
The LRU-K Page Replacement Algorithm
For Database Disk Buffering

Elizabeth J. O’Neil 1, Patrick E. O’Neill, Gerhard Weikum2

1 Department of Mathematics and Computer Seienee 2 Department of Computer Seienee
University of Massachusetts at Boston EI’H Zurich
Harbor Campus CH-S092 Zurich
Boston, MA 02125-3393 Switzerland

E-mail: eoneil@es.utnb.edu, poneil@s.umb.edu, weikum@inf.ethz.ch

ABSTRACT

This paper introduces a new approach to database disk
buffering, called the LRU-K method. The basic idea of
LRU-K is to keep track of the times of the last K references
to popular database pages, using this information to statis-
tieall y estimate the interarrival times of references on a page
by page basis. Although the LRU-K approach performs
optimal statistical inference under relatively standard as-
smuptions, it is fairly simple and incurs little bookkeeping
overhead. As we demonstrate with simulation experiments,
the LRU-K algorithm surpasses conventional buffering al-
gorithms in discriminating between frequently and infre-
quently referenced pages. In fact, LRU-K an approach the
behavior of buffering algorithms in which page sets with
known access frequencies are manually assigned to different
buffer pools of specifically tuned sizes. Unlike such cus-
tomized buffering algorithms however, the LRU-K method
is self-tuning, and does not rely on external hints about
workload characteristics. Furthermore, the LRU-K algo
rithm adapts in real time to changing patterns of access.

1. Introduction

1.1 Problem Statement

All database systems retain disk pages in memory buffers
for a period of time after they have been read in from disk
and accessed by a particular application. The purpose is to
keep popular pages memory resident and reduee disk 1/0. In
their “Five Minute Rule”, Gray and Putzolu pose the fol-
lowing tradeoff We are willing to pay more for memory
buffers up to a certain point, in order to reduee the cost of
disk arms for a system ([GRAYPUT], see also [CKS]).
The critical buffering decision arises when a new buffer
slot is needed for a page about to be read in from disk, and
all current buffers are in use What current page should be
dropped from buffer? This is known as the page replace-
ment policy, and the different buffering algorithms take
their names from the type of replacement policy they im-
pose (see, for example, [comm, -HAER]).
Permission to copy without fee all or part of this material is
granted provided that the copiee ere not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its data appaar, and notice is given
that copying ie by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requirae a fee
and/or epecific parmieeion.
SIGMOD 15193AVaahin~ton, DC,USA
@1993 ACM ()-89791 -592.5 /93/00() 5/0297 . ..$1 .50

297

The algorithm utilized by almost all eonunereial systems is
known as LRU, for ~east &eeently used. When a new
buffer is needed, the LRU policy drops the page from buffer
that has not been accessed for the longest time. LRU
buffering was developed originally for patterns of use in in-
struction logic (for example, ~ENNING], [COFFDENNl),
and does not always fit well into the database environment,
as was noted also in ~ITER], [STONl, [SACSCHj, and
[CHOUDEW]. In fact, the LRU buffering algorithm has a
problem which is addressed by the current paper: that it de-
eides what page to drop from buffer based on too little in-
formation, limiting itself to only the time of last reference.
Specifically, LRU is unable to differentiate between pages
that have relatively frequent references and pages that have
very infrequent ref erenees until the system has wasted a lot
of resourees keeping infrequently referenced pages in buffer
for an extended period.

Example 1.1. Consider a multi-user database applica-
tion, which references randomly chosen customer records
through a clustered B-tree indexed key, CUST-ID, to re-
trieve desired information (cf. ~-A]). Assume simplisti-
cally that 20,000 customers exist, that a customer reeord is
2000 bytes in length, and that space needed for the B-tree
index at the leaf level, free space included, is 20 bytes for
each key entry. Then if disk pages contain 4000 bytes of
usable space and ean be packed full, we require 100 pages to
hold the leaf level nodes of the B-tree index (there is a sin-
gle B-tree root node), and 10,000 pages to hold the reeords.
The pattern of reference to these pages (ignoring the B-tree
root node) is clearly: 11, Rl, 12, R2, 13, R3, alternate
references to random index leaf pages and record pages. If
we can only afford to buffer 101 pages in memory for this
application, the B-tree root node is automatic; we should
buffer all the B-tree leaf pages, since each of them is refer-
enced with a probability of .005 (once in each 200 general
page references), while it is clearly wasteful to displace one
of these leaf pages with a data page, since data pages have
only .00005 probability y of referenee (once in each 20,000
general page references). Using the LRU algorithm, how-
ever, the pages held in memory buffers will be the hundred
most recently referenced ones. To a first approximation,
this means 50 B-tree leaf pages and 50 reeord pages. Given
that a page gets no extra credit for being referenced twice in
the reeent past and that this is more likely to happen with
B-tree leaf pages, there will even be slightly more data

pages present in memory than leaf pages. This is clearly in-
appropriate behavior for a very common paradigm of disk
Xces.s.n

Example 1.2. As a second scenario where LRU retains
inappropriate pages in cache, consider a multi-process
database application with good “locaiity” of shared page ref-
erence, so that 5000 buffered pages out of 1 million disk
pages get 95% of the references by concurrent processes.
Now if a few batch processes begin “sequential scans”
through ail pages of the database, the pages read in by the
sequential scans will replace commoni y referenced pages in
buffer with pages uniikely to be referenced again. This is a
common complaint in many commercial situations: that
cache swamping by sequential scans causes interactive re-
sponse time to deteriorate noticeably. Response time dete-
riorates because the pages read in by sequential scans use
disk arms to replace pages usuaily held in buffer, leading to
increased 1/0 for pages that usuail y remain resident, so that
long 1/0 queues build up.U

To reiterate the problem we see in these two examples,
LRU is unable to differentiate between pages that have rela-
tively frequent reference and pages that have very infrequent
reference. Once a page has been read in from disk, the LRU
aigorithm guarantees it a long buffer life, even if the page
has never been referenced before. Solutions to this problem
have been suggested in the literature. The previous ap-
proaches fail into the following two major categories.

