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Secretary Problem

Motivation

@ Interview 10 people, random order, either give an offer or
reject immediately after each interview. The goal is to give an
offer to the best candidate. Optimal strategy: interview first n
people, give an offer to the first candidate who is better than

all previous ones. What is n? o
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Secretary Problem Solution

Motivation



Reinforcement Learning Multi Armed Bandits Q-Learning

00e000

Schedule

Admin

Thursday, July 4: Post sample midterm andfounutasheket.

Monday, July 8: Dandi review session: review + sample
midterm.

Wednesday, July 10: Midterm Version A.
Thursday night July 11: Post Midterm Version A.
Friday, July 12: Lecture?

Monday, July 15: Midterm Version B?
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Midterm
Admin

@ 2 hour midterm, 12:30to 2: 30+, > 0.

@ Which midterm will you attend?

e A: Regular: Wednesday, July 10.

e B: Alternative only if it is on Friday, July 127
e C: Alternative only if it is on Monday, July 157
e D: Alternative on either July 12 or July 15.

e E: Cannot make both.
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Reinforcement Learning

Motivation

@ Reinforcement learning is about learning from the outcome of
actions.

© Sense world.

@ Reason.

© Choose an action to perform.
——

Q Get feedback.
@ Learn.
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Applications

Motivation

Actions can be performed in the physical world or artificial
ones.

Board games.
Robotic control.
Autonomous helicopter performance.

Economics models.
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Bandits

Motivation

@ There are K arms, pulling each arm / results in reward r;.

@ The reward r; is random and a follows Gaussian distribution
with mean reward ;.

@ Suppose U1 2 o 2 U3 2 ... 2 UK.
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Bandit Applications

Motivation

Managing research projects.
Treatment for patients.
Search engine ranking.
Wireless adaptive routing.

Financial portfolio design.

Q-Learning
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Exploration then Exploitation Algorithm

Motivation
© Pull each arm_t times-to estimate the mean reward.
t
. 1
Hit = ; Z Fi .t
t'=1

r; ¢ is the random reward from arm i and t’ -th pull.

@ Pull the arm /* with the highest estimated mean reward.

v* e
i* =arg max [ij
gi=1,2,...,Kl s
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Upper Confidence Bound Algorithm

Motivation

(PCH/(;\/,\ZQICZ

Q@ Pull the arm /* with the highest upper confidence bound.

| =1 S
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UCB Algorithm Diagram

Motivation
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Q Learning
Description .
o
) )
m \ "}
| o
e Select an action. ) ’]\
@ Receive reward. i /’
@ Observe new state. j :

e Update (learn) the value of the state-action pair.
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State and Actions

Definition

@ The set of possible states is s; € S.
@ The set of possible actions is a; € A.
@ The set of possible rewards is r; € R.

@ At each time t:

Observe state s;.
Chooses action as.

Receives reward r;.

© 000

Changes to state s;. 1.
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Markov Decision Process

Definition

@ Markov property on states and actions is assumed.

P {st+1|st, at, St—1, at—1, ...} = P{sty1]st, at}

]P){rt-i-llsta dt, St—1,dt—1, } - ]P){rt-l-llsta at}

@ The goal is to learn a policy function 7 : S — A for choosing
actions that maximize the total expected discounted reward.

%—/’f T —

E [ft + Y41 + "}’2ft+2 -+ ] , Y E [O. 1]
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Expected Reward

Definition

@ The expected reward at a given time t is the average reward
weighted by probabilities.

]E["t] - Z ft]P’{ft|5t—1,3t—1}
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Discounted Reward

Definition

@ The discounted reward at time 0 is the sum of reward
weighted given the time preference, usually described by a
constant discount factor.

) O SGupTer
PV (r:) = 7're, v € [0, 1]

PV (r,n,. Z'y re

Y V%4 Yo« o

° Lis the value of 1 unit of reward at time 1 perceived at time

"

0. If v =1, the sum over an Infinite time period is usually
infinity, therefore v < 1 is usually used.
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Value Function

Definition

@ The value function is the expected discounted reward given a
policy function 7, assuming the action sequence is chosen
according to 7 stating with state s.

0

V™ (s) = Y V'E[r]

t=0

@ The optimal policy 7* is the one that maximizes the value

—

function. ——

" =argmax V" (s) forallse S
(s

V*(s) = V™ (s)



Reinforcement Learning Multi Armed Bandits o3
Q00000

rrrrr 000000e00000000000000

00000

Goal Learning Example, Part |

Definition @
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Goal Learning Example, Part |l
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Optimal Policy Given Value Function

Definition

S

e Given ¥Y* (s),r (s,

T LS) =farg max
u ’

?-\ca = arg max (Z rP{rls,a} +~ Z ]P’gs '|s, a} v’ (s'))

rer s'eS —

e Define the function inside the arg max as the Q function.
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Q Function

Definition

V*(s) = E[r|s, 7" (s)] + YE|V* (s') |s, 7" (s)]
Q(s,a) =E[r|s,a] +yE[V* (s') s, a]
r -~ e —
e If the agent knows @, then the optimal action can be learned
without P {s’|s, a}.
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Deterministic Q Learning

Definition

e In the deterministic case, P {s’|s, a} is either 0 or 1, the
update formula for the @ function is the following.
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Q Learning Example, Part |

Definition
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Q Learning Example, Part |l

Definition
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Non-Deterministic Q Learning

Definition

@ In the nondeterministic case, the update formula for the @
function is the following.

Pl Fa

Q(s,a)=(1—0a)Q(s,a) +a (r +ymax Q (s, a’)>

1
1 + visits (s, a)

|

e Q learning will converge to the correct @ function in both
deterministic and non-deterministic cases. In practice, it takes
a very large number of iterations.
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Q Learning, Part |

Algorithm

@ Input: the state and reward processes.

e Output: optimal policy function 7* (s)

@ Initialize the Q table.

@(S,a) =0, foreachse S,ace A
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Q Learning, Part [l

Algorithm
e Observe current state s.
@ Select an action a and execute it.
@ Receive immediate reward r.
@ Observe the new state s'.
e Update the table entry.

QR(s,a)=(1—a)Q(s,a)+a (r + ’ymagx@ (5’?31))

1
1+ visits (s, a)

e Update the state and repeat forever.

s=g¢
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Exploration vs Exploitation

Discussion

@ There is a trade-off between learning about possibly better
alternatives and following the current policy. Sometimes,
random actions should be selected.

CG(S:E)

Z C@(s,a")

a'eA

P{a|s) =

@ ¢ > 0 is a constant that determines how strongly selection
favors actions with higher Q values.
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Q Table vs Q Net

Discussion

e In practice, Q table is too large to store since the number of
possible states is very large.

e If there are m binary features that represent the state, the Q
table contains 2™ |A].

@ However, it can be stored in a neural network called Q net.

e If there is a single hidden layer with m units, there are only
m? + m|A| weights to store.
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Q Net Diagram

Discussion
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Q Net Training

Discussion

@ Observe the features x given a state s.

e Apply action a and observe new state s’ with features x’ and
reward r.

@ Train the network with new instance (x, y)

d

y:(1—(}.)5)()(,3)+a(r—|—7m§xj7(x’,a’)>

@ y(x,a) is the activation of output unit a given the input x in
the current neural network.

e y(x',a") is the activation output unit a’ given the input x’ in
the current neural network.
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Multi-Agent Learning

Discussion

e Value function and policy function iteration methods can be
applied to solve dynamic games with multiple agents.

@ It will be used again in game theory in Week 11.





