search engine problem re-
quires the use of a huge amount of data to validate the sys-
tem scalability. Rather than use synthetically generated
data, we wrote a web crawler to download data files from
eBay®. The crawler ran for several months and
downloaded more than 20 million html files. Each html
file contains information about a single item. In order to
perform meaningful text search, we took only the item title
and description text from the raw html files. Every term in
the text was added to the keyword pool after filtering out
570 stop words. For purposes of simplicity we did not stem

the entries in the keyword set.

There are about 20 major categories of items on eBay. In
an attempt to emulate a scenario in which most informa-
tion providers are specialized, the item files are distributed
to the nodes according to their category. i.e., one node con-
tains auction items of only one major category, and several
nodes share the same category. Each node contains
200,000 html files, which amounts to about 6GB.

There are about 2.49 million keywords3 in the 20 million
item files. On average, each node contains 125,000 key-
words, i.e., 125,000 entries in the local data index table.
The size of the local data index B+-tree is about 300~400
MB.

5.1.3. The Query Set
The data set was also used to generate the query test suite.
The number of keywords in a query follows a standard dis-
tribution with a mean of 5 and a standard deviation of 1.
The keywords were randomly selected from the 2.49 mil-
lion keywords found in the data set. Only queries that can
find at least one qualified item file in the data set are kept
in the query pool so that we can check the actual results of
a query to determine its recall.

From the initial query pool of more than 1 million queries,
we generated a 1,000-query set for each user. The queries
in every query set follow a Zipf distribution in terms of
node frequency – the number of nodes that have files that
satisfy the query. Queries with the highest node frequency
usually receive results from all nodes in the network while
queries with the lowest node frequency generally receive
results from a single node.

5.1.4. User Simulation
Each node is assigned a number of users who randomly
pick queries from their query set to submit. A user works
in cycles thinking and typing before submitting a query
[26]. Then he/she waits a certain amount of time to receive
results before submitting another query. Every query car-
ries a field that specifies the query expiration time. If the
user does not receive any results within the specified time
limit, the next submitting query will have a longer expira-
tion time.

5.1.5. Routing Strategies
We implemented several other routing mechanisms in the
GALANX framework, namely Gnutella, Chord, Chord+,
and Complete.

• Gnutella The network topology was generated to
obey the Power Laws [18]. On average, every node has

3 Google claims to have about 14 millions of keywords in
about 35 languages [7].

 9

4 neighbors. The average distance between any two
nodes in the network is 3.5 hops. The longest distance
between two nodes is 9 hops. In order to obtain the
complete result for each query, user queries are not
given a TTL.

• Chord The size of the logical node ring [24] is
set to be 232, so every node maintains a finger table
that has 32 entries. When a peer looks up the peer in-
dex of a keyword, it follows its finger table to reach
the corresponding indexing node through a chain of
messages.

• Chord+ In order to focus on the number of indi-
vidual index lookup requests sent for each query, we
let every node maintain a complete peer map. Thus, a
peer can send a lookup request directly to the corre-
sponding peer after applying the hash function on a
keyword. Thus, no relay messages on the route to the
indexing node in the original Chord approach are re-
quired.

• Complete In this scenario, every node has a copy of
the complete global peer index. This is the best case
because a peer does not need to ask other peers to de-
termine where to send a query.

Two sets of peer indices for the GALANX strategy were
constructed using the methods described in Section 4.1.

• GALANX-1 With this approach the direct peer index
for each node contains all the keywords that are found
in the node’s local data files while the rest of key-
words are stored in the indirect peer index.

• GALANX-2 Starting from the peer indices built us-
ing Chord, every node continuously constructs the in-
dices by running a 5,000-query set. The queries in
each query set are randomly selected from the query
pool. 50% of them are related to the local data, and
the other 50% are targeted toward the data shared by
other peers.

5.1.6. Peer Indices Evolution
For every routing approach we built corresponding initial
peer indices for every node before we started user query
simulation. In order to verify the impact of network and
data updates on the query routing performance, experi-
ments are conducted in two scenarios. First, a few new
nodes with data sets of similar size are added into the net-
work. Second, new documents (with new keywords) are
added to existing peers.

5.2. The Performance Metr ics
This section defines the metrics we used to measure the ef-
fectiveness and efficiency of the different routing strate-
gies. When a user submits a query, he/she would like to
obtain all of the qualifying files in the minimum amount of

time. We measured both processing speed and result qual-
ity.

