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Serverless computing has recently attracted a lot of attention T T - 3 VMs (DRAM)
from research and industry due to its promise of ultimate elas- o 1001
ticity and operational simplicity. However, there is no consen- S L Cron. X s 2
sus yet on whether or not the approach is suitable for data pro- % ] g 101
cessing. In this paper, we present Lambada, a serverless dis- * _g
tributed data processing framework designed to explore how 1054 oy
to perform data analytics on serverless computing. In our anal- e 1 3 4 & 16 32 e

ysis, supported with extensive experiments, we show in which
scenarios serverless makes sense from an economic and per-
formance perspective. We address several important technical
questions that need to be solved to support data analytics and
present examples from several domains where serverless offers
a cost and performance advantage over existing solutions.
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(a) Job-scoped resources. (b) Always-on resources.

Figure 1: Comparison of cloud architectures.

1 INTRODUCTION

Data processing in the cloud has become a widespread solu-
tion in a wide variety of use cases. In the early days of Infras-
tructure-as-a-Service (IaaS), the cloud provided bare comput-
ing resources in the form of virtual machines (VMs). It then
evolved into a richer computing and development experience
through Platform-as-a-Service (PaaS). In both cases, the basic
assumption was that the cloud is used as a rented comput-
ing infrastructure, whose elasticity can lead to a lower total
cost than owned infrastructure. However, elasticity was lim-
ited by how fast the infrastructure could be started and stopped,
and services migrated. Thus, cloud offerings evolved further to-
wards Software-as-a-Service (SaaS), where customers rent the
use of a certain software stack. Google BigQuery [20] or Ama-
zon Athena [19] are examples of Query-as-a-Service (QaaS)
systems providing database services without having to run (and
pay for) a database server.

The demand for even higher elasticity and more fine-grained
billing has recently led to the proliferation of Function-as-a-
Service (FaaS). FaaS implements serverless computing—a name
that emphasizes precisely the advantages of the approach: there
is no need to install, operate, and manage a server (infrastruc-
ture) to get computations done. Applications such as source
code compilation [11, 26] or video encoding [2, 11] have been
shown to work well in such a setting.

To understand when FaaS is attractive for data analytics,
consider a query scanning 1 TB of data stored on Amazon Sim-
ple Storage Service (S3). There are two ways to use IaaS for
this task: starting a set of resources for the duration of a single
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job (“job-scoped” resources) or scheduling jobs onto resources
that are kept running (“always-on” resources). Figure 1a shows
the costs and running time of job-scoped resources obtained
through simulation for a varying number of workers.! As the
plot shows, for both VMs and serverless functions, adding more
resources reduces the running time, but with a diminishing
gain as we approach the respective startup time.? To obtain the
lowest cost, Iaa$ is thus more attractive, being up to an order of
magnitude cheaper. However, if query latency matters, FaaS$ is
more attractive. The strength of FaaS compared to job-scoped
TaaS in data analytics is thus the ability to service interactive
queries.

An alternative way to use IaaS is to keep resources running.
This allows the system to load the data up-front and hence an-
swer queries interactively as well. We thus extend our simula-
tion to three systems loading the data into different levels of
the memory hierarchy, which we assume can be read at full
bandwidth. We choose the number of VMs such that the query
above can be processed in 10s: three large VMs for DRAM,
seven for NVMe, and thirteen if we process the data directly
from S3 without pre-loading.? Figure 1b shows the expected
hourly cost of the different configurations as a function of the
query frequency. Running virtual machines incurs only hourly
costs, which is independent of the frequency at which queries
are run. In contrast, FaaS and QaaS have a usage-based pric-
ing model. Price increases linearly with the number of queries,
such that even a moderate query load makes them more ex-
pensive than IaaS. The strength of FaaS compared to always-on
TaaS is thus for sporadic use.

Combining the two arguments shows for which types of
workloads serverless functions are most attractive for data an-
alytics: interactive queries on cold (i.e., infrequently accessed)
data. We refer to this use case as that of the “lone-wolf data
scientist,” an individual or a small group of people during the
interactive exploration of data sets that are otherwise rarely
accessed, and give two concrete examples in the paper.

As promising as the idea might seem, using FaaS is contro-
versial since serverless functions come with significant limi-
tations: restricted network connectivity, limited running time,
stateless operation with a very limited cache between invoca-
tions, and lack of control over the scheduling of functions. All
of these shortcomings have been comprehensively analyzed
in the literature [17, 24, 26, 27]. In the context of data analyt-
ics, the most severe limitation of FaaS is arguably the inability
to have direct communication between function invocations.
Previous work proposes a number of approaches, all of which
involve running additional infrastructure on traditional VMs.

