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ABSTRACT
Flash solid state drives (SSDs) provide an attractive alter-
native to traditional magnetic hard disk drives (HDDs) for
DBMS applications. Naturally there is substantial interest
in redesigning critical database internals, such as join algo-
rithms, for flash SSDs. However, we must carefully consider
the lessons that we have learnt from over three decades of
designing and tuning algorithms for magnetic HDD-based
systems, so that we continue to reuse techniques that worked
for magnetic HDDs and also work with flash SSDs.

The focus of this paper is on recalling some of these lessons
in the context of ad hoc join algorithms. Based on an ac-
tual implementation of four common ad hoc join algorithms
on both a magnetic HDD and a flash SSD, we show that
many of the “surprising” results from magnetic HDD-based
join methods also hold for flash SSDs. These results include
the superiority of block nested loops join over sort-merge
join and Grace hash join in many cases, and the benefits of
blocked I/Os. In addition, we find that simply looking at the
I/O costs when designing new flash SSD join algorithms can
be problematic, as the CPU cost is often a bigger component
of the total join cost with SSDs. We hope that these results
provide insights and better starting points for researchers
designing new join algorithms for flash SSDs.

1. INTRODUCTION
Flash solid state drives (SSDs) are actively being consid-

ered as storage alternatives to replace or dramatically reduce
the central role of magnetic hard disk drives (HDDs) as the
main choice for storing persistent data. Jim Gray’s predic-
tion of “Flash is disk, disk is tape, and tape is dead” [7] is
coming close to reality in many applications. Flash SSDs,
which are made by packaging (NAND) flash chips, offer sev-
eral advantages over magnetic HDDs including faster ran-
dom reads and lower power consumption. Moreover, as flash
densities continue to double as predicted in [9], and prices
continue to drop, the appeal of flash SSDs for DBMSs in-
creases. In fact, vendors such as Fusion-IO and HP sell flash-
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based devices as I/O accelerators for many data-intensive
workloads.

The appeal of flash SSDs is also attracting interest in re-
designing various aspects of DBMS internals for flash SSDs.
One such aspect that is becoming attractive as a research
topic is join processing algorithms, as it is well–known that
joins can be expensive and can play a critical role in deter-
mining the overall performance of the DBMS. While such
efforts are well-motivated, we want to approach a redesign
of database query processing algorithms by clearly recalling
the lessons that the community has learnt from over three
decades of research in query processing algorithms. The fo-
cus of this paper is on recalling some of the important lessons
that we have learnt about efficient join processing in mag-
netic HDDs, and determining if these lessons also apply to
joins using flash SSDs. In addition, if previous techniques
for tuning and improving the join performance also work for
flash SSDs, then it also changes what are interesting starting
point for comparing new SSD-based join algorithms.

In the case of join algorithms, a lot is known about how
to optimize joins with magnetic HDDs to use the available
buffer memory effectively, and to account for the characteris-
tics of the I/O subsystem. Specifically, the paper by Haas et
al. [8] derives detailed formulae for buffer allocation for var-
ious phases of common join algorithms such as block nested
loops join, sort-merge join, Grace hash join, and hybrid hash
join. Their results show that the right buffer pool allocation
strategy can have a huge impact – upto 400% improvements
in some cases. Furthermore, the relative performance of the
join algorithms changes once you optimize the buffer alloca-
tions – block nested loops join is much more versatile, and
Grace hash join is often not very competitive.

The dangers of forgetting these lessons could lead to an
incorrect starting point for comparing new flash SSD join
algorithms. For example, the comparison of RARE-join [16]
with Grace hash join [10] to show the superiority of the
RARE-join algorithm on flash SSDs is potentially not the
right starting point. (It is possible that the RARE-join is
superior to the best magnetic HDD-based join method when
run over flash SSDs, but this question has not been answered
conclusively.) As we show in this paper, in fact even block
nested loops join far outperforms Grace hash join in most
cases, on both magnetic HDDs and flash SSDs. Cautiously,
we note that we have only tried one specific magnetic HDD
and one specific flash SSD, but even this very first test pro-
duced interesting results. (As part of future work, we want
to look at wider range of hardware for both flash SSDs and
magnetic HDDs.)



