

 1

DAWN'19
Workshop on Database Aspects Explored by Wisconsin's New DB

Researchers

December 09, 2019 from 8:00AM-9:40AM, and

December 11, 2019 from 8:00AM-9:40AM

in 1257 CS
Madison, WI

Picnic Point at Dawn. Photo by: Jeff Miller, UW-Madison University Communications

 2

Monday December 9, 2019
Time
(AM)

Title Authors Abstract

8:00-
8:10

Ranked Enumeration
of Conjunctive Query

Tien-Lung Fu,
Pan Wu

For many data processing applications, enumerating query results
according to an order by a ranking function is fundamental task. For
example, users want to extract the top patterns from an edge-weighted
graph, and the rank of each pattern is the sum of the weights of the
edges. Ranked enumeration also exists in SQL queries with an ORDER
BY clause. Usually, users want to see the first k results as quickly as
possible without predetermined value of k. In our work, we investigate
the enumeration of top-k answers for conjunctive queries against
relational databases. Our main task is to design and implement data
structure and algorithm that allow for efficient enumeration after a pre-
processing phase. We designed and implemented a novel priority
queue-based algorithm with near-optimal delay and non-trivial space
guarantees that are output sensitive and depend on structure of the
query. Our algorithms are divided into two phases: the pre-processing
phase, where the system constructs a data structure that can be used
later and the enumeration phase, when the results are generated. All our
algorithms aim to minimize the time of the pre-processing phase, and
guarantee a logarithmic delay during enumeration.

8:10-
8:20

A Study on Query
Optimization

Anjali, Sakshi
Bansal

Query optimization is the part of the query process in which the
database system compares different query strategies and chooses the
one with the least expected cost. The query optimizer, which carries out
this function, is a key part of the relational database and determines the
most efficient way to access data. It makes it possible for the user to
request the data without specifying how these data should be retrieved.
The cost of accessing a query is a weighted combination of the I/O and
processing costs. The I/O cost is the cost of accessing index and data
pages from disk. Processing cost is estimated by assigning an instruction
count to each step in computing the result of the query.
In this project, we study the optimization done by PostgreSQL and
SQLite by running the queries present in the SSB benchmark. The
results obtained will help us to further investigate the query optimization
techniques implemented by the two database systems.

8:20-
8:30

Performance analysis
of BitWeaving with
modern hardware in
Rust implementation

Suryadev
Sahadevan
Rajesh,
Muthunagappan
Muthuraman

Today, modern processors have improved bandwidth between the CPU
and the caches. It also has lower access latency when compared to the
previous generation processors. Since BitWeaving/V uses the caches
present in the CPU effectively, we expect it to perform better than other
algorithms used for scanning in the modern processors as well. In our
implementation, we have used Rust. As Rust is memory safe and
identifies data races in the compile-time, it avoids potential system
crashes during runtime. We also show that the BitWeaving/V performs
better in the Rust without any performance degradation.

8:30-
8:40

Compression and
Bitweaving

Aaron Whitaker The goal of this project is to study the impact of additional compression
on top of the Bitweaving storage formats, and to determine how to
modify the Bitweaving protocol to perform predicate evaluations in this
compressed space. Column data from the TPC-H benchmark standard
are converted into the two storage formats used by the Bitweaving
method, Bitweaving/V and Bitweaving/H. Three different compression
techniques are then applied to to these codes, basic run length
encoding, zlib, and bzip, and the compression ratios of these techniques
are analyzed. Finally, methods for evaluating predicates on the
compressed codes are analyzed.

 3

8:40-
8:50

Evaluating the
performance of
BitWeaving with
AVX-512 SIMD
instructions

Sanchit Jain Column stores are widely used in analytics systems because their
memory-layout is usually a lot more cache-efficient than that of row-
stores, resulting in faster aggregations and comparisons. These column-
stores often have dictionary-encoded values, which are smaller than the
values they were decoded from. BitWeaving, a novel extension of bit-
slicing, is an approach to speed-up analytics queries involving main-
memory column-scalar scans. Supplementing it with SIMD instructions
achieves a higher magnitude of speed-up. One of its variants,
BitWeaving/V is poised to achieve speedup with SIMD instructions, than
does BitWeaving/H. We implement BitWeaving in Apache Arrow, that
runs on the Gandiva execution engine, and evaluate its performance
sans the use of SIMD instructions. Modern hardware supports SIMD
instructions of 512 bits, and we find that they entail in faster
performance.