• Query Response Time – The time between submis-
sion of a query and when the first result is received.
Queries that produce no results are not included in this
calculation (see below).

• Query Response Ratio – The percentage of queries
that produce results. While queries are formulated in a
manner that should produce results for every query
submitted, because of limited computing resources
some queries end up being dropped by a query engine
on some peer node. A good routing strategy tries to
avoid sending queries to irrelevant nodes to avoid
wasting resources on those nodes.

There are two reasons why some relevant files might
be missed by a query. First, when a query arrives at a
node, it might not get executed immediately and is put
into the query queue where the query expires before it
moves out of the queue. Second, the query might not
even get forwarded to all relevant data sources because
it expires and is dropped.

• Query Recall – Of the files that satisfy a query (which
we determined offline), the percentage that are actu-
ally returned in response to a query.

5.3. Exper iments
We ran a set of experiments for each routing strategy,
varying the number of users on each peer submitting que-
ries from 1 to 10. Every user submits 100 queries that are
randomly picked from its query pool. The average think
and type time for each user is 5 seconds. The initial query
expiration time was set to 10 seconds. If no results are re-
ceived for a query, the expiration time of the next query is
increased by 50% but no longer than 30 seconds. Other-
wise, it is reduced by 50%, but no shorter than 5 seconds.

Figure 5.1 shows the average query response time. As the
number of users increases, the performance of Gnutella
drops quickly, which clearly indicates the scalability prob-
lem of its flooding-based routing strategy. On the other
hand, both GALANX-1 and GALANX-2 outperform both
Chord and Chord+. They are also close to the best case,
Complete, in which every node has a copy of the complete
global peer index.

Figure 5.2 illustrates the average number of queries re-
ceived on each node in different routing cases. With the
Gnutella routing strategy, nodes receive many more que-
ries than with the other strategies. Notice that all other
routing strategies use peer indices to direct queries to only
the potential related nodes. So in the ideal case that no
queries are dropped, they should receive the same number
of queries. However, when a node handles a query whose

 10

expiration time has passed, it will not process it or forward
it to other peers. Thus, peers with Complete receive the
most number of queries because they do not need to allo-
cate their resources for answering index lookup requests.
Similarly, both GALANX-1 and GALANX-2 receive more
queries than the Chord approaches because of more effi-
cient query routing.

Figure 5.3 compares the two GALANX peer indices with
Chord+ by plotting the average number of peer index
lookup requests received by a node. Neither Gnutella nor
Complete are included because these two routing schemes
do not employ this type of request. Chord and Chord+ are
essentially the same except Chord+ does not need other
nodes to relay the peer index lookup requests. Nodes send
out almost half of the number of lookup requests in the
GALANX approaches because it is likely that they can ei-
ther resolve a keyword in their own direct peer indices, or
resolve multiple keywords through a single lookup request.
Since a peer processes fewer index lookup requests in both
the GALANX cases, they can devote more resources exe-
cuting user queries. Thus, user queries have faster response
times.

These experiments have stressed each node in the network
to its limit in terms of computing capacity. Queries are
queued when they are received by a node if it is not able to
process them. In turn, some of them are dropped once their
expiration time has passed. Figure 5.4 presents the per-
centage of the queries received by a node that are proc-
essed before expiring. The Gnutella routing strategy has
the lowest execution percentage because many queries time
out waiting in a query queue. On the other hand, the Com-
plete strategy has the highest percentage of completion be-
cause nodes do not need to handle peer index lookup re-
quests. The performance of the GALANX strategies is bet-
ter than the ones based on the Chord protocol because
fewer lookup requests leave more resources available for
executing queries. Figure 5.5 shows the same trend in
query response ratios – the more queries actually executed,
the higher the percentage of queries that actually obtain re-
sults.

Figure 5.6 examines the result quality. Obviously, the
GALANX approaches return more relevant results than
the Chord approaches because more queries are executed
successfully.