The focus of this paper in on investigating four popular
ad hoc join algorithms, namely block nested loops join, sort-
merge join, Grace hash join, and hybrid hash join, on both
flash SSDs and magnetic HDDs. We start with the best
buffer allocation methods that are proposed in [8] for these
join algorithms, and first ask the question: What changes
for these algorithms as we replace a magnetic HDD with a
flash SSD? Then, we study the effect of changing the buffer
pool sizes and the page sizes and examine the impact of
these changes on these join algorithms. Our results show
that many of the techniques that were invented for joins on
magnetic HDDs continue to hold for flash SSDs. As an ex-
ample, blocked I/O is useful on both magnetic HDDs and
flash SSDs, though for different reasons. In the case of mag-
netic HDDs, the use of blocked I/O amortizes the cost of
disk seeks and rotational delays. On the other hand, the
benefit of blocked I/O with flash SSDs comes from amortiz-
ing the latency associated with the software layers of flash
SSDs, and generating fewer erase operations when writing
data.

The remainder of this paper is organized as follows. In
Section 2, we briefly introduce the characteristics of flash
SSDs. Then we introduce the four classic join algorithms
with appropriate assumptions and buffer allocation strate-
gies in Section 3. In Section 4, we explain and discuss the
experimental results. After reviewing related work in Sec-
tion 5, we conclude in Section 6.

2. CHARACTERISTICS OF FLASH SSD
Flash SSDs are based on NAND flash memory chips and

use a controller to provide a persistent block device inter-
face. A flash chip stores information in an array of memory
cells. A chip is divided into a number of flash blocks, and
each flash block contains several flash pages. Each memory
cell is set to 1 by default. To change the value to 0, the
entire block has to be erased by setting it to 1, followed by
selectively programming the desired cells to 0. Read and
write operations are performed at the granularity of a flash
page. On the other hand, the time-consuming erase opera-
tions can only be done at the level of a flash block. Consid-
ering the typical size of a flash page (4 KB) and a flash block
(64 flash pages), the erase-before-write constraint can signif-
icantly degrade write performance. In addition, most flash
chips only support 105∼106 erase operations per flash block.
Therefore, erase operations should be distributed across the
flash blocks to prolong the service life of flash chips. These
kinds of constraints are handled by a software layer known
as flash translation layer (FTL).

The major role of the FTL is to provide address mappings
between the logical block addresses (LBAs) and flash pages.
The FTL maintains two kinds of data structures: A direct
map from LBAs to flash pages, and an inverse map for re-
building the direct map during recovery. While the inverse
map is stored on flash, the direct map is stored on flash and
at least partially in RAM to support fast lookups. If the
necessary portion of the direct map is not in RAM, it must
be swapped in from flash as required.

While flash SSDs have no mechanically moving parts, data
access still incurs some latency, due to overheads associated
with the FTL logic. However, latencies of flash SSDs are
typically much smaller than those of magnetic HDDs [4].

3. JOINS
In this section, we introduce four classic ad hoc join algo-

rithms that we consider in this paper, namely: block nested
loops join, sort-merge join, Grace hash join, and hybrid hash
join. The two relations being joined are denoted as R and
S. We use |R|, |S | and B to denote the sizes of the relations
and the buffer pool size in pages, respectively. We also as-
sume that |R|≤|S |. Each join algorithm needs some extra
space to build and maintain specific data structures such as
a hash table or a tournament tree. In order to model these
structures, we use a multiplicative fudge factor, denoted as
F.

Next we briefly describe each join algorithm. We also out-
line the buffer allocation strategy for each join algorithm.
The I/O costs for writing the final results are omitted in the
discussion below, as this cost is identical for all join meth-
ods. For the buffer allocation strategy we directly use the
recommendations by Haas et al. [8] (for magnetic HDDs),
which shows that optimizing buffer allocations can dramat-
ically improve the performance of join algorithms (by 400%
in some cases).