● Page Pool Tuning:
Reiter, in his Domain Separation aigorithm WTER],
proposed that the DBA give better hints about page
pools being accessed, separating them essentially into
different buffer pools. Thus B-tree node pages would
compete oni y against other node pages for buffers, data
pages wouid compete oniy against other data pages, and
the DBA couid limit the amount of buffer space avail-
able for data pagea if re-reference seemed uniikely. Such
“pool tuning” capabilities are supported by some
cmnmerciai database systems and are used in applica
tions with high performance requirements (see, e.g.,
~ENGGUM, DANTOWS, SHASHA]). The problem
with this approach is that it requires a great deai of
human effort, and does not properly handie the problem
of evolving patterns of hot-spot access (locaiity within
the data page pool, changing over time).

● Query Execution Plan Analysis:
Another suggestion was that the query optimizer
should provide more information about the type of use
envisioned by a query execution plan, so that the sys-
tem will know if re-reference by the plan is likely and
can act accordingly (see the Hot Set Model of
[SACSCHl, the DBMIN aigorithm of [CHOUDEW])
and its extensions ~S, NFS, YUCORN], the hint-
passing approaches of [CHAKA, HAAS, ABG, JCL,
COL] and the predictive approach of ~AZDO]). This
approach can work well in circumstances where re-ref-
erence by the same plan is the main factor in buffering.

In Example 1.2 above, we would presumably know
enough to drop pages read in by sequential scans. The
DBMIN aigorithtn wouid rho deai well with the refer-
ences of Example 1.1 if the entire referencx string were
produced by a single query. However, the query plans
for the simple muiti-user transactions of Example 1.1
give no preference to retaining B-tree pages or data
pages in buffer, since each page is referenced exactiy
once during the plan. In muiti-user situations, query
optimizer plans can overlap in complicated ways, and
the query optimizer advisory algorithms do not tell us
how to take such overlap into account. A more global
page replacement policy must exist to make such a de-
cision.

1.2 Contribution of the Paper

Both of the above categories of solutions take the view-
point that, since LRU does not discriminate well between
frequently and infrequently referenced pages, it is necessary
to have some other agent provide hints of one kind or an-
other. The contribution of the current paper is to derive a
new self-reliant page-replacement aigorithm that takes into
account more of the access history for each page, to better
discriminate pages that should be kept in buffer. This
seems a sensible approach since the page history used by
the LRU aigorithm is quite limited: simply the time of
last reference.

In this paper we carefuily examine the idea of taking into
account the history of the last two references, or more gen-
eraily the last K references, K >2. The specific aigorithm
deveioped in this paper that takes into amount knowledge of
the last two references to a page is named LRU-2, and the
naturai generalization is the LRU-K aigorithm; we refer to
the classical LRU aigoritbm within this taxonomy as LRU-
1. It turns out that, for K >2, the LRU-K aigorithm pro-
vides somewhat improved performance over LRU-2 for sta-
ble patterns of access, but is less responsive to changes in
access patterns, an important consideration for some appli -
cations.

Despite the fact that the LRU-K aigorithm derives its bene-
fits from additional information about page access fre-
quency, LRU-K is fundamental y different from the Least
Frequently Used (LFU) replacement aigorithm. The cruciai
difference is that LRU-K has a built-in notion of “aging”,
wnsidering oni y the last K references to a page, whereas the
I&U aigorithm has no means to discriminate recent versus
past reference frequency of a page, and is therefore unable to
cope with evolving access patterns. LRU-K is aiso quite
different from more sophisticated LFU-based buffering algo-
rithms that employ aging schemes based on reference coun-
ters. This category of algorithms, which includes, for ex-
ample, GCLOCK and variants of LRD ~FFEHAE R], de-
pends critically on a carefui choice of various workioad-de-
pendent parameters that guide the aging process. The LRU-
K aigonthm, on the other hand, does not require any man-
ual tuning of this kind.

298

The LRU-K algorithm has the following salient properties:
● It discriminates well between page sets with different

levels of reference frequency (e.g., index pages vs. data
pages). Thus, it approaches the effect of assigning page
sets to different buffer pools of specifically tuned sizes.
In addition, it adapts itself to evolving access patterns,

● It detects locality of reference within query executions,
across multiple queries in the same transaction, and
also locality across multiple transactions in a muM-
user environment.

● It is self-reliant in that it does not need any external
hints.

● It is fairly simple and incurs little bookkeeping over-
hed.

The remainder of this paper has the following outline. In
Section 2, we present the basic concepts of the LRU-K ap-
proach to disk page buffering. In Section 3 we give
informal arguments that the LRU-K algorithm is optimal
in a certain well defined sense, given knowledge of the most
recent K references to each page. In Section 4, we present
simulation ~rformance results for LRU-2 and LRU-K in
comparison with LRU- 1. Section 5 has concluding
remarks.

2. Concepts of LRU-K Buffering

In the current paper we take a statistical view of page refer-
ence behavior, based on a number of the assumptions from
the Independent Reference Model for paging, in Section 6.6
of [commq. We start with an intuitive formulation;
the more complete mathematical development is covered in
[OOW]. Assume we are given a set N = {1,2,. . .. n} of
disk pages, denoted by positive integers, and that the
database system under study makes a succession of ref-
erences to these pages specified by the reference string: rl,
r2,rt where rt = p (p G N) means that term
numbered t in the references string refers to disk page p.
Note that in the original model of [COFFDENNl, the refer-
ence string represented the page references by a single user
process, so the assumption that the string reflects all refer-
ences by the system is a departure. In the following discus-
sion, unless otherwise noted, we will measure all time in-
tervals in terms of counts of successive page accesses in the
reference string, which is why the generic term subscript is
denoted by ‘t’. At any given instant t, we assume that each
disk page p has a well defined probability, ~, to be the
next page referenced by the system: Pr(rt+ 1 = p) = ~, for
all p E N. This implies that the reference string is proba-
bilistic, a sequence of random variables. Changing access
patterns may alter these page reference probabilities, but we
assume that the probabilities ~ have relatively long peri-
ods of stable values, and start with the assumption that the
probabilities are unchanging for the length of the reference
string; thus we assume that bp is independent of t.