IBetween 1 and 256 c5n. large instances and between 8 and 4096 concurrent
function invocations with 2 GiB main memory, respectively.

2We assume 2 min start-up time for IaaS and 4 s for FaaS.

30ur simulation uses r5.12xlarge, i3.16xlarge, and c5n.18xlarge in-
stances, respectively.
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Any such “serverful” component has the potential to severely
limit the attractiveness of FaaS—as shown by the introductory
example.

In this paper, we address the question of whether FaaS can
be efficiently and effectively used for data analytics. Specifi-
cally, we present Lambada, a data analytics system on top of
FaaS. We identify the technical limitations of FaaS and propose
solutions that require only serverless components. One major
novelty is an exchange operator that scales to several thousand
workers without additional infrastructure—a problem that pre-
vious work could not solve [24, 26, 27, 38, 41]. Lambada is able
to answer ad-hoc queries over gigabytes to terabytes of cold
data at interactive query latency. In the most favorable cases,
it is two orders of magnitude cheaper and one order of magni-
tude faster than commercial QaaS offerings. By building a full
system, we show that the infeasibility conjectures of previous
work [17] were not justified and that data analytics on FaaS is
in fact technically possible and economically viable, albeit only
for sporadic, interactive use.

In summary, the paper makes the following contributions:

e We characterize interactive analytics on cold data as the
sweet spot for using Faa$ for data analytics. This can be
seen in part as a negative result—most other use cases
seem to be handled well by traditional VMs.

e We present two use cases from scientific domains with
requirements that match what Faa$ can offer.

e We conduct extensive micro-benchmarks to determine
the cost and performance characteristics as well as the
limitations of current Faa$S offerings.

e We implement a full-fledged data analytics system using
only serverless components. Specifically, we propose so-
lutions for efficient batch-start of massive numbers of
serverless workers, a cloud-native scan operator for ef-
ficiently reading query input, and an exchange operator
for inter-function communication.

e We compare the resulting performance and cost to those
of other serverless solutions using end-to-end workloads
from several domains and thus quantify the potential ad-
vantage of FaaS.

2 OVERVIEW OF LAMBADA
2.1 Suitable Cloud Infrastructure

For building a data analytics engine, serverless functions alone
are not enough since they only execute code. However, we can
use other cloud services to complement them. To preserve the
advantages of FaaS, we should only use services with similar
deployment and pricing models. In particular, these services
should not incur any cost for idle infrastructure during think
time or between usage sessions.

For compute, Amazon offers AWS Lambda, AWS Fargate,
and Amazon EC2 to run code in a function, a container, and
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Figure 2: Architecture overview of Lambada.

a virtual machine, respectively. All of these could be used on a
per-query basis and could thus qualify as pay-as-you-go, but,
as we study in more detail below, only AWS Lambda has low
enough start-up times for interactive analytics. For storage,
Amazon offers DynamoDB and S3, which both scale to zero if
used for temporary data during query execution. Finally, Ama-
zon offers a message queue service (Amazon SQS) and a work-
flow service (AWS Step Functions), whose pure pay-per-use
pricing model makes them suitable as well. Similar services can
be found in the offerings of the other major cloud providers [6,
21].

In contrast, we argue that using any type of Platform-as-
a-Service can compromise the attractiveness of a purely serv-
erless system. For example, caching services such as Amazon
ElastiCache run on (managed) virtual machines that are dedi-
cated and paid for by the user, which has the same disadvan-
tages as using VMs for compute.

2.2 Architecture Overview

For Lambada, our design goal is thus to use solely existing serv-
erless components. Figure 2 depicts its high-level architecture.
The driver runs on the local development machine of the data
scientist. When she executes a query, the driver invokes a (po-
tentially large) number of serverless workers (depicted as A in
the plot), who execute the query in a data-parallel manner. The
workers communicate through different types of shared serv-
erless storage: the cloud storage system Amazon S3 for large
amounts of data, the key-value store Amazon DynamoDB for
small amounts of data, and the message service Amazon SQS
(Simple Queuing System) for short messages. Input and out-
put are read from and written to shared storage as well. In a
way, this is a classical shared storage database architecture,
except that all communication of the workers goes through
shared storage and there is no direct communication between
the workers or with the driver. The driver also uses the shared
storage to communicate with the workers once they have been
invoked, for example, to collect the results of their query frag-
ments.
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2.3 Data-parallel Query Plans