3.1 Block Nested Loops Join
Block nested loops join first logically splits the smaller

relation R into same size chunks. For each chunk of R that
is read, a hash table is built to efficiently find matching pairs
of tuples. Then, all of S is scanned, and the hash table
is probed with the tuples. To model the additional space
required to build a hash table for a chunk of R we use the
fudge factor F, so a chunk of size |C | pages uses F |C | pages
in memory to store a hash table on C.

The buffer pool is simply divided into two spaces; one
space, Iouter, is for an input buffer with a hash table for
R chunks, and another one, Iinner, is for an input buffer
to scan S. Note that reading R in chunks of size Iouter

F
(=

|C |) guarantees sufficient memory to build a hash table in
memory for that chunk [5].

3.2 Sort-Merge Join
Sort-merge join starts by producing sorted runs of each

R and S. After R and S are sorted into runs on disk, sort-
merge join reads the runs of both relations and merges/joins
them. We use the tournament sort (a.k.a. heap sort) in the
first pass, which produces runs that on average are twice the
size of the memory used for the initial sorting [11]. We also

assume B >
p

F |S| so that the sort-merge join, which uses
a tournament tree, can be executed in two passes [17].

In the first pass, the buffer pool is divided into three parts:
an input buffer, an output buffer, and working space (WS)
to maintain the tournament tree. During the second pass,
the buffer pool is split across all the runs of R and S as
evenly as possible.

3.3 Grace Hash Join
Grace hash join has two phases. In the first phase, it

reads each relation, applies a hash function to the input
tuples, and hashes tuples into buckets that are written to
disk. In the second phase, the first bucket of R is loaded
into the buffer pool, and a hash table is built on it. Then,
the corresponding bucket of S is read and used to probe the
hash table. Remaining buckets of R and S are handled in
the same way iteratively. We assume B >

p

F |R| to allow
for a two-phase Grace hash join [17].



Join Algorithm First Phase/Pass Second Phase/Pass

Block Nested Loops Join

Iinner = ⌈
√

y|S|(y|S|+B(y+|S|))−y|S|
y+|S| ⌉

y = Dl
Dx

Iouter = B − Iinner

Sort-Merge Join

I = O = ⌈ (
√

2z−4)·B
z−8

⌉ I ≃ ⌊ B
NR+NS

⌋
z = (Dl+Ds)·F (|R|+|S|)

Dl·B
WS = B − I − O

Grace Hash Join

k = ⌈ |R|F+
√

|R|2F2+4B|R|F
2B

⌉ WS′ ≃ ⌈F |R|
k

⌉
O = ⌊ B

k+1
⌋ I = B − WS′

I = B − k · O

Hybrid Hash Join

I = O = ⌈1.1
√

B⌉ WS′ ≃ ⌈F |R|−WS

k
⌉

k = ⌈F |R|−(B−I)
B−I−O

⌉ I = B − WS′

WS = B − I − k · O

Table 1: Buffer allocations for join algorithms from Haas et al. [8]: Ds, Dl, and Dx denote average seek time, latency, and
page transfer time for magnetic HDDs, respectively

There are two sections in the buffer pool during the first
partitioning phase: one input buffer and an output buffer
for each of the k buckets. We subdivide the output buffer as
evenly as possible based on the number of buckets, and then
give the remaining pages, if any, to the input buffer. In the
second phase, a portion of the buffer pool (WS’ ) is used for
the ith bucket of R and its hash table, and the remaining
pages are chosen as input buffer pages to read S.

3.4 Hybrid Hash Join
As in the Grace hash join, there are two phases in this

algorithm, assuming M >
p

F |R|. In the first phase, the
relation R is read and hashed into buckets. Since a portion
of the buffer pool is reserved for an in-memory hash bucket
for R, this bucket of R is not written to a storage device
while the other buckets are. Furthermore, as S is read and
hashed, tuples of S matching with the in-memory R bucket
can be joined immediately, and need not be written to disk.
The second phase is the same as Grace hash join.

During the first phase, the buffer pool is divided into three
parts: one for the input, one for the output of k buckets ex-
cluding the in-memory bucket, and the working space (WS)
for the in-memory bucket. The buffer allocation scheme for
the second phase is the same as Grace hash join.