Clearly, each disk page p has an expected reference interar-
rival time, lP, the time between successive occurrences of p
in the reference string, and we have 1P= bp- 1. We intend
to have our database system use an approach based on

Bayesian statistics to estimate these interarrival times from
observed references. The system then attempts to keep in
memory buffers only those pages that seem to have an in-
terarrivai time to justify their residence, i.e. the pages with
shortest access interarrival times, or equivalent y greatest
probability of reference. This is a statistical approximation
to the AO algorithm of [COFFDENNl, which was shown
to be optimal. The LRU-1 (classical LRU) algorithm can
be thought of as taking such a statistical approach, keeping
in memory only those pages that seem to have the shortest
interrmival time; given the limitations of LRU- 1 informa-
tion on each page, the best estimate for interarrival time is
the time interval to prior reference, and pages with the
shortest such intervals are the ones kept in buffer.

Definition 2.1. Backward K-distance bt(p,K).
Given a reference string known up to time t, rl, r2,
rt, the backward K-distance b@K) is the distance backward
to the Kti most recent reference to the page p:

bt(px) = x, if rt-x has the value p and there have been
exact.1y K-1 other values i with
t-xei <t, where ri=p,

em , if p does not appear at least K times in

rl, r2,rt

Definition 2.2. LRU-K Algorithm. The LRU-K
Algorithm specifies a page replacement policy when a
buffer slot is needed for a new page being read in from disk
the page p to be dropped (i.e., selected as a replacement vic-
tim) is the one whose Backward K-distance, bt(px), is the
maximum of all pages in buffer. The only time the choice
is ambiguous is when more than one page has bt(p~) = CO.
In this case, a subsidiary policy maybe used to select a re-
placement victim among the pages with infinite Backward
K-distance; for example, classical LRU could be employed
as a subsidiary policy. Note that LRU- 1 corresponds to the
classical LRU algorithm.lZ

The LRU-2 algorithm significantly improves on LRU- 1
because by taking into account the last two references to a
page, we are able for the first time to estimate 1P by mea-
surement of an actual interarrival between references, rather
than estimating simply by a lower bound of the time back
to the most recent referencx. We are using more informa-
tion and our estimates are immensely improved as a result,
espcciall y as regards pages that have long reference interar-
rival time and should therefore be dropped from buffer
quickly. Note that we make no general assumptions about
the probabilistic distribution of 1P. In the full paper
[OOW], we assume an exponential distribution for 1P to
demonstrate optimality of the LRU-K algorithm. As
already mentioned, we model ~ and therefore 1P as having
the potential for occasional changes over time, only
assuming that changes are infrequent enough that a
statistical approach to future page access based on past
history is usually valid. These assumptions seem justified
for most situations that arise in database use.

299

2.1. Realistic Assumptions In DB Buffering

The general LRU-K algorithm has two features, peculiar to
the cases where K >2, that require careful consideration to
ensure proper behavior in realistic situations. The first,
known as Early Page Replacement, arises in situations
where a page recently read into memory buffer does not
merit retention in buffer by standard LRU-K criteria, for ex-
ample because the page has a bt(p~) value of intinity. We
clearly want to drop this page from buffer relatively
quickly, to save memory resources for more deserving disk
pages. However we need to allow for the fact that a page
that is not generally popular may still experience a burst of
correlated references shortly after being referenced for the
first time. We deal with this concern in Section 2.1.1. A
second feature that we need to deal within cases where K >
2, is the fact that there is a need to retain a history of refer-
ences for pages that are not currently present in buffer.
This is a departure from current page replacement algo-
rithms, and will be referred to as the Page Reference
Retained Information Problem, covered below in Section
2.1.2. A pseudo-code outline of the LRU-K buffering algo
rithm which deals with the concerns mentioned above is
given in Section 2.1.3.

2.1.1. Early Page Replacement and the Problem
of Correlated References

To avoid the wasteful use of memory buffers seen in
Examples 1.1 and 1.2, LRU-K makes a decisiou whether to
drop a page p from residence after a short time-out period
from its most recent reference. A canonical period might be
5 sewnds. To demonstrate the need for such a time-out, we
ask the following question What do we mean by the last
two references to a page? We list below four ways that a
pair of references might take place to the same disk page;
the first three of these are called correlated reference pairs,
and are likely to take pla~ in a short span of time.

(1) Intra-Transaction. A transaction accesses a page,
then accesses the same page again before cmnrnitting. This
is likely to happen with certain update transactions, first
reading a row and later updating a value in the row.

(2) Transaction-Retry. A transaction accesses a page,
then aborts and is retried, and the retried transaction accesses
the page again for the same purpose.

(3) Intra-Process. A transaction references a page, then
commits, and the next transaction by the same process ac-
cesses the page again. This pattern of access commonly
arises in batch update applications, which update 10 records
in sequence, commit, then start again by referencing the
next record on the same page.

(4) Inter-Process. A transaction references a page, then
a (frequently different) process references the same page for
independent reasons. (At least while we do not have a great
deal of cmrnmmication bctwceu processes where informa-
tion is passed from one process to the other in database

records we can assume references by different processes are
independent.)

Recall that our purpose in buffering disk pages in memory
is to retain pages with relative long-term popularity to save
disk 1/0. An example of such long-term popularity is
given in Example 1.1, where the 100 B-tree leaf pages are
frequently referenced by concurrently acting transactions.
The point about correlated reference-pair types (1) through
(3) above is that if we take these reference pairs into ac-
count in estimating interarrival time lP, we will often arrive
at invalid conclusions. For example, reference-pair type (1)
may be a common pattern of access, so if we drop a page
from buffer right away after the first reference of type (1)
because we have not seen it before, we will probably have
to read it in again for the second reference. On the other
hand, after the second reference, with the transaction com-
mitted, if we say that this page has a short intcrarrival time
and keep it around for a hundred seconds or so, this is likely
to be a mistake; the two correlated references are insuffi-
cient reason to conclude that independent references will oc-
cur. There are several obvious ways to address the prob-
lems of correlated references, the most basic of which is
this: the system should not drop a page immediately after
its first reference, but should keep the page around for a
short period until the likelihood of a dependent follow-up
reference is minimal; then the page can be dropped. At the
same time, interarrival time should be calculated based on
non-correlated access pairs, where each successive access by
the same process within a time-out period is assumed to be
correlated the relationship is transitive. We refer to this
approach, which associates correlated references, as the
Time-Out Correlation method; and we refer to the time-out
period as the Correlated Reference Period The idea is not
new; in &OBDEV] an equivalent proposal is made in
Section 2.1, under the heading: Factoring out Locality.

