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Abstract— Soft manipulators have been a rising focus of
soft robotics research. Taking advantage of soft materials and
flexible, continuous movements, they have promising applicable
prospect. However, their highly internal nonlinearity and un-
predictable deformation caused by environmental effects make
it difficult to build an exact model for control. In this work, we
propose a generalized controller for soft manipulators using an
estimated Jacobian-based model derived from structural anal-
ysis. The model can be simplified from reasonable assumptions
of manipulator structure, and updated to balance conformity to
reality and stability. In prototype experiments on an 3D multi-
segment soft manipulator, the control method exhibits accuracy
as well as adaptability to self gravity and external loads.

I. INTRODUCTION

Compared with traditional rigid robots, soft robots can
serve as better solutions in human-centric environments
where safety and adaptability of uncertainty are fundamental
requirements, as reviewed by Rus and Tolley [1]. Utiliz-
ing their continuous deformation and theoretically infinite
degrees of freedom (DoFs) [2], they can adaptively grasp
and manipulate unknown objects varying in size and shape
[3], or squeeze through confined space [4]. Nevertheless,
because soft robots are highly nonlinear and susceptible to
environmental effects, it is a challenge to implement accurate
control.

Control methods of soft manipulators can be divided into
two categories, open-loop methods and closed-loop methods.
Regarding open-loop methods, a relatively accurate model
needs to be established. Zheng et al. [5] propose a 3D
dynamic model for an octopus-arm like continuum robot with
a multi-segment structure. Giorelli et al. [6] implement non-
constant curvature control based on kinematics model. In
fact, it is difficult to develop mathematical modeling for soft
manipulators, due to their internal unidealities (hysteresis,
backlash, etc.). Learning based methods can provide a more
accurate model after effective training. Giorelli et al. [6]
also develop control method using neural networks. Rolf et
al. [7] implement 3D space control of the bionic handling
assistant (BHA) using a novel learning based method called
goal babbling. Jiang et al. [8] combine modeling and neu-
ral network for the control of a multi-segment extensible
manipulator. Braganza et al. [9] present a neural network
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Fig. 1. The soft manipulator with a gripper is trying to catch an object.

based method for dynamic modeling of OctArm with feed-
forward components to compensate for model uncertainty.
Generally, open-loop strategy can to some extent solve the
problem of control for soft robots. However, these methods
cannot reach high accuracy due to soft manipulators’ unpre-
dictability. Specifically, the compliance of the robot body
creates infinite DoFs, and unsensed environmental effects
(gravity, obstacles, external forces, etc.) make it impossible
to implement accurate modeling.

Consequently, some contributions attempt to employ
closed-loop strategy to improve accuracy. In fact, afore-
mentioned works [7][8] integrate a simple feedback strategy
onto the open-loop control system and achieve much higher
accuracy. Wang et al. [10] develop adaptive controller for end
effector positioning based on visual servo. Besides, some
contributions implement feedback strategy in part of their
control systems. Rolf et al. [7] use length sensors instead of
cameras to directly adjust robot configurations in closed-loop
control. Marchese et al. [11] implement closed-loop control
of curvature for a 2D soft manipulator under the piecewise
constant curvature assumption. These methods rely on model
accuracy in feedback control, which would lead to failure
when the real manipulator is not conformed to models due to
unidealities as well as external environmental effects, which
cannot be wholly sensed on soft continuum manipulators.

Moreover, several model-free feedback control methods
are introduced in previous researches. Kormushev et al. [12]
develop kinematic-free control of a rigid arm by local model
from generating actuation primitives and perceiving their
effect on end effector. Yip et al. [13] implement model-
less position control of a 2D cable-actuated manipulator
by online updating of an estimated model during feedback
loop, and extend it to hybrid position-force control in [14].
These works show that feedback control is feasible without



explicit model, nevertheless, these methods may fail when
the manipulator configuration goes more complicated that
cannot be reasonably estimated by measurement and online
updating. In other words, without substantial model analysis,
the feedback loop cannot ensure global convergence.