Queries are written in a thin Python front-end and go through
a series of translations that transform it into an executable
form. Our implementation is based on the Collection Virtual
Machine (CVM) [34], a query compilation and execution frame-
work that we are building in our group as part of a larger ef-
fort. A query plan in CVM is divided into scopes, each of which
may run in a different target platform. Most operators in a typ-
ical plan of Lambada run in a serverless scope, i.e., are exe-
cuted by the serverless workers. However, queries may also
contain small scopes running on the driver, in order to do some
pre-processing such as reading small amounts of data locally
that should be broadcasted into the serverless workers or post-
processing like aggregating the intermediate worker results.

2.4 Serverless Workers

The serverless workers run as a function in AWS Lambda, which
is set up at installation time. Such a function consists of an
event handler in one of the supported languages,* a “depen-
dency layer” that may contain arbitrary native machine code,
and some metadata such as the desired amount of main mem-
ory and the timeout of the function. The function of serverless
workers consists of a dependency layer containing the same
execution framework that also runs on the driver and an event
handler as a wrapper around it implemented in Python. This
event handler extracts the ID of the worker, the query plan
fragment, and its input from the invocation parameters of the
function and forwards them to the execution framework. It
starts the execution engine in a new process with a memory
limit slightly lower than that of the serverless function such
that it can report out-of-memory situations and other errors
of the execution engine to the driver rather than dying silently.
When the execution engine finishes its computation, the han-
dler forwards its results to the driver. In both cases, if an error
occurred or the computation finished successfully, the handler
posts a corresponding message into a result queue in SQS, from
which the driver polls until it has heard back from all workers.

2.5 System Components for Serverless
Analytics

While Lambada’s architecture is very similar to a traditional
shared storage database architecture, implementing such an
architecture in a purely serverless environment is challenging.
In the following sections, we identify a number of issues in
the current serverless offerings and design system components
that overcome all of them. Specifically, we propose solutions
for efficient batch-start of massive numbers of serverless work-
ers (Section 3), a cloud-native scan operator for efficiently read-
ing query input (Section 4), and an S3-based exchange operator

4 As of writing, AWS Lambda supports Node.js, Python, Java, Ruby, C#, Go, and
PowerShell.
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Metric Region

eu us sa ap
Single invocation time [ms] 36 363 474 536
Concurrent inv. rate [inv./s] 294 276 243 222
Intra-region rate [inv./s] 81 79 84 81

Table 1: Characteristics of function invocations.

that overcomes the scaling limitations of previous proposals
(Section 5).

Each of the components needs to trade off three things: (1)
hard quotas and limits from the service-level agreements (SLAs)
of the cloud provider such as a limit on the request rate to S3,
(2) execution speed under the given constraints (from service
limits or from de-facto performance of a resource), for exam-
ple, by overlapping communication with computation, and (3)
usage-based cost of the various serverless services, such those
from the running time of the serverless workers but also from
the number of requests to the various systems.

3 BATCH-INVOCATION
3.1 Limits of Sequential Invocation

As a first component, we discuss how to invoke the server-
less workers. Invoking a large number of them within a short
amount of time is challenging. Table 1 shows the invocation
characteristics of AWS Lambda functions in different regions
from our location in Zurich, Switzerland. A single invocation
takes between about 36 ms and 0.5 s, depending on the data
center and our distance to it. By overlapping enough concurrent
requests at the same time, we can largely hide the latency of the
network round-trip: By using 128 threads to do the invocations,
we achieve a rate of 220 invocations/s to 290 invocations/s for
any of the data centers. However, this means that invoking
1000 workers from the driver still takes 3.4s to 4.4 s and lin-
early more for more workers. With this approach, the invoca-
tion of the serverless workers can thus dominate the running
time of the actual query.’

3.2 Lambada Two-level Invocation

To reduce the time until all serverless workers are invoked, we
parallelize the invocation process by off-loading it partially to
the first workers. More precisely, the workers that are invoked
by the driver receive as additional parameter a list of IDs and in-
put data. Before running their query fragment, each of this first
generation of workers invokes a second-generation worker for
each ID/input pair in that list. As serverless workers can invoke
other workers at a rate that is in the same ballpark as that of

SIf the query contains a synchronization point such that the workers need to
wait for each other, then this also adds a quadratic component to the monetary
cost.
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Figure 3: Example run of two-level invocation process.

the driver (see Table 1), a reasonable approach is to assign the
same amount of invocations to the driver and each of the first-
level workers, i.e., about VP invocations each, where P is the
total number of workers.