The implication of a Correlated Reference Period of this
kind on the mathematical formulation is simply this. The
reference string, r 1, r2, . . . , rt, is redefined each time the
most recent reference rt passes through the time-out period,
in order to collapse any sequence of correlated references to a
time interval of zero. If a reference to a page p is made sev-
erzd times dtning a Correlated Reference Period, we do not
want to penalize or credit the page for that. Basically, we
estimate the interarrival time 1P by the time interval from
the end of one Correlated Reference Period to the beginning
of the next. It is clearly possible to distinguish processes
making page references; for simplicity, however, we will
assume in what follows that references are not distinguished
by process, so any reference pairs within the Correlated
Reference Period ate considered correlated.

Another alternative is to vary the Time-Out Correlation ap-
proach based on more knowledge of system events. For ex-
ample, we could say that the time-out period ends after the
transaction that accessed it and the following transaction
from the same process commit successfully (to rule out
cases (1) and (3) above), or else after a retry of the first
transaction has been abandoned (to rule out case (2)); how-

300

ever there might be other cm-related reference pair scenarios
not covered by these three cases. Another idea is to allow
the DBA to override a default Correlated Referenee Period
by setting a parameter for a particular table being processed.

2.1.2. The Page Reference Retained Infor-
mation Problem

We claim that there is a need in the LRU-K algorithm,
where K >2, to retain in memory a history of references for
pages that are not themselves present in buffer, a departure
from most buffer replacement algorithms of the past. To
see why this is so, consider the following scenario in the
LRU-2 algorithm. Each time a page p is referenced, it is
made buffer resident (it might already be buffer resident),
and we have a history of at least one reference. If the prior
access to page p was so long ago that we have no record of
it, then after the Conelated Referenm Period we say that our
estimate of bt(p,2) is infhit y, and make the containing
buffer slot available on demand. However, although we
may drop p from memory, we need to keep history infortna-
tion about the page around for awhile; otherwise we might
reference the page p again relatively qnicld y and once again
have no record of prior reference, drop it again, reference it
again, etc. Though the page is frequently referenced, we
would have no history about it to recognize this fact. For
this reason, we assume that the system will maintain his-
tory information about any page for some period after its
most recent access. We refer to this period as the Retained
Information Period.

If a disk page p that has never been referenced before sud-
denly becomes popular enough to be kept in buffer, we
should recognize this fact as long as two references to the
page are no more thau the Retained Information Period
apart. Though we drop the page after the first reference, we
keep information around in memory to recognize when a
second reference gives a value of b@,2) that passes our
LRU-2 criterion for retention in buffer. The page history
information kept in a memory resident data structure is des-
ignated by HIST(p), and contains the last two reference
string subscripts i and j, where ri = rj = p, or just the last
reference if onl y one is known. The assumption of a mem-
ory resident information structure may require a bit of justi-
fication. For example, why not keep the information about
the most recent references in the header of the page itself?
Clearly any time the information is needed, the page will be
buffer resident. The answer is that such a solution would
require that the page always be written back to disk when
dropped from buffer, because of updates to HIST(p); in ap-
plications with a large number of read-only accesses to in-
frequently referenced pages, which could otherwise simply
be dropped from buffer without disk writes, this would add a
large amount of overhead 1/0.

To size the Retained Information Period, we suggest using
the Five Minute Rule of [GRAYPUT] as a guideline. The
costhenefit tradeoff for keeping a 4 Kbyte page p in mem-
ory buffers is an interarrival time 1P of about 100 seconds.
Returning to discussion of LRU-2, a little thought suggests

that the Retained Information Period should be about twice
this period, since we are measuring how far back we need to
go to see two references before we drop the page. So a
canonical value for the Retained Information Period could
be about 200 seconds. We believe that this is a reasonable
rule of thumb for most database applications. High-perfor-
trtance applications may, however, choose to inercase the
buffer pool beyond the econotnicall y oriented size that
would follow from the Five Minute Rule. In such applica-
tions, the Retained Information Period should be set higher
accordingly. To determine a reasonable value, consider the
maximum Backward K-distance of all pages that we want to
ensure to be memory-resident. This value is an upper bound
for the Retained Information Period, because no conceivable
string of new references to a page after this period will en-
able the page to pass the criterion for retention in buffer.

2.1.3. Schematic Outline of the LRU-K
Buffering Algorithm

The LRU-K algorithm of Figure 2.1 is based on the follow-
ing data structures:
● HIST(p) denotes the history control block of page p; it

contains the times of the K most recent references to
page p, discounting correlated references: HIST(p,l)
denotes the time of last reference, HIST(p,2) the time
of the second to the last reference, etc.

● LAST(p) denotes the time of the most recent reference
to page p, regardless of whether this is a correlated ref-
erence or not.

These two data structures are maintained for all pages with a
Backward K-distance that is smaller than the Retained
Information Period. An asynchronous demon process should
purge history control blocks that are no longer justified un-
der the retained information criterion.

Based on these data structures, a conceptual outline of the
LRU-K algorithm in pseudo-code form is given in Figure
2.1. Note that this outline disregards 1/0 latency; a real
implementation would need more asynchronous units of
work. Also, to simplify the presentation, the outline disre-
gards additional data structures that are needed to speed up
search loops; for example, finding the page with the maxi -
mum Backward K-distance would actually be based on a
search tree. Despite the omission of such details, it is ob-
vious that the LRU-K algorithm is fairly simple and incurs
little bookkeeping overhead.