3.5 Buffer Allocation
Table 1 shows the optimal buffer allocations for the four

join algorithms, for each phase of these algorithms. Note
that block nested loops join does not distinguish between
the different passes.

In this paper, we use the same buffer allocation method
for both flash SSDs and magnetic HDDs. While these allo-
cations may not be optimal for flash SSDs, our goal here is
to start with the best allocation strategy for magnetic HDDs
and explore what happens if we simply use the same settings
when replacing a magnetic HDD with a flash SSD.

Comments Values

Magnetic HDD cost 129.99 $ (0.36 $/GB)

Magnetic HDD average seek time 12 ms

Magnetic HDD latency 5.56 ms

Magnetic HDD transfer rate 34 MB/s

Flash SSD cost 230.99 $ (3.85 $/GB)

Flash SSD latency 0.35 ms

Flash SSD read transfer rate 120 MB/s

Flash SSD write transfer rate 80 MB/s

Page size 2 KB ∼ 32 KB

Buffer pool size 100 MB ∼ 600 MB

Fudge Factor 1.2

orders table size 5 GB

customer table size 730 MB

Table 2: Device characteristics and parameter values

4. EXPERIMENTS
In this section, we compare the performance of the join

algorithms using the optimal buffer allocations when using
a magnetic HDD and a flash SSD for storing the input data
sets. Each data point presented here is the average over
three runs.

4.1 Experimental Setup
We implemented a single-thread and light-weight database

engine that uses the SQLite3 [1] page format for storing re-
lational data in heap files. Each heap file is stored as a file
in the operating system, and the average page utilization is
80%. Our engine has a buffer pool that allows us to control
the allocation of pages to the different components of the
join algorithms. The engine has no concurrency control or
recovery mechanisms.

Our experiments were performed on a Dual Core 3.2GHz
Intel Pentium machine with 1 GB of RAM running Red Hat
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(b) Flash SSD

Figure 1: Varying the size of the buffer pool (8 KB page, blocked I/O)

Buffer Pool Size

100 MB 200 MB 300 MB 400 MB 500 MB 600 MB

Algorithms Join I/O Join I/O Join I/O Join I/O Join I/O Join I/O

BNL 1.64X 2.86X 1.59X 2.62X 1.72X 3.04X 1.73X 2.87X 1.67X 2.79X 1.65X 2.61X

SM 1.41X 1.81X 1.45X 2.05X 1.44X 2.06X 1.45X 2.08X 1.43X 2.04X 1.48X 2.20X

GH 1.34X 1.54X 1.29X 1.59X 1.41X 1.62X 1.33X 1.62X 1.39x 1.77X 1.30X 1.55X

HH 1.45X 1.77X 1.55X 1.90X 1.35X 1.51X 1.51X 1.89X 1.50x 1.78X 1.65X 2.09X

Table 3: Speedups of total join times and I/O times with flash SSDs

Enterprise 5. For the comparison, we used a 5400 RPM
TOSHIBA 320 GB external HDD and a OCZ Core Series
60GB SATA II 2.5 inch flash SSD.

We used wall clock time as a measure of execution time,
and calculated the I/O time by subtracting the reported
CPU time from the wall clock time. Since synchronous I/Os
were used for all tests, we assumed that there is no overlap
between the I/O and the computation. We also used di-
rect I/Os so that the database engine transfers data directly
from/to the buffer pool bypassing the OS cache (so there
is no prefetching and double buffering). With this setup all
join numbers repeated here are “cold” numbers.

4.2 Data Set and Join Query
As our test query, we used a primary/foreign key join be-

tween the TPC-H [2] customer and the orders tables, gen-
erated with a scale factor of 30. The customer table con-
tains 4,500,000 tuples (730 MB), and the orders table has
45,000,000 (5 GB). Each tuple of both tables contains an
unsigned 4 byte integer key (the customer key), and an av-
erage 130 and 90 bytes of padding for the customer and the
orders tables respectively. The data for both tables were
stored in random order in the corresponding heap files.

Characteristics of the magnetic HDD and the flash SSD,
and parameter values used in these experiments are shown
in Table 2.