8:50-
9:00

Accelerating Joins
with Filters

Nicholas
Corrado, Xiating
Ouyang

In query optimization on star schemas, lookahead information passing
(LIP) is a strategy exploiting the efficiency of probing succinct filters to
eliminate practically all facts that do not appear in the final join results.
Assuming data independency across all columns in the fact table, LIP
achieves efficient and robust query optimization. We present some
variants of LIP that can achieve empirically efficient query execution on
fact table with correlated and even adversarial data columns,
experimented on a skeleton database on top of Apache Arrow. We also
analyze the performance of each variant of LIP using the notion of
competitive ratio in online algorithms.

9:00-
9:10

Multi-Query
Optimization for
Streaming Data

Elena Milkai Continuous queries in streaming data allow users to obtain new results
without having to issue the same query repeatedly. However, for a
continuous query system to be useful must be capable of supporting
efficiently a big amount of queries at each time. Moreover, the system
should be able to handle new continuous queries that are dynamically
added and removed. So, I propose an incremental group optimization
approach in which queries are grouped according to their signatures.
When a new query arrives, the existing groups are considered as
possible optimization choices instead of re-grouping all the queries in
the system. The new query is merged into existing groups whose
signatures match that of the query. The implementation of the dynamic
multiple query optimizer in streaming data is done in Apache Calcite.

9:10-
:9:20

Scheduler on Hustle
for Concurrent Query
Processing

Lichengxi Huang The project aims at building a scheduler for concurrent query processing
on Hustle. A scheduler schedules the execution of operators which are
extracted from the physical plan generated by the optimizer. The
execution of a query is essentially the execution of a sequence of work
orders. To realize the parallel execution of multiple queries and
pipelining between the execution of operators, multiple workers are
created, with each associated with a CPU core. The scheduling policy is
independent of the mechanism and can be changed to other more
sophisticated ones.

9:20-
9:30

Evaluating MySQL,
PostgreSQL and
SparkSQL database
systems using TPCC
& YCSB Benchmarks

Sangeetha
Sampathkumar,
Shebin Roy
Yesudhas

Our project aims at comparing database systems such as MySQL,
PostgreSQL and SparkSQL using two benchmarks namely TPC-C and
YCSB. In some scenarios, the use case of application just requires
databases that could fit on a single machine. Given that we have
different type of database offerings both on SQL and NoSQL paradigm
that could be run on a single machine, benchmarking is crucial. We plan
to compare the mentioned database systems by measuring the
performance of each of them in terms of throughput and latency using
OLTP benchmark framework which emulates TPC-C and YCSB
benchmark workloads.

 4

Wednesday December 11, 2019
8:00-
8:10

Reducing Lock
Contention through a
New Controlled Lock
Violation Protocol for
Main-memory
Database

Zhihan Guo Inspired by the idea of controlled lock violation, we proposed a new
protocol based on 2PL to help reduce lock contention for main-memory
databases. The original controlled lock violation protocol focuses on
reduce the waiting time for hardening, while ours aims to reduce the
waiting time for acquiring the lock, which addresses the new bottleneck
in main-memory databases in contrast to traditional databases. We
evaluated our methods against the basic 2PL over TPCC benchmark to
see how we improve the OLTP application performance under high
contention.

8:10-
8:20

Latch Free
Concurrent Hashing
Data Structure
Performance Analysis

Madan Raj Hari,
Raghavan Vellore
Muneeswaran

The goal of the project is to implement Cuckoo Hashing, a concurrent
latch
free hash table and study its performance as the key size and data size
changes. A Hash Table is a data structure which allows us to perform
rapid storage and
retrieval operations. Concurrent Hash tables are widely used in many
computer
systems and applications. A data structure is latch-free (lock-free) if it is
nonblocking and guarantees global progress. There must always be one
thread finishing its operation in a finite number of steps. Latch Free
solutions are better than lock based solutions when contention is high
and machine architecture is unknown. However, latch free solutions are
difficult to get correctness in relocation operation, memory reclamation
and ABA problem.

8:20-
8:30

Concurrency Control
for Cache-Sensitive
B+-Trees

Arjun
Balasubramanian,
Vinith
Venkatesan

B+-Trees have now become commonplace in large database systems
for fast indexing. With main memories becoming larger, variants such as
CSB+-Trees have been proposed so as to improve the utilization of a
cache line and thereby give better performance. However, concurrency
control remains unaddressed in these structures. In this work, we explore
two concurrency control options for CSB+-Trees and we evaluate the
performance implications of these two approaches.