The algorithm works as follows. When a page already in
the buffer is referenced, we need only update HIST and
LAST for the page. In fact, if the page has been referenced
last within the Correlated Reference Period, we need only
update its LAST to extend the ongoing correlated reference
Per@ otherwise a significant gap in reference9 has occurred
and we need to close out the old cm-related reference period
and start a new one. To close out the old period, we
calculate its length in time, LAST(p) - HIST(p,l), a period
of correlated-reference time that we need to shrink to a
point. This contraction pulls the earlier HIST(p~) values (i
= 2,...,K) forward in time by this amount. In the same

301

loop, they are being pushed down a slot in the HIST array
to accommodate the new HIST value involved in starting a
new correlated reference paid. Finally LAST is updated to
the current time.

When a page not in the buffer is referenced, a replacement
victim must be found to free up a buffer slot. Buffer pages
currently within a correlated-reference period are ineligible
for replacement, and amoung the rest, we select the one
with the maximum backward K-distance, bt(q~), or in the
current notation, the minimum HIST(@O. This victim is

3. Optimality of the LRU-K Algorithm Under
The Independent Reference Model

In this section, we give informal arguments that the LRU-2
algorithm provides essentially optimal buffering behavior
based on the information given; this result generalizes
easily to LRU-K. A mathematical analysis of the behavior
of the LRU-K algorithm, including a proof of optimality,
is given in [OOW]. In the following, we will assume for
simplicity that the Correlated Reference Period is zero, and
that this causes no ill effects; essentially we assume that

dropped from the buffer, possibly rtiuiring write-back. correlated references have been factored out.
Th&- a HtST block is initi~ized or updated for the newly
referenced page.

‘mcedure to be invoked upon reference to page p at time c

~p is alnmdy in the buffer
km /* update histo~ information of p */
if t - LAST(p)> Correlated.Reference_Period
then /*a new, uncordated reference*/
correl_xxiod_of_refd_pge:= LAST(P) - HIST(p,l)
fori:=2to Kdo
HIST(pj) := HIST@i-1) +

correl_period_of_refd_page
cd
HIST (p,l) := t
LAST(P) := t

else /*a ccnmlated reference*/
LAST(p) := t

fi
lse /* select replacement victim*/
tin := t
for all pages q in the buffer do
if t - LAST(q)> Correlated_Reference_Period

/* if eligible for replacement*/
and HIST(q,K) < min

/* and max Backward K-distance so far */
then
victim:= q
tin:= HIST(qK)

ti
cd
if victim is dirty then

write victim back into the database ii
/* now fetch the referenced page*/
fetch p into the buffer frame previously held by victim
if HIST@) does not exist
then /* initialize history control block “/
allocate HIST@)
fori := 2 to K do HIST(pj) := O od

else
for i:= 2 to K do HIST(pj) := HIST(pj-1) od

fi
IlC3T@,l) := t
LAST(p) := t

i

Figure 2.1. Pseudo-code Outline of the LRU-K Buffering
Algorithm, Explained in Section 2.1.3

As before, we take as a starting point for our discussion the
Independent Reference Model for paging, presented in
Section 6.6 of [COFFDENN]. We take our notation from
this reference and make a few departures from the model
presented there. We begin with a set N = {1, 2,. ... n} of
disk pages and a set M = {1, 2, m} of memory
buffers, 1 s ms n. A system’s paging behavior over time
is described by its (page) reference string: rl, r2, , . . . rt, .
. ., where rt = p means that disk page p, p G N, is
referenced by the system at time t. According to the
independent reference assumption, the reference string is a
sequence of independent random variables with the common
stationary distribution {~ 1, f12,. . . . ~~, one probability
for each of then disk pages, where Pr(rt = p) = fip, for all P
C N and all subscripts t. Let the random variable dt(p)
denote the time interval forward to the next occurrence of p
in the reference string after rt; from the assumptions above,
dt(p) has the stationary geometric distribution

(3.1) pr(dt(p)= k)= 6P(1 - Bp)k-l, k= 1,2,. . .

with mean value 1P = l/~p. Note that because of
stationary assumption, Pr(dt(p) = k) is independent of t.

the

Definition 3.1. The AO Buffering Algorithm.
Let Ao denote the buffering algorithm that replaces the
buffered page p in memory whose expected value 1P is a
maximum, i.e., the page for which flp is smallest. %

Theorem 3.2. [COFFDENN] [ADU]
Algorithm Ao is optimal under the independent reference
assumption. %

Now consider a reference string o = r 1, r2, rt,
with some reference probability vector fl = {~ 1, ~2,
13n} for then disk pages of N. To reflect the normal state
of ignorance concerning reference probabilities with which a
buffering algorithm starts, we cannot assume foreknowledge
of the pi. In this situation, the best we can do is to
statistically estimate pi for each page i, based on a history
of references to the page. It turns out that the analysis to
derive a statistical estimate of Pi allows us to derive certain
ordinal properties of these quantities. In particular, given
any reference probability vector ~ with at least two distinct
values, we are able to conclude that for any two disk pages

302

x and y, if bt(x~) < bt(y~), then the page x has a higher
estimate for probability of reference.

This result does not allow us to estimate the absolute
values of the various pi, but it is sufficient to order the pi
values of different pages and to determine the page with the
lowest pi wdue. Among all pages currently held in buffer,
the page x with the highest backward K-distance has the
lowest estimated reference probability. Note that this is the
best possible statistical estimation of the ordinal properties
of the Pi values, given ord y the knowledge of the last K
references to a page.

We know from Theorem 3.2 that it is optimal to replace
the page with the lowest reference probability whenever we
need to drop a page in order to free up a buffer frame for a
new page; this is the Ao algorithm. It seems reasonable
that the best possible approximation of AtI would have us
drop the page x with the lowest estimated reference
probability, which is the page with the highest backward K-
distance according to the above argument; this is the LRU-
K algorithm. In fact, the main result of [OOW] is very
close to this reasonable-sounding statement

Theorem 3.3. [OOW]
Under the independent page reference assumption, and given
knowledge of the last K references to the pages in buffer,
the expected cost resulting from the LRU-K algorithm
acting with m memory buffers is less than that resulting
from any other algorithm acting with m-1 buffers. X

Thus LRU-K acts optimally in all but (perhaps) one of its
m buffer slots, an insignificant coast increment for large m.
Note that this result on LRU-K applies equally to LRU- 1.
In particular, the LRU algorithm is seen to act optimally
(under the independent page reference assumption), given
the limited knowledge it has of the most recent reference
time.