In this work, we propose a control method based on the
model-less concept: control based on an estimated model
built offline and consecutively updated during feedback
process. Our estimated model is built from approximate
kinematics analysis rather than totally measurement, which
ensures stability in workspace and effective feedback, and
updating strategy conforms the estimated model to reality as
well as stability and convergence requirement. The controller
is implemented on a novel soft manipulator developed by
authors in [15] (shown in Fig. 1). Specifically, feedback pa-
rameters are positional, directional descriptors of end effector
and air pressure for actuation, and parameters representing
their changing ratio in Jacobian matrix are simplified ac-
cording to structural analysis. The method shows adaptability
to self gravity as well as external loads with high accuracy
in positioning and path tracking experiments. To the best
of our knowledge, this work is the first implementation
of accurate position and direction control in 3D space of
soft manipulators without explicit model, and it’s a general
method for other soft manipulators.

II. METHOD

In this section, we introduce the feedback control method
based on an estimated Jacobian model, which is implemented
on a novel manipulator called honeycomb pneumatic net-
works manipulator (HPN) [15]. With the target as reaching
desired end effector’s position and direction, the manipu-
lator’s structure and its deformation mode are analyzed for
selecting appropriate variables as representatives in actuation
space and task space. Based on the analysis, the Jacobian
matrix is built and simplified, and its updating strategy
ensures conformity to reality as well as convergence and
stability. The controller framework is detailed in Fig. 2.

A. HPN Manipulator Structure

The HPN manipulator’s structure is shown in Fig. 3,
composed of five segments. Each segment has a soft frame
and four groups of inflatable airbags inside for actuation.
With assumption of segment independence, the manipulator’s
movement can be regarded as simple combination of each
segment’s movement. With assumption of no torsion around
z-axis, a segment’s movement can be decomposed into three
basic motions: bending in x-z plane, in y-z plane, and
elongation-retraction. Specifically, when airbags in group 1,
2 are inflated with the same pressure, and group 3, 4 are
inflated with another same pressure, the segment will bend
in y-z plane. Similarly, it bends in x-z plane when airbag
groups 1, 3 and 2, 4 are inflated with the same pressures,
respectively. And it elongates or retracts when all the airbags
are inflated or deflated together with the same pressure. For
short, later we will only mention elongation on behalf of
elongation-retraction.
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Fig. 2. The figure shows the framework of a proportional feedback
controller based on estimated Jacobian matrix J. During the feedback loop,
the actuation change ∆p is calculated from task space distance ∆x and
pseudo-inverse of Jacobian J†, and scaled by damping ratio α to get real
change ∆p∗. For update of J, matrix J∗ is derived from real task space
change ∆x∗, and J will be replaced according to the stable condition, which
makes J conform to J∗ when manipulator movement is considered stable,
or a safe value Js ensuring stability and convergence.

B. Jacobian Matrix

1) Actuation Space Variables: As analyzed above, the
manipulator’s movement can be regarded as combination of
three modes of motion, so we need to choose appropriate
pressure combinations corresponding to the motions. Thus,
for segment i, we define three pressure variables as:

pix =−pi1 + pi2− pi3 + pi4

piy = pi1 + pi2− pi3− pi4

piz = pi1 + pi2 + pi3 + pi4

(1)

where pix, piy and piz correspond to bending in x-z plane,
y-z plane and elongation, respectively, and pi1, ..., pi4 are
pressures of airbag groups for segment i, as shown in Fig. 3.
Notice that there exist infinite solutions for (1), so we simply
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Fig. 3. The figure shows the structure of the HPN manipulator. The layout
of airbags in the first segment is marked. Each segment has four groups
of airbags. The base coordinate system is defined with y-axis along gravity
acceleration, and z-axis along the initial shape of the manipulator.
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Fig. 4. (a) illustrates the manipulator’s backbone curve in 3D space, and (b)
illustrates its projection on y-z plane. In (a), red curve is the 3D backbone
curve, blue and green curves are the projections; l is the length of cuboid
diagonal, linking the base and end effector of manipulator. In (b), axis ry is
orthogonal to the vector from base to end effector, ~OE. z′ is parallel to z.
A-E are segments’ tips and A’-E’ are segments’ middle points, from which
virtual rotation rods (yellow lines) are connected to the end effector E. G
is the target’s projection. ly is displacement of G to E along ry, and θy is
the angle between z′ and end effector tangent.

select pi1, ..., pi4 as:
pi1 = (piz− pix + piy)/4

pi2 = (piz + pix + piy)/4

pi3 = (piz− pix− piy)/4

pi4 = (piz + pix− piy)/4

(2)

2) Task Space Variables: For task space definition, due
to similarity of motions in x-z plane and y-z plane, we just
consider the projection of manipulator’s backbone in y-z
plane, as shown in Fig. 4. We construct another axis ry at
end effector E, orthogonal to ~OE, the vector from base to
end effector.

