
THE 5 MINUTE RULE FOR TRADING MEMORY FOR DISC ACCESSES 
and 

THE 10 BYTE RULE FOR TRADING MEMORY FOR CPU TIME 

Jim Gray 
Franc0 Putzolu 

Tandem Computers, Cupertino, CA, USA 

ABSTRACT: If an item is accessed 
frequently enough, it should be main 
memory resident. For current technology, 
"frequently enough" means about every 
five minutes. 

Along a similar vein, one can frequently 
trade memory space for cpu trme. For 
example, bits can be packed in a byte at 
the expense of extra instructions to 
extract the bits. It makes economic 
sense to spend ten bytes of main memory 
to save one lnstructlon per second. 

These results depend on current price 
ratios of processors, memory and disc 
accesses These ratios are changing and 
hence the constants rn the rules are 
changing. 

THE FIVE MINUTE RULE 

If data 1s disc resident it must be moved 
to main memory prior to being read or 
written. This movement costs both time 
and money. 

In some situations, response time 
dictates that data be main memory 
resident because disc accesses Introduce 
too much delay. These situations are 
rare. More commonly, keeping data main- 
memory resident is purely an economic 
Issue. When does lt make economic sense 
to make data resident In main memory? A 
good rule of thumb 1s: 

THE FIVE MINUTE RULE 
Data referenced every five minutes 

should be memory resident. 

Twenty years ago the .5 second rule 
applied, twenty years hence It 1s likely 
to be the 5 hour rule. The exact 
constant 1s very dependent on current 
price ratios. To make the argument 
concrete, we will use Tandem 1986 prices 
here As discussed later, similar 
conclusions result from current IBM or 
DEC prices. 

The derlvatlon of the five minute rule 
goes as follows: A disc, and half a 
controller comfortably deliver 15 random 
accesses per second and are priced at 
about 15K$ [Tandem] So the price per disc 
access per second is about lK$/a/s. The 
extra CPU and channel cost for supportlng 
a disc is lK$/a/s. So one disc access per 
second costs about ZK$/a/s. 

A megabyte of maln memory costs about 
5K$, so a kllobyte costs 5$. 

If maklng a 1Kb data record main-memory 
resident saves la/s, then it saves about 
2K$ worth of disc accesses at a cost of 
5$, a good deal. If it saves .la/s then 
It saves about 200$, still a good deal. 
Continuing this, the break-even point 1s 
one access every 2000/5 - 400 seconds. 

So, any 1KB record accessed more 
frequently than every 400 seconds should 
live in main memory 400 seconds 1s 
"about" 5 minutes, hence the name. the 
Five Minute Rule. 

For smaller records, the break-even point 
1s longer (1 hour for 100 byte records) 
and for larger records the break-even 
point 1s shorter (2 minutes for 4K 
records). 

At a certain point the record size 
exceeds the disc transfer size. For 
example, page-faulting a 1OOK program 
requires twenty five 4K disc reads. So 
above the transfer size (4K in Tandem's 
case) one must use the rule for the 
Wz;sfer size (2 minutes in Tandem's 

. 

A more formal derivation and statement 
1s: 

Let: 
RI: expected interval in seconds 

between references to the data 
(second/access). 

MS: the cost of a byte of main 
memory ($/byte) 

AS: the cost of a disc access per 
second ($/access/second). 

B: the size of the data (byte). 

PermIssion to copy wlthout fee all or part of this material 1s granted provided that the copies are not made or dlstrlbuted for chrect commercial 
advantage, the ACM copyright notice and the title of the pubhcatlon and Its date appear, and notxe 1s given that copymg 1s by permIssIon of the 
Assoclatlon for Computmg Machmery To copy otherwise, or to repubhsh, reqmres a fee and/or specific permIssIon 

0 1987 ACM O-89791-236-5/87/0005/0395 754 

395 



Bmax: the maxlmum transfer size from 
disc (byte). 

Then, assuming B < BmaX, the savings In 
dollars of keeping the record B main 
memory resident 1s. 