4. Performance Characteristics.

A prototype implementation of the LRU-2 algorithm was
funded by the Amdald Corporation to investigate optixual
alternatives for efficient buffer behavior in the Huron
database product. Minor alterations in the prototype per-
mitted us to simulate LRU-K behavior, K z 1, in several
situations of interest. We investigated three types of work-
load situations:

a synthetic workload with references to two pools of
pages that have different reference fmpncies, modeling
Example 1.1,
as ynthetic workload with random references to a set of
pages with a Zipfian distribution of reference frequen-
cies, and
a real-life OLTP workload sample with random, se-
quential, and navigational references to a CODASYL
database.

These three experiments are discussed in the following three
subsections.

4.1 Two Pool Experiment

We considered two pools of disk pages, Pool 1 with N1
pages and Pool 2 with N2 pages, with N1 < N2. In this
two pool experiment, alternating references are made to
Pool 1 and Pool 2; then a page from that pool is randomly
chosen to be the sequence element. Thus each page of Pool
1 has a probability of reference bl = l/(2Nl) of occurring
as any element of the reference string w, and each page of
Pool 2 has probability b2 = l/(2N2). This experiment is
meant to model the alternating references to index and record
pages of Example 1.1: 11, Rl, 12, R2, 13, R3, We
wish to demonstrate how LRU-K rdgorithms with varying
K discriminate between pages of the two pools, and how
well they perform in retaining the more frequently refer-
enced pool pages (the hotter pool pages) in buffer. The
buffer hit ratios for the various algorithms in identical cir-
cumstances give us a good measure of the effectiveness of
the LRU-K algorithm, for varying K. The optimal algo
rithm AfJ which automatically y keeps the maximum possi-
ble set of pool 1 pages buffer resident was also measured.

The buffer hit ratio for each algorithm was evaluated by
first allowing the algorithm to reach a quasi-stable state,
dropping the initial set of 10”N1 references, and then mea-
suring the next T = 30.N 1 references. If the number of
such references finding the requested page in buffer is given
by h, then the cache hit ratio C is given by:

c =hl T

In addition to measuring cache hit ratios, the two algo-
rithms LRU- 1 and LRU-2 were also compared in terms of
their cost/performance ratios, as follows. For a given Nl,
N2 and buffer size B(2), if LRU-2 achieves a cache hit ratio
C(2), we expect that LRU-1 will achieve a smaller cache hit
ratio. But by increasing the number of buffer pages avail-
able, LRU- 1 will eventually achieve an equivalent cache hit
ratio, and we say that this happens when the number of
buffer pagea equals B(l). Then the ratio B(l)/B(2), of buffer
sizes which give the same effective hit ratio, is a measure
of comparable buffering effectiveness of the two algo-
rithms. We expect that B(l)/B(2) > 1.0, and a value of
2.0, for example, indicates that while LRU-2 achieves a cer-
tain cache hit ratio with B(2) buffer pages, LRU- 1 must use
twice as many buffer pages to achieve the same hit ratio.

The results of this simulation study are shown in Table
4,1, where NI = 100 and N2 = 10,000.

303

140 0.29 0.502 0.502 0.502 3.2
160 0.32 0.503 0.503 0.503 2.8
180 0.34 0.504 0.504 0.504 2.5
200 0.37 0.505 0.505 0.505 2.3
250 0.42 0.508 0.508 0.508 2.2
300 0.45 0.510 0.510 0.510 2.0
350 0.48 0.513 0.513 0.513 1.9
400 0.49 0.515 0.515 0.515 1.9
450 0.50 0.517 0.518 0.518 1.8

Table 4.1. Simulation results of the two pool experiment,
with disk page pools of N1 = 100 pages and N2 = 10,000
pages. The first column shows the buffer size B. The
second through fifth c&unns show the hit ratios of LRU- 1,
LRU-2, LRU-3, and AO. The last column shows the equi-
effective buffer size ratio B(1)/B(2) of LRU- 1 vs. LRU-2.

Consider B(l)/B(2) on the top row of Table 4.1. The B(2)
value corresponds to the B of that row, 60, where we mea-
sure LRU-2 having a cache hit ratio of 0.291; to achieve
the same cache hit ratio with LRU-1 requires approximately
140 pages (therefore B(1) = 140), and so 2.3 = 140/60.
LRU-2 outperforms LRU- 1 by more than a factor of 2 with
respect to this cosdpetiormance metric. We also note from
this experiment that the results of LRU-3 are even closer to
those of the optimum policy AO, compared to the results of
LRU-2. In fact, it is possible to prove, with stable page ac-
cess patterns, that LRU-K approaches AO with increasing
value of K. For evolving access patterm, however, LRU-3
is less responsive than LRU-2 in the sense that it needs
more references to adapt itself to dynamic changes of refer-
ence frequencies. For this reason, we advocate LRU-2 as a
generally efficient policy. The general LRU-K with K >2,
could be of value for special applications, but this requires
further investigation.

For readers who feel that pools of 100 pages and 10,000
pages, as well as a buffer count B in the range of 100 are
unrealistically small for modern applications, note that the
same results hold if all page numbers, NI, N2 and B are
multiplied by 1000. The smaller numbers were used in
simulation to save effort.

4.2 Zipfian Random Access Experiment

The second experiment investigated the effectiveness of
LRU-K for a single pool of pages with skewed random ac-
cess. We generated references to N = 1000 pages (numbered
1 through N) with a Zipfian distribution of reference fre-
quencies; that is, the probability for referencing a page with
page number less than or equal to i is (i/N) log a / log b
with constants a and b between O and 1 [CKS, KNUTH, p.

398]. The meaning of the constants a and b is that a frae
tion a of the references accesses a fraction b of the N pages
(and the same relationship holds recursively within the fra&
tion b of hotter pages and the fraction l-b of colder pages).
Table 4.2 compares the buffer hit ratios for LRU-1, LRU-2,
and A() at different buffer sizes, as well as the equi-effective
buffer size ratio B(l)/B(2) of LRU- 1 versus LRU-2 for a =
0.8 and b = 0.2 (i.e., 80-20 skew).