4.3 Effect of Varying the Buffer Pool Size
The effect of varying the buffer pool size from 100 MB to

600 MB is shown in Figure 1, for both the magnetic HDD
and the flash SSD. We also used blocked I/O to sequentially
read and write multiple pages in each I/O operation. The
size of the I/O block is calculated for each algorithm using
the equations shown in Table 1.

In Figure 1 error bars denote the minimum and the max-
imum measured I/O times (across the three runs). Note
that the error bars for the CPU times are omitted, as their
variation is usually less than 1% of the total join time.

Table 3 shows the speedup of the total join times and
the I/O times of the four join algorithms under different
buffer pool sizes. The results in Table 3 show that replacing
the magnetic HDD with the flash SSD benefits all the join
methods. The block nested loops join whose I/O pattern
is sequential reads shows the biggest performance improve-
ment, with speedup factors between 1.59X to 1.73X. (Inter-
estingly, a case can be made that for sequential reads and
writes, comparable or much higher speedups can be achieved
with striped magnetic HDDs, for the same $ cost [15].)

Other join algorithms also performed better on the flash
SSD compared to the magnetic HDD, with smaller speedup
improvements than the block nested loops join. This is be-
cause the write transfer rate is slower than the read transfer
rate on the flash SSD (See Table 2), and unexpected erase
operations might degrade write performance further.



Algorithms

Sort-Merge Join Grace Hash Join Hybrid Hash Join

Buffer Pool Size First Phase Second Phase First Phase Second Phase First Phase Second Phase

100 MB 1.52X 3.00X 1.34X 2.27X 1.57X 2.61X

200 MB 1.83X 2.81X 1.43X 2.19X 1.66X 3.09X

300 MB 1.86X 2.79X 1.47X 2.12X 1.34X 2.32X

400 MB 1.90X 2.63X 1.47X 2.13X 1.70X 2.91X

500 MB 1.81X 2.86X 1.59X 2.44X 1.63X 2.83X

600 MB 2.00X 2.89X 1.31X 2.68X 1.98X 2.84X

Table 4: Speedups of I/O times with flash SSDs, broken down by the first and second phases
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(b) Flash SSD

Figure 2: Varying the page size (500 MB Buffer Pool, blocked I/O)

As an example, different I/O speedups were achieved in
the first and the second phases of the sort-merge join as
shown in Table 4. While the I/O speedup of the second
phase was between 2.63X and 3.0X due to faster random
reads, the I/O speedup in the first phase (that has sequen-
tial writes as the dominant I/O pattern), was only between
1.52X and 2.0X, which reduced the overall speedup for sort-
merge join.

In the case of Grace hash join, all the phases were exe-
cuted with lower I/O speedups than those of the sort-merge
join (See Table 4). Note that the dominant I/O pattern
of Grace hash join is random writes in the first phase, fol-
lowed by sequential reads in the second phase. While the
I/O speedup between 2.12X and 2.68X was observed for the
second phase of Grace hash join, the I/O speedup of its first
phase was only between 1.31X and 1.59X due to expensive
erase operations. This indicates that algorithms that stress
random reads, and avoid random writes as much as possible
are likely to see bigger improvements on flash SSDs (over
magnetic HDDs).

While there is little variation in the I/O times with the
magnetic HDD (See the error bars in Figure 1(a) for the
I/O bars), we observed higher variations in the I/O times
with the flash SSD (Figure 1(b)), resulting from the varying

write performance. Note that since random writes cause
more erase operations than sequential writes, hash-based
joins show wider range of I/O variations than sort-merge
join. On the other hand, there is little variation in the I/O
costs for block nested loops join regardless of the buffer pool
size, since it does not incur any writes.

Another interesting observation that can be made here
(Figure 1) is the relative I/O performance between the sort-
merge join and Grace hash join. Both have similar I/O costs
with the magnetic HDD, but sort-merge join has lower I/O
costs with the flash SSD. This is mainly due to the different
output patterns of both join methods. In the first phase
of the joins, where both algorithms incur about 80% of the
total I/O cost, each writes intermediate results (sorted runs
for sort-merge join, and buckets for Grace hash join) to disk
in different ways; sort-merge join incurs sequential writes as
opposed to the random writes that are incurred by Grace
hash join. While this difference in the output patterns has
a substantial impact on the join performance with the flash
SSD because random writes generate more erase operations
than sequential writes, the impact is relatively small with
the magnetic HDD.