Figure 3 shows the timings of an example run using this
approach to start 4096 serverless workers based on a freshly
created function (i.e., performing a cold start). It shows a time-
line with three phases of every first-generation worker in the
order they are invoked by the driver: (1) the time the driver
took before it initiated their invocation (namely, to launch all
previous workers), (2) the time their invocation took, i.e., the
time between their invocation was initiated and they were ac-
tually running, and (3) the time they took to do the second-
generation invocations. As the plot shows, the invocation of
the last worker was initiated after about 2.5 s, which is tremen-
dously faster than the 13 s to 18 s that the driver would be ex-
pected to take for doing the invocations alone based on the
invocation rates from Table 1.

Note that the limit on the invocation rate of AWS Lambda is
not relevant: it is currently ten times the limit on the number of
concurrent invocations (i.e., workers) per second. Each query
only needs one invocation per worker and the single user of our
function is expected to run queries at a rate orders of magni-
tudes lower than ten per second. The limit on concurrent invo-
cations, however, is relevant and we discuss some more details
in Section 6.

4 CLOUD STORAGE SCAN OPERATOR
4.1 Network Characteristics

We first study the characteristics in terms of performance and
cost of accessing S3 from the serverless workers in order to
derive design principles for implementing scan operators. Fig-
ure 4 presents microbenchmarks for downloading large and
small files from S3 into serverless workers using different con-
figurations. We run each configuration three times in direct
succession in nine different data centers using ten workers in
each run. We compute the median, minimum, and maximum
bandwidth of all workers in each data center and plot the me-
dians of the three values as the colored bars, the lower error,
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Figure 4: Network (ingress) bandwidth of serverless
workers.

and the upper error, respectively. The plots thus show the dis-
tribution in a “median” data center.

For large files (Figure 4a), there is a very stable limit of about
90 MiB/s per worker.® Workers of virtually any size have fast
enough network to achieve this limit; only workers with less
than 1 GB of main memory see a slightly lower ingress band-
width. Furthermore, using more network connections does not
significantly change the overall bandwidth.

For small files (Figure 4b), the picture looks different. Work-
ers with large amounts of memory observe a much higher
network bandwidth, occasionally reaching almost 300 MiB/s.
However, this is only the case if they use several network
connections at the same time. We do not have access to in-
formation about Amazon’s network infrastructure, but we as-
sume that it uses a credit-based traffic shaping mechanism
to limit the network bandwidth of each function instance to
the 90 MiB/s observed above. Such a mechanism would allow
bursts to exceed the target limit for a short amount of time
and thus explain our results. In experiments not shown, we ob-
serve that the time span during which the burst may exceed
the target is a small number of seconds. In order to maximize
performance for short-running scans, we thus need to use mul-
tiple concurrent connections.

The fact that the memory size of the workers has an influ-
ence on the network bandwidth can be explained by the follow-
ing: The cloud provider allocates an amount of CPU resources
to each function that is proportional to its memory size.” More
precisely, the allocation is such that a function with 1792 MiB
gets the equivalent of one vCPU and functions with more mem-
ory get proportionally more. We can thus use a small amount of
parallelism to overlap communication and computations and
hide latencies with concurrent requests.

®This is about 2 X higher than the numbers reported by Jonas et al. [24] pub-
lished in 2017. It is also qualitatively different from the results of Wang et
al. [43], who reported a stronger correlation between network bandwidth and
worker memory size published in 2018. We assume that Amazon has increased
the network bandwidth since then.

7See https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
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Figure 5: Impact of the chunk size on scan characteris-
tics.

We also study the impact of the size of each individual re-
quest to S3 on the bandwidth and the cost of a scan. To that aim,
we download a file of 1 GB with requests of different sizes us-
ing a variable number of connections. Figure 5 shows the result
for the largest available serverless workers (i.e., with 3008 MiB
of main memory). While a single connection requires a chunk
size of 16 MB to get reasonably close to the maximum through-
put from the previous experiment, we achieve that throughput
even with a chunk size of 1 MB using four concurrent con-
nections. This is the classical technique of hiding the latency
of one or more requests with the processing of another. The
size of each request also has a direct impact on the overall
costs of a scan: it is inversely proportional to the number of
requests, each of which has a fixed cost. One million read re-
quests currently cost® $0.4. The line in Figure 5 shows the costs
of running the experiment one thousand times. It is annotated
with the factor by which the requests are more expensive than
running the serverless workers. For example, in a scan with
a chunk size of 1 MiB, the requests are 1.7 X more expensive
than the workers’ cost for the same scan. With even smaller
chunk sizes, the requests can easily dominate the overall cost.
In order to support small reads from S3, we thus need to sup-
port several in-flight requests but also avoid small reads wher-
ever possible.