\
40 I 0.53 I 0.61 O.&o ‘ ‘2.0’
60 0.57 0.65 0.677 2.2
80 0.61 0.67 0.705 2.1
100 0.63 0.68 0.727 1.6
120 0.64 0.71 0.745 1.5
140 0.67 0.72 0.761 1.4
160 0.70 0.74 0,776 1.5
180 0.71 0.73 0.788 1.2
200 0.72 0.76 0.825 1.3
300 I 0.78 I 0.80 I 0.846 I 1.1-
500 0.87 0.87 0.908 1.0 I

Table 4.2. Simulation results on buffer cache hit ratios for
random access with Zipfiau 80-20 distribution to a disk
page pool of N=1OOO pages.

As in the two pool experiment of Section 4.1, LRU-2
achieved significant improvements in terms of the hit ratio
at a fixed buffer size and also in terms of the
cost/performance ratio. Compared to the results of Section
4.1, the gains of LRU-2 are a littler lower, because the
skew of this Zipfian random access experiment is actually
milder than the skew of the two pool experiment. (The two
pool workload of Section 4.1 roughly corresponds to a =
0.5 and b = 0.01; however, within the b and l-b fractions
of pages, the references are uniformly distributed.)

4.3 OLTP Trace Experiment

The third experiment was based on a one-hour page refer-
ence trace of the production OLTP system of a large bank.
This trace contained approximately 470,000 page references
to a CODASYL database with a total size of 20 Gigabytes.
The trace was fed into our simulation model, and we com-
pared the performance of LRU-2, classical LRU- 1, and also
LFU. The results of this experiment, hit ratios for different
buffer sizes B and the equi-effective buffer size ratio
B(l)/B(2) of LRU-1 versus LRU-2, are shown in Table 4.3.

LRU-2 was superior to both LRU and LFU throughout the
spectrum of buffer sizes. At small buffer sizes (S 600),
LRU-2 improved the buffer hit ratio by more than a factor
of 2, compared to LRU- 1. Furthermore, the B(l)/B(2) ratios
in this range of buffer sizes show that LRU- 1 would have
to increase the buffer size by more than a factor of 2 to
achieve the same hit ratio as LRU-2.

304

Table 4.3. Simulation results on buffer cache hit ratios
using an OLTP trace.

The performance of LFU was surprisingly good. The LFU
policy to keep the pages with the highest reference fre-
quency is indeed the right criterion for stable access pat-
terns. However, the inherent drawback of LFU is that it
never “forgets” any previous references when it compares
the priorities of pages; so it does not adapt itself to evolv-
ing access patterns. For this reason, LFU performed still
significantly worse than the LRU-2 algorithm, which dy-
namically tracks the recent reference frequencies of pages.
Note, however, that the OLTP workload in this experiment
exhibited fairly stable access patterns. In applications with
dynamically moving hot spots, the LRU-2 algorithm would
outperform LFU even more significantly.

At large buffer sizes (> 3000), the differences in the hit ra-
tios of the three policies became insignificant. So one may
wonder if the superiority of LRU-2 at small buffer sizes is
indeed relevant. The answer to this question is in the charaG
teristica of the OLTP trace (which is probabl y quite typical
for a large class of application workloads). The trace ex-
hibits an extremely high access skew for the hottest pages:
for example, 4090 of the references access only 3% of the
database pages that were accessed in the trace. For higher
fractions of the references, this access skew flattens out for
example, 9(Y%o of the references access 6570 of the pages,
which would no longer be considered as heavily skewed. An
analysis of the trace showed that only about 1400 pages sat-
isf y the criterion of the Five Minute Rule to be kept in
memory (i.e., are re-referenced within 100 seconds, see
Section 2.1.2). Thus, a buffer size of 1400 pages is acturdly
the economical y optimal configuration. There is no point
in increasing the buffer size to keep additional pages once
locality flattens out. The LRU-2 algorithm keeps this pool
of 1400 hot pages memory resident, at a memory cost of
only two thirds of the cost of the classical LRU algorithm
(i.e., B(l)/B(2) = 1.5 for B=1400).

5. Concluding Remarks

In this paper we have introduced a new &tabase buffering
algorithm named LRU-K. Our simulation results provide
evidence that the LRU-K algorithm has significant
costlperformance advantages over conventional algorithms
like LRU, since LRU-K can discriminate better between fre-
quently referenced and infrequently referenced pages. Unlike
the approach of manually tuning the assignment of page
pools to multiple buffer pools, our algorithm is self-reliant
in that it does not depend on any external hints. Unlike the
approaches that aim to derive hints to the buffer manager
automatically y from the analysis of query execution plans,
our algorithm considers also inter-transaction locality in
multi-user systems. Finally, unlike LFU and its variants,
our algorithm copes well with evolving access patterns
such as moving hot spots.

One of the new concepts of our approach is that page his-
tory information is kept past page residence. But clearly
this is the only way we can guarantee that a page referenced
with metronome-like regtdarit y at intervals just above its
residence period will ever be noticed as referenced twice. It
is an open issue how much space we should set aside for
history control blocks of non-resident pages. While esti-
mates for an upper bound can be derived from workload
properties and the specified Retained Information Period, a
better approach would be to turn buffer frames into history
control blocks dynamically, and vice versa,

The development of the LRU-K algorithm was mostly mo-
tivated by OLTP applications, decision-support applications
on large relational databases, and especiall y combinations of
these two workload categories. We believe, however, that
the potential leverage of our algorithm maybe even higher
for non-conventional engineering and scientific databases.
The reason is that buffer management for such applications
is inherentl y harder because of the higher diversity of aaess
patterns. The page pool tuning approach outlined in
Section 1 is clearly infeasible for this purpose. The ap-
proaches that derive buffer manager hints from the analysis
of query execution plans are questionable, too, for the fol-
lowing reason. Non-conventional database applications of
the mentioned kind will probably make heavy use of user-
defined functions, as supported by object-oriented and exten-
sible database systems. Unlike relational queries, the access
patterns of these user-defined functions cannot be pre-ana-
Iyzed if the functions are coded in a general-purpxe pro-
gramming language (typically, in C++). Thus, advanced
applications of post-relational database systems call for a
truly self-reliant buffer management algorithm. The LRU-
K algorithm is such a self-tuning and adaptive buffering al-
Qorithm, even in the presence of evolving access patterns.
%e believe that LRU-K is a good camt”date to
challenges of next-generation buffer rnauagement.