As for bending motion of each segment, we assume its
result for the front part from this segment to end effector can
be approximated as the rotation of a virtual rigid rod linking
the segment’s middle point and end effector (in Fig. 4, when
~OA bends, part A to E will deform as rotation of rod ~A′E).
The positional change caused by rotation is approximated to
ly, the projection on axis ry, and we define it as positional
variable. Besides, we define θy, the angle between tangent
at end effector and z axis, as directional variable. Similarly,
we define lx and θx as variables on x-z plane.

As for elongations of each segment, their directions are
approximated to the vectors from segment base to tip ( ~OA,
~AB, etc.). With respect to the whole manipulator’s elongation
in y-z plane, ~OE can roughly be the average direction. Due
to similarity on two planes, instead of two projected lengths,
we simply define the cuboid diagonal length l as variable for
elongation.

As we get [x,y,z,θx,θy], the original position and direction
information from motion capture system during the feedback
control, we need to convert [x,y,z] to [lx, ly, l], which can be
easily derived as:


l =
√

x2 + y2 + z2

lx = (x∗− x)sinφx− (z∗− z)cosφx

ly = (y∗− y)sinφy− (z∗− z)cosφy

(3)

where x,y,z and x∗,y∗,z∗ are end effector E and target G’s
coordinates in base coordinate system, and φy is shown in
Fig. 3(b) as angle between ~OE and y-axis, same as φx. θx
and θy can be directly recorded and do not need conversion.

3) Jacobian: Thus, we have defined variable representa-
tives, p = [p1x, p1y, p1z, ..., p5z]

T , x = [lx,θx, ly,θy, l]T in actu-
ation space and task space, so the Jacobian matrix J ∈R5×15

can be expressed as:

J =

(
∂xi

∂p j

)
i, j

=
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4) Simplification: In this part, we figure out terms in J
from several assumptions.

We assume pix, piy and piz for segment i, will only cause
corresponding variables to change. Specifically, for pix, we
assume that it will only cause bending motion in x-z plane,
so ∂θy

∂ pix
,

∂ ly
∂ pix

and ∂ l
∂ pix

will be zero, similarly, ∂θx
∂ piy

, ∂ lx
∂ piy

and
∂ l

∂ piy
will also be zero. Similarly, we assume piz will not cause

change except for l, so ∂θx
∂ piz

, ∂ lx
∂ piz

,
∂θy
∂ piz

and ∂ ly
∂ piz

will be zero.

As for ∂θx
∂ pix

and ∂θy
∂ piy

, each segment’s directional change
contributes evenly to the end effector’s, so we use the same
parameters for all segments, further, we use constants kθx,kθy
to represent average effect of the ratio of changing velocity of
θx to pix. As for ∂ lx

∂ pix
and ∂ ly

∂ piy
, we assume that the tangential

displacements, lix, liy, are proportional to the length of virtual
rotation rods in Fig. 4, and we approximate their lengths
to those at initial state (with all segments straight, along z-
axis), so their ratio will be roughly 1 : 3 : 5 : 7 : 9. Thus,
∂ lx

∂ pix
and ∂ ly

∂ piy
will be (2i−1)klx and (2i−1)kly. As for ∂ l

∂ piz
,

we also assume that each segment will contribute evenly
to the length of whole manipulator, so we use kl for all
segments’ estimation. Notice that klx,kly and kl also constants
representing the average ratio of changing velocity of lx, ly, l
to pix, piy, piz, respectively.



Thus, the simplified estimated Jacobian will be:

J =



kθx 0 0 kθx 0 0 · · · kθx 0 0

klx 0 0 3klx 0 0 · · · 9klx 0 0

0 kθy 0 0 kθy 0 · · · 0 kθy 0

0 kly 0 0 3kly 0 · · · 0 9kly 0

0 0 kl 0 0 kl · · · 0 0 kl


5) Initialization and Update: We initial the parame-

ters in J as the ratio of available range of variables
in task space and actuation space, specifically, available
airbag pressure, position and direction ranges are pre-
measured and convert to those of p and x according to
(1), (3). During the feedback process, actual change ∆x∗ =
[∆l∗x ,∆θ ∗x ,∆l∗y ,∆θ ∗y ,∆l∗]T , ∆p∗ = [∆p∗1x,∆p∗1y,∆p∗1z, ...,∆p∗5z]

T

are recorded and calculated in each step, from which we can
get real Jacobian J∗ as follows:

K = [kθx,klx,kθy,kly,kl ]
T

K∗ =
∆x∗

J∆p∗
·K

J∗← K∗
(4)

where K, K∗ represent estimated and real parameter vectors.
Notice that operations are conducted element-wise in the
second equation.