4.2 Lambada Cloud-native Scan

We use the above insights to design a scan operator that uses
the network and CPU resources efficiently. We describe the
design of a scan operator for Parquet files as an example, but
expect the design of other operators to be conceptually similar.
Parquet files are not only well-suited because they are wide-
spread and optimized for slow storage, but they are also con-
figurable in several ways such that they exhibit many charac-
teristics that other formats might have.

81n the “us-east-1” region, see https://aws.amazon.com/s3/pricing/#Request_
pricing.
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Figure 6: Components of the Parquet scan operator.

Figure 6 shows the main components of the operator. To
the outside, it implements the open/next/close operator inter-
face, through which it reads one or more file paths from its up-
stream operator and returns their content to its downstream
operator as a sequence of table chunks in columnar format. In
a typical plan, these chunks are consumed by a JiT-compiled
pipeline, whose first operator is a scan operator for in-memory
table chunks, which extracts individual records. Internally, the
Parquet scan operator uses the official C++ library for Parquet
files’ to handle the deserialization of data and metadata. We
have implemented the user-level filesystem interface of that
library with a backend for S3, which, in turn, uses Amazon’s
AWS SDK for C++ to make requests to the S3 REST endpoint
over the network.

The Parquet format has been designed to enable pushing
down selections and projections. To that aim, the data is stored
in consecutive groups of rows called row groups, each of which
stores its records as consecutive columns called column chunks.
Each column chunk may use a light-weight and a heavy-weight
compression scheme, such as run-length encoding and GZIP,
respectively. Furthermore, the footer of the file contains (op-
tional) min/max statistics as well as absolute offsets for each
column chunk. The library loads this metadata with a single
file read, exposes the statistics to the scan operator such that
it prunes out row groups based on its predicates, and loads the
column chunks of the projected attributes when the scan oper-
ator accesses the remaining row groups using read operation
per column chunk. Each of these read operations on the file
system is translated to one request to S3, which downloads the
desired bytes of the file (using HTTP’s Ranges header). The
file system offers a random-access interface (through ReadAt,
as opposed to a stream-like interface through Seek and Read)
which supports multiple concurrent reads.

We identify four levels where concurrent connections could
be used to maximize bandwidth utilization on small files and
small chunks, thus addressing the insights from Figures 4b and

9The C++ library for Parquet is part of Apache Arrrow, see https://github.com/
apache/arrow.
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5, respectively: (1) making several requests for each read opera-
tion in the filesystem, (2) downloading different column chunks
of the same row group, (3) downloading multiple row groups
at the same time, and (4) downloading data or metadata from
different files at the same time. We always exploit level (4) by
consuming the list of paths eagerly and downloading the meta-
data for all files that should be scanned in a dedicated thread in
order to hide the latency of these small requests. Next, we ex-
ploit level (3) by downloading the data of up to two row groups
asynchronously in two dedicated threads, except if the worker
has too little main memory. This also overlaps the download(s)
of one row group with the decompression and subsequent pro-
cessing of the previous one. For small files and files with a sin-
gle row group, we exploit level (2) by downloading different
column chunks using multiple threads. We only fall back to
level (1) if none of the other levels could be exploited as this
would increase the number of requests and thus the costs of a
scan. We expect that a similar prioritization to apply to other
formats as well.

Finally, we exploit the (small amount of) multi-core paral-
lelism in the workers with more than 1792 MiB of memory by
optionally parallelizing the decompression of column chunks.
This is only beneficial if decompressing a column chunk is slow-
er than downloading it, which is only the case for the most
heavy-weight compression schemes, and if the remaining query
has too little compute to utilize the resources fully.

5 EXCHANGE OPERATOR

As one major building block for data processing, we design
a family of exchange operators for serverless workers. Since
serverless workers cannot accept incoming connections, they
can only communicate through external storage. In order to
support exchanging large amounts of data, we use S3 for this
purpose.