At 
IS 

A$ ---- - M$*B 
RI 

the break-even point, this expression 
zero. Solving for RI gives 

AS RI = _-_-__- 
M$*B 

The Five Mrnute Rule also seems to apply 
to IBM systems (prices are uniformly 
higher for IBM 30XX machlnes and about 
the same for IBM 43xx machines) and for 
mini-commuters (where everythlng 1s 
uniformly less expensive). 

The Five Minute Rule does 
personal computers for 
First one cannot add and . 

not apply to 
two reasons. 
subtract discs 

from PCs and worKstatIons at Will. 
Typically, one has the choice of zero or 
one hard discs. Second, memory and disc 
economics are different for PCs -- a disc 
costs about the same as a megabyte of 
main memory. 

Substituting for the Tandem numbers (A$ = 
2000, MS = .005): 

400,000 
RI = ------- second/access 

B 

As shown in Figure 1, the Five Minute 
Rule only approximates a particular 
regron of the curve: B near 1K. Using 
the five mrnute rule for larger data 
items antlclpates the advent of cheaper 
memory. 

We used standard PRICES. If we had used 
standard COSTS (about 10% of price) then 
the ratios would have been similar. 

In the next decade 64Mblt memory chips 
are likely to reduce the memory vs dlsc- 
access cost ratio by another factor of 
100. This will give rise to the 5 hour 
rule. 

The following case study illustrates an 
application of the Five Minute Rule. A 
designer wanted to keep his entire 
database main memory res ldent. The 
database had 500,000 records and each 
record was about 1000 bytes long, so the 
whole database was about 5OOMbytes. The 
following argument convinced him to adopt 
a hybrid disc-memory design. 

1oooa 

RI 

IN 1000 

SEC 
100 

Break Even Reference Interval vs Data Size 

10 100 1000 10000 

MEMORY RESIDENT DATA SIZE IN BYTES 

Figure 1 A log-log graph of teh break-even reference Interval (RI) vs the 
size (B) of the data being stored in main memory This IS based on 1986 
Tandem prices Notice that beyond Bmax (the maximum disc transfer size) 
the data size does not affect the break-even point 

396 



The application transactlons were quite 
simple Almost all the transactlons 
accessed a single record and demanded one 
second average response time. The 
transactlon used 40ms of cpu time and 
30ms of disc time The total application 
had a 600 transactlon per second peak 
load. 

The all-ln-maln-memory design needed 
about 36 VLX processors, each with 16MB 
of main memory Two mirrored discs stored 
the entire database, Its indices and the 
programs. The discs would be idle during 
normal operation since the database would 
be memory resident. 

The five minute rule suggested that only 
records with a reference interval of 5 
minutes or less should be in marn memory. 
Based on estimates, later confirmed in 
another videotext 
Hoelskenl, very 

applicat:~;or~;ro" & 
few are 

frequently referenced. They observed 
that 3% of the records got 80% of the 
references. statistical estimate 
indicated that tt 600TPS, only 30,000 of 
the 500,000 records would be referenced 
twice in a five minute interval. In 
addition, this 6% of the data would get 
96% of all accesses so only 24 disc 

accesses per second were introduced (4% 
of 600TPS). Two disc drives storing the 
data could comfortably support this read 
rate. The consequent design saved 470Mb 
of main memory and six cpus. This was a 
3.5M$ savings (a 30% savings) over the 
entirely main memory design. 

Any application's database reference 
string can be used with this logic to 
compute the optimal size of disc cache 
and optimal number of disc arms. 

This Five Minute Rule applies equally 
well to virtual memory management. If a 
virtual memory page (typically 4K bytes) 
1s referenced every 2 minutes, lt should 
stay memory resident. Hence a CLOCK 
virtual memory algorithm [Carrl should be 
given enough memory to cycle once every 
minute at peak loads or one should try to 
detect such "hot" pages (using a 2 minute 
hlstory string) and treat such "hot" 
pages specially. 

THE TEN BYTE RULE 

Another interesting question 1s: "When 
does it make economic sense to use more 
memory to save some cpu powerTn, or 
conversely save some memory at the 
expense of some cpu cycles? This issue 
arises in code optlmlzatlon where one can 
save some lnstructlons by unwinding 
loops, and in data structure design where 
one can pack data at the expense of extra 
cpu instructions to mask and shift bytes 
to extract the bits. 