meet the

305

References

[ABG] Rafael Alonso, Daniel Barbara, Hector Garcia-
Molina, Data Caching Issues in an Information Retrieval
System, ACM Transactions on Database Systems, v. 15,
no. 3, pp. 359-384, September 1990.
[ADU] Alfred V. Aho, Peter J. Denning, and Jeffrey D.
Ullmam Principles of Optimal Page Replacement. J.
ACM, v, 18, no. 1, pp. 80-93, 1971.
[CHAKA] Ellis E. Chang, Randy H. Katz, Exploiting
Inheritance and Structure Semantim for Effective Clustering
and Buffering in an Object-Oriented DBMS, Proceedings of
the 1989 ACM SIGMOD Conference, pp. 348-357.
[CHOUDEW] Hong-Tai Chou and David J. DeWitC An
Evaluation of Buffer Management Strategies for Relational
Database Systems. Proceedings of the Eleventh
International Conference on Very Large Databases, pp. 127-
141, August 1985.
[CKS] George Copeland, Tom Keller, and Marc Smith
Database Buffer and Disk Con@uring and the Battle of the
Bottlenecks. Proceedings of the Fourth International
Workshop on High Performance Transaction Systems,
September 1991.
[COL] C.Y. Chan, B.C. Ooi, H. Lu, Extensible Buffer
Management of Indexes, Proceedings of the Eighteenth
International Conference on Very Large Data Bases, pp.
444-454, August 1992.
[COFFDENN] Edward G. Coffman, Jr. and Peter J.
Denning Operating Systems Theory. Prentice-Hall, 1973.
[DANTOWS] Asit Dan and Don Towsley: An
Approximate Anal ysis of the LRU and FIFO Buffer
Replacement Schemes. Proceedings of the 1990 ACM
Sigmetrics Conference, v. 18, No. 1, pp. 143-149.
@XNNING] P. J. Denning: The Working Set Model for
Program Behavior. Communications of the ACM, v. 11,
no. 5, pp. 323-333, 1968.
~ER] Wolfgang Effelsberg and Theo Haerder:
Principles of Database Buffer Management. ACM
Transactions on Database Systems, v. 9, no. 4, pp. 560-
595, December 1984.
[@?NS] Christos Faloutsos, Raymond Ng, and Times
Sellis, Predictive Load Control for Flexible Buffer
Allocation, Proceedings of the Seventeenth International
Conference on Very Large Data Bases, pp. 265-274,
September 1991.
[GRAYPUT] Jim Gray and Franco Putzolu: The Five
Minute Rule for Trading Memory for Disk Accesses and
The 10 Byte Rule for Trading Memory for CPU Time.
Proceedings of the 1987 ACM SIGMOD Conference, pp.
395-398.
US] Laura M. Haas et al., Starburst Mid-Flight: As
the Dust Clears, IEEE Transactions on Knowledge and Data
Engineering, v. 2, no. 1, pp. 143-160, March 1990.
[JCL] R. Jauhari, M. Carey. M. Livny, Priority-Hints: An
Algorithm for Priority-Based Buffer Management,
Proceedings of the Sixteenth International Conference on
Very Large Data Bases, August 1990.

[KNUTH] D.E. Knuth, The Art of Computer
Programming, Volume 3: Sorting and Searching, Addison-
Wesley, 1973.
~S] Raymond Ng, Christos Faloutsos, T. Sellis,
Flexible Buffer Allocation Based on Marginal Gains,
Proceedings of the 1991 ACM SIGMOD Conference, pp.
387-3%.
[OOW] Elizabeth O’Neil, Patrick O’Neil, and Gerhard
Weikum, The LRU-K Page Replacement Algorithm for
Database Disk Buffering, Teeh. Report 92-4, Department of
Mathematics and Computer Science, University of
Massachusetts at Boston, December 1,1992.
~AZDO] Mark Palmer, Stanley B. Zdonik, Fide: A Cache
That Learns to Fetch, Proceedings of the Seventeenth
International Conference on Very Large Databases, pp. 255-
264, September 1991.
~ITER] Allen Reitec A Study of Buffer Management
Policies for Data Management Systems. Tech. Summary
Rep. No. 1619, Mathematics Research Center, Univ. of
Wiswnsin, Madison, March 1976.
[ROBDEV] John T. Robinson and Murtha V.
Devarakondrc Data Cache Management Using Frequency-
Based Replacement. Proceedings of the 1990 ACM
Sigmetries Conference, v. 18, No. 1, pp. 134-142.
[SACSCHj Giovanni Mario Saceo and Mario Schkolnick:
Buffer Management in Relational Database Systems, ACM
Transactions on Database Systems, v. 11, no. 4, pp. 473-
498, December 1986.
[SHASHA] Dennis E. Shasha, Database Tuning: A
I?rineipled Approach, Prentice Hall, 1992.
[STONl Michael Stonebraker Operating System Support
for Database Management. Communications of the ACM,
v. 24, no. 7, pp. 412-418, July 1981.
~ENGGUNfj J.Z. Teng, R.A. Gumaer, Managing IBM
Database 2 Buffers to Maximize Performance, IBM
Systems Journal, v. 23, n. 2, pp. 211-218, 1984.
PC-A] Transaction Processing Performance Council
(TPC): TPC BENCHMARK A Standard Specification.
The Performance Handbook for Database and Transaction
Processing Systems, Morgan Kaufmanu 1991.
~UCORN] P.S. Yu, D.W. Cornell, Optimal Buffer
Allocation in a Multi-query Environment, Proceedings of
the Seventh International Conference on Data Engineering,
PP. 622-631, April 1991.

306