On the other hand, we determine a safe Jacobian Js that
ensures stability and convergence. To get Js, parameters
of Jacobian matrix are enlarged to preset values in order
to reduce the pressure change in steps, which may cause
errors to increase or oscillate during iteration. We develop
the following strategy for iteration: when J∗ derived in
two consecutive steps are almost the same, we assume that
manipulator’s movement is stable and J∗ is reliable, and
update J to (J+J∗)/2, or it will be updated to (J+Js)/2.

III. EXPERIMENT

A. Control System

The whole control system is illustrated in Fig. 5. The
airflow, about 0.7 Mpa, is generated from the pump (a) and
pre-processed by the air treatment device (e) and stabilized
to 0.3 Mpa, and then directed to the proportional pressure
regulators (f). The control signal from the computational
device (c) is converted to analog voltage signal by the pro-
grammable logic controller (b) and sent to pressure regulator
to adjust the output pressure actuating the HPN manipulator
(g). Motion capture system (d) records the real-time position
and direction information of reflective optical markers on
the HPN manipulator (g) and target, and send that to the
computational device (c).

B. Tests on the Property of HPN Arm

For testing the property of HPN arm, firstly we inflate all
groups of airbags respectively by constant pressure. In this
test, to make the arm horizontal, the pressures of airbags
below are less than those of upper ones, and the groups of
airbags symmetric to each other by y-z plane have exact

Air flow

Control signal

Position signal

a b c d

fe g

Fig. 5. The control system consists of air pump (a), analog voltage signal
generator (WK-AO08) (b), computational device (c), motion capture system
(OptiTrack Prime 17W×12) (d), airflow equipment (SMC, AC30C-02DG-
A) (e), proportional pressure regulator (SMC, ITV0030-2BL) (f) and the
3D-printed HPN arm (g) using a kind of elastomer material (Polyflex).
The transmission of air flow, control and position signals are illustrated by
different arrows.

the same pressure. of coordinate variations are illustrated in
Fig. 6.
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Fig. 6. The figure shows the variation of end effector position after inflation.
x, y, z coordinate variations are shown in (a), (b), (c).

From Fig. 6, it can be found that the position of end
effector changes violently in the first few seconds to reach a
certain target, then the coordinate varies gradually. Besides,
though the pressure of airbags which are symmetric to each
other by y-z plane is the same, actually the end effector shifts
to the right side while it shifts to the left at the beginning,
according to Fig. 6(a). The reason is that the wall of air
chambers in right side of the arm is a little thicker than the
left due to manufacturing error. It’s a common problem in the
manufacturing process of soft manipulator. From Fig. 6(b)
and Fig. 6(c), we can infer that the end effector rises up in
3 seconds and then declines while the arm elongates due to
hysteresis effect of polymer. All of these phenomenons raise
requirement of closed-loop control for soft manipulators.

Then we inflate the groups of airbags below and load the
end effector with a 120g object. The end effector position
variation in y-axis is illustrated in Fig. 7. It can be figured
out that the end effector declines violently about 100mm due
to external load, which means the material is extremely soft,
which aggravates the difficulty of achieving a feasible control
algorithm on our manipulator.
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Fig. 7. The figure illustrates the position variation of end effector in y-axis
in the process of inflation. At point A, a 120g object is loaded on the end
effector,

C. Point-to-point Under Different Loads

The reaching performance in point-to-point test is shown
in Fig. 8, where we can find that the three targets are
gradually reached during the feedback control process. In
this test, the end effector is only set to move in the x-
y plane while keeping the distance in z-axis stable. From
the trajectory records, we can see that the deviations are
successfully corrected in the feedback process and do not
influence accuracy. Besides, the end effector behaves to
exceed the targets and then returns, signing the correction
of hysteresis effect of material.