The argument is similar to the Five 
Minute Rule. One picks a certain price 
for memory (say SK$/MB) and a Certain 

f;;;elqe;yy:: d::: E?!2;. 
This means 

Similarly 
one instruction per second costs about 
.05$. SO 10 bytes costs about the Same 
as 1 lnstructlon per second. This gives 
rise to the ten byte rule: 

j.,... 
to save 1 rnstruction per second. 

The Ten Byte Rule is applied as follows. 
Let 

I: how many lnstructlons are saved by 
the new design (lnstructlons) 

F: how frequently the instruction 
sequence is executed (l/second) 

S: how many bytes are saved by the new 
design (bytes). 

The product of I and F 1s the lnstructlon 
savings of the change. It will be 
negative if the design adds lnstructlons. 

Using the Ten Byte Rule compare S (the 
memory savings) with the instruction 
savings by dividing S by 10. The net 
savings is: 

I*F-S/10 
If it is a large positive number, then 
the new design provides a large savings. 

As an example, suppose the 
an operating system has a 
like: 

LOAD BYTE 
MASK FLAG 
BRANCH ON NONZERO 

Suppose the dispatcher 1s 
times each second. 
* If flag were stored as a - . 

dispatcher of 
code sequence 

invoked 

byte it 
avoid the mask step and hence 
1000 instructions per second. 

would 
save 

* This translates to about 10000 bytes 
of storage based on the Ten Byte Rule. 

* If flag were stored as a byte it 
use eight times the storage. If _ ̂ _ 

would 
there 

1000 

are 1UU processes in tne processor, 
this translates to about 88 extra 
bytes. 

* Since we have a 10,000 byte budget, 
this 1s a profit of 9912 bytes for an 
88 bvte lnbestment. A good trade -- 
about a 1OO:l return on investment. 

On non-RISC machines, the MASK 
instruction may use 2 micro-clocks while 
the average instruction uses 6 mlcro- 
clocks. In this case, one needs to weight 
the saved instructions with their micro- 
clock cost. That is, in 
above, would save 

the example 
only 2/6 of an 

397 



instruction each time we saved a MASK 
step. So the "real" savings on the 
hypothetical non-RISC machine would be 
only (100*(2/6)):1 + 33:l. Still a good 
deal. 

THE FUTURE 

The idea underlying these rules is a way 
of evaluating the economic tradeoffs of 
design decisions. As technology changes 
the price-performance ratios, these 
design rules must also change. 

Over the last two decades, disc module 
capacity and memory chip capacity have 
grown about a factor of 100 every decade 
with a proportional drop in price per 
megabyte. Processor speeds have grown a 
factor of ten every decade with a 
consequent drop in price per mip. Disc 
accesses have had a relatively constant 
cost over this period, discs continue to 
deliver about 15 accesses/arm/second 
random and 60 accesses/arm/second 
sequential. 

Extrapolating these trends to 1996, the 5 
minute rule will become the 5 hour rule 
-- data used once every five hours will 
be main memory resident. In that time- 
frame, there will be considerable 
interest in optimizing cpu cache 
occupancy since main memory will begin to 
look like secondary storage to processors 
and their memory caches. 

Similarly, the 10 byte rule is likely to 
become the 100 byte rule -- one will be 
willing to squander main memory in order 
to save a few instructions. 

ACKNOWLEDGMENTS 
Dina Bitton, Haran Boral, Fritz Graf, and 
Pete Homan pointed out errors and 
suggested many improvements to earlier 
versions of this paper. 

REFERENCES 

[Cari-] Virtual Memory Management 
University Microfilm, 1984. 

[Froxun & Hoelskenl Fromm, H 
H "Beilschirmtext' 

Hoelsken, 

ChAracteristics 
Usage 

and Performance 
Aspects of the German Videotext 
System" Digest of Papers, Compcon 87, 
IEEE Computer Society Press, order 
#764, pp. 152-160, Feb. 1987. 

[Tandem] Tandem Product and Price Guide, 
Tandem Computers Inc. 
Sept 1986. 

Cupertino, CA. 

398 


