CS540 Introduction to Artificial Intelligence Lecture 13

Young Wu
Based on lecture slides by Jerry Zhu and Yingyu Liang

July 1, 2019

Secretary Problem

Motivation

• Interview 10 people, random order, either give an offer or reject immediately after each interview. The goal is to give an offer to the best candidate. Optimal strategy: interview first n people, give an offer to the first candidate who is better than all previous ones. What is n?

• A: 1, B: 2, C: 3, D: 4, E: 5

Secretary Problem Solution

Motivation

Schedule Admin

- Thursday, July 4: Post sample midterm and formula sheet.
- Monday, July 8: Dandi review session: review + sample midterm.
- Wednesday, July 10: Midterm Version A.
- Thursday night July 11: Post Midterm Version A.
- Friday, July 12: Lecture?
- Monday, July 15: Midterm Version B?

Midterm Admin

- 2 hour midterm, 12 : 30 to 2 : 30 + ε , ε > 0.
- Which midterm will you attend?
- A: Regular: Wednesday, July 10.
- B: Alternative only if it is on Friday, July 12?
- C: Alternative only if it is on Monday, July 15?
- D: Alternative on either July 12 or July 15.
- E: Cannot make both.

Reinforcement Learning

Motivation

- Reinforcement learning is about learning from the outcome of actions.
- Sense world.
- 2 Reason.
- Choose an action to perform.
- Get feedback.
- Learn.

Applications Motivation

- Actions can be performed in the physical world or artificial ones.
- Board games.
- Robotic control.
- Autonomous helicopter performance.
- Economics models.

Bandits Motivation

- There are K arms, pulling each arm i results in reward r_i .
- The reward r_i is random and a follows Gaussian distribution with mean reward μ_i .
- Suppose $\mu_1 \geqslant \mu_2 \geqslant \mu_3 \geqslant ... \geqslant \mu_K$.

Bandit Applications

Motivation

- Managing research projects.
- Treatment for patients.
- Search engine ranking.
- Wireless adaptive routing.
- Financial portfolio design.

Exploration then Exploitation Algorithm

Motivation

Pull each arm t times to estimate the mean reward.

$$\hat{\mu}_{i,t} = \frac{1}{n} \sum_{t'=1}^{t} r_{i,t'}$$

 $r_{i,t'}$ is the random reward from arm i and t'-th pull.

② Pull the arm i^* with the highest estimated mean reward.

$$i^* = \arg \max_{i=1,2,\dots,K} \hat{\mu}_{i,t}$$

Upper Confidence Bound Algorithm

Motivation

• Pull the arm i^* with the highest upper confidence bound.

$$i^\star = \arg\max_{i=1,2,\ldots,K} UCB = \hat{\mu}_{i,t}$$

 δ is the confidence level parameter.

this arm controlled the more controlled on the former estimate.

UCB Algorithm Diagram

- Select an action.
- Receive reward.
- Observe new state.
- Update (learn) the value of the state-action pair.

State and Actions Definition

- The set of possible states is $s_t \in S$.
- The set of possible actions is $a_t \in A$.
- The set of possible rewards is $r_t \in R$.
- At each time t:
- Observe state s_t .
- ② Chooses action a_t .
- \odot Receives reward r_t .
- Changes to state s_{t+1} .

Markov Decision Process

Definition

Markov property on states and actions is assumed.

$$\mathbb{P}\left\{s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \ldots\right\} = \mathbb{P}\left\{s_{t+1}|s_t, a_t\right\}$$
$$\mathbb{P}\left\{r_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \ldots\right\} = \mathbb{P}\left\{r_{t+1}|s_t, a_t\right\}$$

• The goal is to learn a policy function $\pi: S \to A$ for choosing actions that maximize the total expected discounted reward.

$$\mathbb{E}\left[r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + ...\right], \gamma \in [0, 1]$$

Expected Reward Definition

 The expected reward at a given time t is the average reward weighted by probabilities.

ted reward at a given time
$$t$$
 is the average reward by probabilities.
$$\mathbb{E}\left[r_{t}\right] = \sum_{r_{t} \in R} r_{t} \mathbb{P}\left\{r_{t} \middle| s_{t-1}, a_{t-1}\right\}$$
 average reward weighted by prob

Discounted Reward

Definition

 The discounted reward at time 0 is the sum of reward weighted given the time preference, usually described by a constant discount factor.

$$\text{PV } (r_t) = \gamma^t r_t, \gamma \in [0, 1]$$

$$\text{PV } (r_1, r_2, ...) = \sum_{t=0}^{\infty} \gamma^t r_t$$

$$\text{PV } (r_0 + \gamma^2 r_0 + \gamma^2 r_0)$$

• γ is the value of 1 unit of reward at time 1 perceived at time 0. If $\gamma=1$, the sum over an infinite time period is usually infinity, therefore $\gamma<1$ is usually used.