0

10 ,00 0

20 ,00 0

30 ,00 0

40 ,00 0

50 ,00 0

60 ,00 0

0 2 4 6 8 10
of users per node

o

f
Q

u
er

y
R

ec
ei

ve
d

G n u tel la
Com p le te
Ch ord
Ch ord +
G AL A NX _1
G AL A NX _2

Figure 5.2 # of Quer ies received on Each Peer Figure 5.1 Query Response Time

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

of users per node

Q
ue

ry
 R

es
p

on
se

 T
im

e
(s

)

G n u tel la

C om p le te

C h ord

C h ord +

G A L A NX _1

G A L A NX _2

0

10 ,00 0

20 ,00 0

30 ,00 0

40 ,00 0

0 2 4 6 8 10
of users per node

o

f
In

d
ex

 L
o

o
ku

p
s

R
ec

ei
ve

d

Ch ord +

G AL A NX _1

G AL A NX _2

Figure 5.3 # of Index Lookup Requests Received Figure 5.4 Query Execution Ratio

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10
of users per node

%
 o

f Q
ue

ri
es

 P
ro

ce
ss

ed

Gnutella
C o mplete
C hord
C hord+
GA LA N X_1
GA LA N X_2

 11

The results of previous experiments are consistent with our
expectations. The combination of the direct peer and indi-
rect peer indices can quickly locate relevant data sources
for queries. Such data oriented peer indices are more flexi-
ble and efficient than DHT-based mechanisms.

In addition, we also conduct two experiments simulating
data updates and network evolution to verify the impact of
the update cost on the system’s query routing performance.
First, every 5 minutes we randomly select 5 nodes (5% of
the network) and add 1% more new documents to their
data sets. The data insertion occurs independently on each
node and randomly during the period. Each node is con-
nected with 5 users. Figure 5.7 presents the average query
response time of the entire network in the period. The
Complete approach is the victim of such intensive data up-
date because every node in the network has to modify their
direct peer index for new keywords found in any nodes.
Although more index updates are needed in two GALANX
strategies than the two Chord methods (distributing key-
words and updates corresponding direct peer indices), both
GALANX approaches still out-perform the Chord meth-
ods.

Finally, we test those query routing techniques in the situa-
tion of network evolution. During a 30-minute period, we
add 3 new nodes into the network at minute 0, 10, and 20.
The new peers contain the similar size of documents. Each
one of the original 100 nodes is connected with 5 users,
and no users in the new nodes. Figure 5.8 illustrates the
average query response time over the period. The Com-
plete strategy has the highest peak values that indicate user
queries are much delayed by the peer communication and
updates after new nodes join the network. Both Chord
methods do not suffer much because they only have to re-
distribute some keyword entries (according to the hash
function) in the peer indices to the new nodes. The two
GALANX approaches have similar peak values as the
Chord methods, because the higher update cost is balanced
by the lower query routing expense. The last two experi-
ments demonstrate that the GALANX system can still per-
form efficient query routing in the dynamic network envi-
ronment.

6. CONCLUSIONS AND FUTURN WORK
In this paper we present a new mechanism for efficiently
routing queries in a peer-to-peer search engine system. The
direct peer index and indirect peer index are introduced

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10

of users per node

Q
u

er
y

R
es

po
ns

e
R

at
io

G n u tel la

Com p le te

Ch ord

Ch ord +

G AL A NX _1

G AL A NX _2

Figure 5.5 Query Response Ratio

50%

60%

70%

80%

90%

100%

0 2 4 6 8 10

of users per node

Q
ue

ry
 R

ec
al

l

G n u tel la

Com p le te

Ch ord

Ch ord +

G AL A NX _1

G AL A NX _2

Figure 5.6 Query Recall

Figure 5.7 Query Response Time (with new data)

0

1

2

3

4

0 5 10 15

Time (min)

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

) C o mplete
C hord
C hord+
GA LA N X_1
GA LA N X_2

0

1

2

3

4

0 10 20 30

Time (min)

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(s

) C o mplete
C hord
C hord+
GA LA N X_1
GA LA N X_2

Figure 5.8 Query Response Time (with new nodes)

 12

along with two index construction strategies. We have de-
signed and implemented GALANX, a prototype P2P
search engine system, in which our approach is compared
against several existing query routing techniques. The ex-
perimental results indicate that the peer indices used by
GALANX significantly reduce the communication cost
among peers in locating the nodes with data files relevant
to a query. As a result, our routing methods help users ob-
tain results faster and with a more complete result set.

To meet some real word challenges [2], there are two ex-
tensions that can be launched on the GALANX platform.
First, we intend to extend GALANX to support more com-
plex forms of queries. Second, information retrieval tech-
niques, which used to be applied in static and centralized
environments, such as relevance ranking, can be intro-
duced into the system.

7. REFERNCES
[1] A. Crespo, H. Garcia-Molina. “Routing Indices For

Peer-to-Peer Systems” , in Proceedings of the 22nd In-
ternational Conference on Distributed Computing
Systems (ICDCS’02), 2002.