Besides, 30 tasks are set by randomly selecting targets
in the manipulator workspace, and each is executed in 40
feedback iterations. Average error convergence is shown in
Fig. 9. In Fig. 9(a) it can be recognized that the convergence
rate is fast and stable, where the error converges to about
5mm in 15 iterations. Error bounce occurs at the 25th
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Fig. 8. The reaching performance in x-y plane of the manipulator in point-
to-point reaching test to three targets under a load of 0, 30g, 60g, 90g and
120g respectively.

iteration due to the hysteresis effect. When the manipulator
is under 100g load, the convergence rate is slightly slower
yet negligible. Thus, it can be concluded that our algorithm
adapts well to the load variation in the physical test. In
addition, the algorithm is efficient when the error converges
to about 5mm, yet inefficient to reduce the error.
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Fig. 9. The errors in position and direction during the point-to-point
experiment are respectively illustrated in (a) and (b), with no load and 100g
load. It is obvious that the errors converge quickly to less than 10mm and
2◦.

In other words, reaching directions of selected targets are
fixed at horizontal forth. It’s shown in the Fig. 9(b) that the
maximum average error is less than 11◦, which converges to
less than 4◦ in 10 iterations. This signs the stability of the
moving manipulator.

D. Path Tracking on Two Planes

Besides, when stability is essential in a task, we can
make a trade-off by setting more targets along the path and
sacrifice in rapidity in order to minimize the error, and this
raises requirement of path tracking. We conduct path tracking
tests on x-z and y-z vertical planes, finishing the tracking
of quadrilateral paths for 5 times. Due to the similarity of
results, we only show the performance of test on x-z plane
in following figures. Fig. 10 illustrates the path tracking
process. The movement is mainly stable, with repetitive
fluctuations. The manipulator skews upwards on the upper
horizon when it moves to the midpoint and downwards on
the lower horizon due to marginal effect.

Fig. 11 shows the positional and directional errors in path
tracking task, where the manipulator shows small errors
on z-axis and direction. It is obvious that fluctuations of
error are repetitive, which means the difficulty of reaching
different points on the path is not the same. The reason is that
in different position the conformity of estimated Jacobian
model towards the reality is different: where the estimated
is less precise, the algorithm needs more iteration times to
converge. In Fig. 12 as a snapshot, the arm bends while
keeping a stable direction during the movement.

Besides, we test the performance of the feedback con-
troller in several practical scenarios, as described in Fig. 13.
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Fig. 12. A snapshot in path tracking task on the x-y plane. It can be figured
out that even the arm curves, the direction of the end effector is stable.

IV. LIMITATION

The feedback control algorithm is developed on the ba-
sis of an estimated model, so its usable workspace will
be restricted in where the model ensures convergence of
iteration. Specifically, the restriction is that the angle be-
tween the end effector direction and z-axis cannot be more
than 90◦, beyond which the manipulator’s extension will
conversely cause coordinate reduction in z-axis. To solve
this problem, we can elaborate the model by involving the
positions of intermediate segments. The detailed model will
contain information of the whole manipulator configuration
and become more robust, thus, it will also be used in motion
control. On the other side, the algorithm presented in this
paper is more portable and operable if only the position
and direction of the end effector are considered, because it
needs less positional sensors and simpler geometrical model.
Hysteresis effect is shown as an exceeding error about 10mm
during the physical experiments, which is autonomously
corrected thanks to the feedback mechanism, yet it should
be examined independently. As for controller design, the
proportional controller used in this work can be improved
to more practical ones, PI, PID, etc. Besides, confined by
the control system (current feedback frequency is 1Hz), the
manipulator moves slowly in the path tracking task. In fact,
the feedback frequency decides the overall performance of
the current control system.

V. CONCLUSIONS

In this paper, we propose a position and direction control
strategy of our manipulator based on estimated Jacobian-
based model under uncertain load. The experimental results
prove the claim that the combination of updating estimated
model and feedback strategy is remarkable and highly ap-
plicable. In fact, the estimated model and feedback strategy
are complementary. Specifically, as the model gets closer
to a realistic model, a single-step will be more accurate,
and the controlled movement can be executed more efficient.
On the other side, when the model becomes less accurate,
similar precision can still be achieved by employing feedback
mechanism with sacrifice of rapidity. In future, we should
further improve the feedback rate in order to improve the
performance of our soft manipulator, which is a general
development trend. As for the estimated model, it can
be extended to involve whole manipulator’s configuration
in order to support more complex tasks, such as motion
control. Besides, the proportional value can be supplanted by
solenoids, which substantially reduces the cost and promote
the popularization and applications of soft robots. The ac-
companying video provides a demonstration of the proposed
control approach.
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