Value Function

Definition

 The value function is the expected discounted reward given a policy function π, assuming the action sequence is chosen according to π stating with state s.

$$V^{\pi}\left(s\right) = \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}\left[r_{t}\right]$$

• The optimal policy π^* is the one that maximizes the value function.

$$\pi^{\star} = \arg\max_{\pi} V^{\pi}\left(s\right) \text{ for all } s \in S$$

$$V^{\star}\left(s\right) = V^{\pi^{\star}}\left(s\right)$$

Goal Learning Example, Part II

Definition

Optimal Policy Given Value Function Definition

• Define the function inside the arg max as the Q function.

Q Function Definition

$$V^{\star}(s) = \mathbb{E}\left[r|s, \pi^{\star}(s)\right] + \gamma \mathbb{E}\left[V^{\star}\left(s'\right)|s, \pi^{\star}(s)\right]$$

$$Q(s, a) = \mathbb{E}\left[r|s, a\right] + \gamma \mathbb{E}\left[V^{\star}\left(s'\right)|s, a\right]$$

• If the agent knows Q, then the optimal action can be learned without $\mathbb{P}\{s'|s,a\}$.

$$\pi^{\star}(s) = \arg\max_{a} Q(s, a), Y^{\star}(s) = \max_{a} Q(s, a)$$

Deterministic Q Learning Definition

• In the deterministic case, $\mathbb{P}\{s'|s,a\}$ is either 0 or 1, the update formula for the Q function is the following.

Update
$$\hat{Q}(\underline{s}, \underline{a}) = r + \gamma \max_{a'} \hat{Q}(s', a')$$

Stay with $\hat{Q} = 0$

Q Learning Example, Part I Definition

Q Learning Example, Part II Definition

Non-Deterministic Q Learning Definition

 In the nondeterministic case, the update formula for the Q function is the following.

$$\hat{Q}(s, a) = (1 - \alpha) \hat{Q}(s, a) + \alpha \left(r + \gamma \max_{a'} \hat{Q}(s', a')\right)$$

$$\alpha = \frac{1}{1 + \text{visits }(s, a)}$$

 Q learning will converge to the correct Q function in both deterministic and non-deterministic cases. In practice, it takes a very large number of iterations.

Q Learning, Part I

- Input: the state and reward processes.
- Output: optimal policy function $\pi^*(s)$
- Initialize the Q table.

$$\hat{Q}(s, a) = 0$$
, for each $s \in S, a \in A$

Q Learning, Part II

Algorithm

- Observe current state s.
- Select an action a and execute it.
- Receive immediate reward r.
- Observe the new state s'.
- Update the table entry.

$$\hat{Q}(s, a) = (1 - \alpha) \hat{Q}(s, a) + \alpha \left(r + \gamma \max_{a'} \hat{Q}(s', a')\right)$$

$$\alpha = \frac{1}{1 + \text{visits }(s, a)}$$

Update the state and repeat forever.

$$s = s'$$

Exploration vs Exploitation

Discussion

 There is a trade-off between learning about possibly better alternatives and following the current policy. Sometimes, random actions should be selected.

$$\mathbb{P}\left\{a|s\right\} = \frac{c^{\hat{Q}(s,a)}}{\sum_{a'\in A} c^{\hat{Q}(s,a')}}$$

 c > 0 is a constant that determines how strongly selection favors actions with higher Q values.

Q Table vs Q Net

- In practice, Q table is too large to store since the number of possible states is very large.
- If there are m binary features that represent the state, the Q table contains 2^m |A|.
- However, it can be stored in a neural network called Q net.
- If there is a single hidden layer with m units, there are only $m^2 + m|A|$ weights to store.

Q Net Diagram

Q Net Training

- Observe the features x given a state s.
- Apply action a and observe new state s' with features x' and reward r.
- Train the network with new instance (x, y)

$$y = (1 - \alpha) \hat{y}(x, a) + \alpha \left(r + \gamma \max_{a'} \hat{y}(x', a')\right)$$

- $\hat{y}(x, a)$ is the activation of output unit a given the input x in the current neural network.
- $\hat{y}(x', a')$ is the activation output unit a' given the input x' in the current neural network.

Multi-Agent Learning

- Value function and policy function iteration methods can be applied to solve dynamic games with multiple agents.
- It will be used again in game theory in Week 11.