In addition, we can not argue that the sort-merge join
algorithm is better than the Grace hash join algorithm on
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Figure 3: Varying the page size (500 MB Buffer Pool, page sized I/O)

flash SSDs based solely on the I/O performance results (as in
[16]). While looking at only the I/O characteristics is some-
times okay for magnetic HDDs (when the join algorithm is
I/O bound), using flash SSDs makes the CPU costs more
prominent. As seen in Figure 1(b), the CPU cost now dom-
inate the I/O cost in most cases for block nested loops join
and sort-merge join. In general, with flash SSDs the balance
between CPU and I/Os changes, which implies that when
building systems with flash SSDs we may want to consider
adding more CPU processing power.

From Figure 1, we notice that hybrid hash join outper-
formed all other algorithms on both the magnetic HDD and
the flash SSD, across the entire range of buffer pool sizes that
we tested. Hybrid hash join is 2.81X faster than Grace hash
join with a 600 MB buffer pool, indicating that comparing
only with Grace hash join (as done in [14, 16]) could be mis-
leading. Finally note that in our experiments, with the flash
SSD, block nested loops join is faster than sort-merge join
and Grace hash join for large buffer pool sizes, but slower
than hybrid hash join, which is more CPU efficient (though
incurs a higher I/O cost!).

In summary:

1. Joins on flash SSDs have a greater tendency to be-
come CPU-bound (rather than I/O-bound), so ways
to improve the CPU performance, such as better cache
utilization, is of greater importance with flash SSDs.

2. Trading random reads for random writes is likely a
good design choice for flash SSDs.

3. Compared to sequential writes, random writes produce
more I/O variations with flash SSDs, which makes the
join performance less predictable.

4.4 Effect of Varying the Page Size
In this experiment, we continue to use blocked I/O, but

vary the page size from 2 KB to 32 KB. (The maximum page
size allowed by SQLite3 is currently 32 KB.) The size of the
I/O block is also calculated using the equations shown in

Magnetic HDD Flash SSD

Page Size User Kernel User Kernel

2 KB 187.5 sec 108.4 sec 204.4 sec 324.0 sec

4 KB 192.8 sec 49.0 sec 205.5 sec 157.9 sec

8 KB 190.5 sec 27.9 sec 183.6 sec 80.6 sec

16 KB 186.6 sec 15.5 sec 188.8 sec 39.8 sec

32 KB 187.2 sec 8.6 sec 185.9 sec 22.4 sec

Table 5: CPU times for block nested loops join on the
magnetic HDD and the flash SSD

Table 1, as in the previous section. The results are shown
in Figure 2 for a 500 MB buffer pool.

As can be seen from Figure 2, when blocked I/O is used,
the page size has a small impact on the join performance in
both the magnetic HDD and the flash SSD cases.

The key lesson here is that if blocked I/O is used, the
database system can likely set the page size based on criteria
other than join performance.

4.5 Effect of Blocked I/O
The major reason for using blocked I/O with magnetic

HDDs is to amortize the high cost of disk seeks and rota-
tional delays. An interesting question is: Does blocked I/O
still make sense for flash SSDs? To answer this question, we
repeated the experiment described in the previous section
with page sized I/O instead of blocked I/O. These results
are shown in Figure 3.

Comparing Figure 3 with Figure 2, we can clearly see that
blocked I/O is still valuable for the flash SSD, often improv-
ing the performance by 2X. The reasons for this are: a) the
software layer of the flash SSD still incur some latency [4],
making larger I/O size attractive, and b) the write opera-
tions with larger I/O sizes generate fewer erase operations,
as the software layer is able to manage a pool of pre-erased
blocks more efficiently.

When the page size is 2 KB, the performance of sort-merge



join and Grace hash join on the flash SSD is worse than on
the magnetic HDD. When the I/O size is less than the flash
page size (4 KB), every write operation is likely to generate
an erase operation, which severely degrades performance.
This results re-confirms the observation (but for joins) that
blocks should be aligned to flash pages [4].