8:30-
8:40

Lock-free Concurrent
Linear Probing Hash
Table in Rust

Kaiwei Tu The concurrent hash table has wide applications in a modern in-memory
computer system. Especially, a lock-free concurrent hash table that
benefits from low-overhead hardware atomicity is crucial to get higher
concurrency and better performance. However, how to efficiently
support complex key and value space under compare-and-swap (CAS)
instruction stills needs more experiments. This project aims at
prototyping a lock-free concurrent linear probing hash table in Rust.
Based on this prototyping system, we will conduct several experiments
on the overhead induced by supporting complex key-value space and
cost of changing key and value size.

8:40-
8:50

 Analyzing the
Scalability of Latch-
Free Hash Tables in
Rust

John Truskowski,
Sapan Gupta

Hash tables are a quintessential data structure for many applications due
to their O(1) insertion and lookup times (in the best case). However, due
to the increasing scale of data, the need for concurrent reads and writes
to these hash tables grows ever more important. A critical data structure
for this is the latch-free hash table, as traditional methods for controlling
concurrent access (locks) introduce significant overhead and degrade
the performance. Latch-free hash tables guarantee that when one or
more active threads are performing an operation on data structure, at
least one thread will be able to complete within a finite number of steps,
agnostic of other threads. These hash tables must perform well in the
presence of contention, deletion and growing input sizes. We explore
how a Rust implementation of latch-free hash tables performs when
varying input size and key size for a variety of common database
workloads.

 5

8:50-
9:00

Enhancing
concurrent cuckoo
hashmap using
optimistic locking
and incremental
migration

Sandhya Kannan,
and Sri Harshal
Parimi

We aim to improve the performance of concurrent cuckoo hashmap
implementation using the following techniques:
Instead of acquiring locks to perform consistent reads, we adopt a fine-
grained optimistic locking approach using version counters.
Since operations on the cuckoo hashmap are generally stalled when the
entire table is locked for migration, we implement an incremental
migration of entries from the older hashmap to the newer hashmap.
We plan to compare performance with the existing cuckoo hashing
implementation and derive insights that generalize to the
implementation of concurrent data structures.

9:00-
9:10

SQL-Only Neural
Networks

Naazish Sheikh,
Samuel Erickson

This project explores the performance of a neural network in
PostgreSQL in an attempt to expand the capabilities of SQL-only neural
networks as well as improve their efficiency. The primary goal of this
project is to create a SQL-only neural network implementation that
performs more efficiently than a traditional neural network that simply
pulls data from the database. For our project we selected a Major
League Baseball pitch data set on which we trained our neural networks
to predict pitch type. This data set contains numerous mathematical
attributes such as pitch speed and trajectory as well as pitch type, e.g.
curveball. We stored our data set in a cloud database through
ElephantSQL, which is a PostgreSQL-as-a-service hosting framework.
This provides us with all of the advantages of a modern DBMS
(concurrency control, recovery, etc.) in a fully-managed, scalable
environment. Using a connection through pgAdmin 4, database tables
were created and the MLB pitch data set was imported into said tables
from CSV files. We started by creating a baseline against which we could
compare our optimizations. We did so by implementing a neural
network in Python using scikit-learn, from which we gathered
performance metrics on three different sized subsets of our data set
(small, medium, and large). The performance metrics we are primarily
concerned about are overall training speed for the neural network and
the accuracy of the predictions made from the neural network. To make
sure the prediction accuracy of each neural network implementation was
reasonable to compare, our neural networks in both implementations
are multi-layer perceptron classifiers that use back propagation.

9:10-
:9:20

Reliable ML Based
Selectivity Estimation

Ankur Goswami, Zifan Liu, and Yunjia Zhang

9:20-
9:30

Using Neural
Networks for
predicting query
execution time

Na Li and Askar
Safipour Afshar

Query execution time prediction is an important and
challenging problem in database systems. Especially for
applications that handle large amounts of data or where time loss
and deadlocks are hardly tolerated, it is very useful to predict the
query execution times before actual execution. In this project we
aim to predict query execution times automatically using neural
network-based approaches, and compares these approaches in terms of
training time and accuracy. We implemented neural networks methods,
and compared these methods using the TPC-DS benchmark
database. The results of this project show that multilayer perceptron
with back-propagation presents accurate results in predicting
query execution times within acceptable training times.

If you are looking for the CS 764 course home page, click here.