[2] N. Daswani, H. Garcia-Molina, B. Yang. "Open Prob-
lems in Data-Sharing Peer-to-Peer Systems", in Pro-
ceedings of the 9th International Conference on Data-
base Theory (ICDT’03), 2003.

[3] P. Druschel, A. Rowstron. “Pastry: Scalable, distrib-
uted object location and routing for large-scale peer-
to-peer systems” , in Proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Plat-
forms, 2001.

[4] The Freenet website, http://freenet.sourceforge.net.
[5] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, D. Suciu.

"What Can Peer-to-Peer Do for Databases, and Vice
Versa?", WebDB’01, 2001.

[6] The Gnutella website, http://www.gnutella.com.
[7] The Google website, http://www.google.com.
[8] The Grub Project website, http://www.grub.org.
[9] L. Galanis, Y. Wang, S.R. Jeffery, D.J. DeWitt. "Proc-

essing Queries in a Large Peer-to-Peer System", in
Proceedings of the 15th International Conference on
Advanced Information Systems Engineering (CAiSE
2003), 2003.

[10] L. Galanis, Y. Wang, S.R. Jeffery, D.J DeWitt. "Lo-
cating Data Sources in Large Distributed Systems", in
Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB'03), 2003.

[11] M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S.
Shenker, I. Stoica. "Complex Queries in DHT-based
Peer-to-Peer Networks", 1st International Workshopon
Peer-to-Peer Systems, 2002.

[12] R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S.
Shenker, I. Stoica. "Querying the Internet with PIER",

in Proceedings of the 27th International Conference
on Very Large Data Bases (VLDB'03), 2003.

[13] K. Hildrum, J.D. Kubiatowicz, S. Rao, B.Y. Zhao.
“Distributed Object Location in a Dynamic Network” ,
Proc. ACM Symp. Parallel Algorithms and Architec-
tures, 2002.

[14] The JXTA project website, http://www.jxta.org.
[15] The KazaA website, http://www.kazaa.com.
[16] The Morpheus website, http://www.musiccity.com.
[17] The Napster website, http://www.napster.com.
[18] C.R. Palmer, J.G. Steffan. “Generating Network To-

pologies That Obey Power Laws” , IEEE Globecom
2000, 2000.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S.
Shenker. "A Scalable Content-Addressable Network",
ACM SIGCOMM'01, 2001.

[20] S. Raghavan, H. Garcia-Molina. “Crawling the Hid-
den Web” , in Proceedings of the 27th International
Conference on Very Large Data Bases (VLDB’01),
2001.

[21] S. Ratnasamy, S. Shenker, I. Stoica. “Routing Algo-
rithms for DHTs: Some Open Questions” , the First In-
ternational Workshop on Peer-to-Peer Systems
(IPTPS’02), 2002.

[22] The Search Engine Watch website,
http://www.searchenginewatch.com.

[23] Gerard Salton, Michael J. McGill. “ Introduction to
Modern Information Retrieval” , McGraw Hill, New
York, 1983.

[24] I. Stoica, R. Morris, D. Karger, M. Kaashoek, H.
Balakrishnan. "Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications", ACM SIG-
COMM'01, 2001.

[25] T. Suel, C. Mathur, J. Wu, J. Zhang, A. Delis, M.
Kharrazi, X. Long, K. Shanmugasundaram. “ODIS-
SEA: A Peer-to-Peer Architecture for Scalable Web
Search and Information Rerieval” , in Proceedings of
the International Workshop on Web and Databases
(WebDB’03), 2003.

[26] TPC-C Benchmark Standard Specification Revision
5.0.

[27] D. Tsoumakos, N. Roussopoulos. “A Comparison of
Peer-to-Peer Search Methods” , in Proceedings of the
International Workshop on Web and Databases
(WebDB’03), 2003.

[28] B. Yang, H. Garcia-Molina. “ Improving Search in
Peer-to-Peer Networks” , in Proceedings of the 22nd In-
ternational Conference on Distributed Computing
Systems (ICDCS’02), 2002.

[29] B.Y. Zhao, J.D. Kubiatowicz, A.D. Joseph. “Tapestry:
An Infrastructure for Fault-Tolerant Wide-Area Loca-
tion and Routing” , UC Berkeley Computer Science
Division Report No. UCB/CSD 01/1141, 2001.