We also observed that the CPU costs on the flash SSD
and on the magnetic HDD are different for the same page
size. CPU costs are generally larger with the flash SSD,
due to the complex nature of FTL on the flash SSD. As
described in Section 2, FTL not only provides the ability
to map addresses, but also needs to support many other
functionalities such as updating map structures, maintaining
a pool of pre-erased blocks, wear-leveling and parallelism
to improve performance. As an example, Table 5 shows
CPU times of the block nested loops join, broken down by
the time spent in the user and the kernel modes. (Other
join methods showed similar behavior.) From this table,
we observe that the kernel CPU times are larger with the
flash SSD. This gap between the CPU costs for the flash
SSD over the magnetic HDD is larger for smaller page sizes,
since the smaller page sizes result in more I/O requests,
which keeps the FTL busier with frequent direct map look-
ups and indirect map updates. On the other hand, the gap
is smaller with larger page sizes, and eventually the CPU
costs for the SSD over the magnetic disk are almost the
same when blocked I/O is used as in Figure 2.

In summary:

1. Using blocked I/O significantly improves the join per-
formance on flash SSDs over magnetic HDDs.

2. The I/O size should be a multiple of the flash page
size.

5. RELATED WORK
There is substantial related work on the use of flash mem-

ory for DBMSs. Graefe [6] revisits the famed five-minute
rule based on flash and points out several potential uses in
DBMSs. Lee et al. [12] suggests a log-based storage system
that can convert random writes into sequential writes. In
that paper they presents a new design for logging updates
to the end of each flash erase blocks, rather than doing in-
place updates to avoid expensive erase operations. Lee et
al. [13] observe the characteristics of hash join and sort-
merge join in a commercial system and conclude that for
that system, sort-merge join is better suited for flash SSDs;
however the implementation details of the hash join method
in the commercial system is not know. Myer [14] examines
join performance on flash SSDs under a set of realistic I/O
workloads with Berkeley DB on a fixed-sized buffer pool.
Of the hash-based join algorithms, only Grace hash join is
considered in this study.

Shah et al. [16] show that for flash memory the PAX [3]
layout of data pages is better than a row-based layout for
scans. They also suggest a new join algorithm for flash SSDs.
No direct implementation of the algorithm is presented, but
the potential benefits of the new algorithm are presented by
using an analytical model, and comparing it to Grace hash
join. Tsirogiannis et al. [18] presents a new pipelined join al-
gorithm in combination with the PAX layout. A key aspect
of their new algorithm is to minimize I/Os by retrieving only
required attributes as late as possible. They show that their

algorithm is much more efficient on flash SSDs compared to
hybrid hash join, especially when either few attributes or
few rows are selected in the join result.

More recently, Bouganim et al. [4] have provided a collec-
tion of nine micro-benchmarks based on various I/O patterns
to understand flash device performance.

6. CONCLUSIONS
In this paper, we have presented and discussed the perfor-

mance characteristics of four well-known ad hoc join algo-
rithms on a magnetic HDD and a flash SSD. Based on our
evaluation, we conclude that a) buffer allocation strategy
has a critical impact on the performance of join algorithms
for both magnetic HDDs and flash SSDs, b) despite the ab-
sence of mechanically moving parts, blocked I/O plays an
important role for flash SSDs, and c) both CPU times and
I/O costs must be considered when comparing the perfor-
mance of join algorithms as the CPU times can be a larger
(and sometimes dominating) proportion of the overall join
cost with flash SSDs. Many of these observations are lessons
that we have learnt from previous work on optimizing join
algorithms for magnetic HDDs, and continue to be impor-
tant when studying the performance of join algorithms on
flash SSDs, though with different emphases.

For future work, we plan to expand the range of hardware
that we consider in this study, including using enterprise
flash SSDs and other magnetic disk-based I/O configura-
tions. We also plan on deriving detailed analytical models
for existing join algorithms on flash SSDs and exploring if
the optimal buffer allocations differ from that for magnetic
HDDs.
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