
Programming Homework 2

CS540

June 8, 2019

1 Instruction

Please submit your output files and code on Canvas Ñ Assignments Ñ P2. Please do not put code into zip

files and do not submit data files. The homework can be submitted within 3 weeks after the due date on

Canvas without penalty p50 percent penalty after that).

Please add a file named ”comments.txt”, and in the file, you must include the instructions on how to generate

the output, for example:

• Data files required: train.csv, test.csv. Run: main.jar.

• Data folder required: data/train1.png ... data/train100.png . Compile and Run: main.java.

2 Details

All the requirements are listed on the course website. The following is only an example workflow to solve

the problem.

1. Download part 1 and part 2 of a set of images, for example, the spatially normalized cropped equalized

frontal images and put them into one folder.

2. Resize the images to an appropriate size, for example, 36� 26: training will be too slow for large sizes

and accuracy will be too low for small sizes. Find the RGB values of each of these pixels and output

the average of R, G, B values for each pixel to a CSV file (for each pixel
1

3
pR�G�Bq), one image

per line (for example, 36 � 26 integers between 0 and 255 per line). You could output the y value at

the beginning of the line so that the file looks like the training data for programming homework 1.

3. Read the CSV file into n�m matrix x and n� 1 vector y as in homework 1. Remember to take out

the rows for the test set (the row numbers depend on your wisc ID) and put those in another matrix

x1. You can keep the test rows in the training data if you want close to 100 percent accuracy. You can

submit either version of the output, just make sure you state in comments.txt that you are training

with all 400 images.

4. Initialize a m�m weight matrix wp1q for layer 1 and a m� 1 vector wp2q for layer 2 and a m� 1 bias

vector bp1q for layer 1 and a scalar bias bp2q for layer 2. Randomly fill these matrices and vectors with

numbers between -1 and 1. Also initialize a m� 1 vector ap1q for units in layer 1 and a scalar ap2q for

units in layer 2.

1

5. Get a random permutation of integers between 0 and n�1. You can search the terms Knuth shuffle or

Fisher-Yates shuffle for a simple algorithm to shuffle an index set. For the next three steps, go through

the training set in the order of the random permutation.

6. Calculate the activations ap1q and ap2q using the formulas from lecture 3 slides. For j � 1, 2, ...,m, and

for the current instance i,

a
p1q
ij �

1

1� exp

�
�

��
m̧

j1�1

xij1w
p1q
j1j

�
� b

p1q
j

��

a
p2q
i �

1

1� exp

�
�

��
m̧

j�1

a
p1q
ij w

p2q
j

�
� bp2q

��

7. Update the weights using the gradient descent formulas from lecture 3 slides. Please check to make

sure these are correct!

BC

Bw
p1q
j1j

�
�
a
p2q
i � yi

	
a
p2q
i

�
1� a

p2q
i

	
w
p2q
j a

p1q
ij

�
1� a

p1q
ij

	
xij1

BC

Bb
p1q
j

�
�
a
p2q
i � yi

	
a
p2q
i

�
1� a

p2q
i

	
w
p2q
j a

p1q
ij

�
1� a

p1q
ij

	
BC

Bw
p2q
j

�
�
a
p2q
i � yi

	
a
p2q
i

�
1� a

p2q
i

	
a
p1q
ij

BC

Bbp2q
�
�
a
p2q
i � yi

	
a
p2q
i

�
1� a

p2q
i

	

and then,

w
p1q
j1j Ð w

p1q
j1j � α

BC

Bw
p1q
j1j

, j1 � 1, 2,,m, j � 1, 2,,m

b
p1q
j Ð b

p1q
j � α

BC

Bb
p1q
j

, j � 1, 2,,m

w
p2q
j Ð w

p2q
j � α

BC

Bw
p2q
j

, j � 1, 2,,m

bp2q Ð bp2q � α
BC

Bbp2q

It is very easy to make a mistake here. You can check if the gradient computation is correct by

computing the gradient using finite differences and compare with your gradient.

BC

Bv
�
C pv � εq � C pv � εq

2ε
, ε � 0.0001

Here, v is one of wp1q, wp2q, bp1q, bp2q. Basically, compute the change in cost due to a very small increase

and decrease of one of the weights, this by definition approximates the derivative of the cost with

respect to that particular weight.

8. After going through all n instances (this is called an epoch), calculate the cost using the cost formulas

2

from lecture 3 slides. There is no need to store a
p2q
i for all i, you can just accumulate the sum while

going through the training data. Remember to generate another random permutation after each epoch.

C �
1

2

ņ

i�1

�
yi � a

p2q
i

	2

Note: if you did not shuffle the training set (without replacement), and instead picked a random instance

at a time (with replacement), you need to recompute the activation a
p2q
i for every i � 1, 2, ..., n here.

You can do this after an arbitrary number of iterations, not necessarily at the end of each epoch.

9. You can train for a fix number of epochs, say 100 or 1000, or use a small threshold ε and stop when

C ¤ ε. You can also calculate the cost on the test set and stop when that cost begin to increase for

some fixed number of iterations (not necessary for this homework).

10. Given the final weights and biases you just computed, compute the activations and predictions for the

test instances x1i, i � 1, 2, ..., n1.

a
1p1q
ij �

1

1� exp

�
�

��
m̧

j1�1

x1ij1w
p1q
j1j

�
� b

p1q
j

��

a
1p2q
i �

1

1� exp

�
�

��
m̧

j�1

a
1p1q
ij w

p2q
j

�
� bp2q

��

ŷ1i � 1!
a
1p2q
i ¥0.5

)

11. Output the activations for the first image in the test set to an image (or you can use the canvas on the

course website to produce the image) and the classifications ˆ̂y’ to a text file.

3