5.1 Exchange in Joins, Sorting, and Grouping

The exchange operator'® was introduced with the Volcano ex-
ecution model [13, 14] to encapsulate any form of data par-
allelism and has since then become a central building block
for data-parallel query processing [9, 15, 29, 36, 39]. In a data-
parallel plan executed on a number of workers, the exchange
operator transfers its input among the workers such that all
tuples belonging to the same partition (according to some par-
titioning criteria) end up at the same worker. Joins, sorting,
and grouping can be executed in parallel with the help of one
or more exchange operators; no further operator with commu-
nication logic is required. For example, a parallel equi-join can
be expressed by one exchange operator on each side of the in-
put, which move all potential join partners to the same worker,

10 Alternative names include (re)partitioning, (re)distribution, shuffling, All-to-
All (personalized) communication, or total exchange.
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Algorithm 1 Basic S3-based exchange operator.

Algorithm 2 Two-level S3-based exchange operator.

1: func BASICEXCHANGE(p: Int, #: Int[1..P], R: Record[1..N],
FORMATFILENAME: Int x Int — String)
partitions «— DRAMPARTITIONING(R, P)
for (receiver, data) in partitions do
WRITEFILE(FORMATFILENAME(receiver, p), data)

for source in P do
data < data U READFILE(FORMATFILENAME(p, source))

N U W N

return data

followed by a local join operator. The operator we propose in
this section is thus at the same time necessary and sufficient
for data-parallel processing on serverless workers.

5.2 Basic Ideas and Challenges

Algorithm 1 shows how the basic exchange algorithm works,
which other authors have used as well [24, 27, 38]: Each worker
p of the P workers holds its share R of the input relation and
uses an in-memory partitioning routine to split its input into
P partitions, for example, based on the hash value of their key.
It then writes the data of each partition into a file whose name
reflects its own ID as well as the ID of the “receiver” of the
file. Finally, it reads all files where its own ID has been used as
the receiver sent by any of the other “source” workers. Since
the sender may be slower than the receiver, the receiver must
repeat reading a file until that file exists.

The problem with this algorithm is that the total number
of files is quadratic in P: each of the P workers reads from
and writes to P files. This may cause throttling by the cloud
provider due to a rate limit on requests. For 1k workers, one
execution of BASICEXCHANGE needs 2M requests while, as of
July 2018, the rate limit on AWS is 3.5k and 5.5k per second for
writes and reads, respectively,“ and was as low as 300 and 800
read and write requests per second before that.'? This effect
has been pointed out by previous work [24, 27], which solved
the problem by running their own storage service on rented
VM instances.

There is another fundamental disadvantage with Algorithm 1
that will most likely not be solved by increased rate limits in
the future and has not been mentioned by previous work so
far: it incurs prohibitive costs, which also grow quadratically
in the number of workers. As of writing, 1M read and write
requests cost $5 and $0.4, respectively.'® The left-most bars (la-
beled 11) in Figure 7 show how the cost of BASICEXCHANGE
evolves with the number of workers. With 256 workers, the

1See https://aws.amazon.com/about-aws/whats-new/2018/07/amazon-s3-
announces-increased-request-rate-performance/

123ee  https://forums.aws.amazon.com/message.jspa?messagelD=573975#
573975.

3In the “us-east-1” region, see https://aws.amazon.com/s3/pricing/4Request_
pricing.
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1: func TWOLEVELEXCHANGE(p: int, P: int, R: Record [1..N])
22 (prpz2) — Hs(p)

3: P; —{qlg € {1..P} : qi = pi} fori=1,2

4: fi (s, t) > “s3://b{i}/snd{s}/rcv{r}” fori=1,2
5 tmp < BasicGROUPEXCHANGE(p, P41, fi, R, HZ)

6 return BASICGROUPEXCHANGE(p, P2, f2, tmp, H!)

costs for the requests to S3 are already higher than the costs
for running the workers in most typical configurations, which
are indicated by the horizontal range. With 4k workers, run-
ning the algorithm on 4 TiB costs about $100 for the requests
to S3 and $3.3 for running the workers.

In the remainder of this section, we present two orthogonal
optimizations that reduce the number of requests.

5.3 Lambada Multi-Level Exchange

The first optimization is to do the exchange through multiple
levels, where each level only involves a small subset of the
workers. This idea is a well-known technique in the parallel
algorithms and HPC communities (see Grama et al. [16, Chap-
ter 4.5] and references therein).

For two levels, we project the partition and worker IDs onto
a grid and first do a horizontal exchange and then a vertical
exchange. To that aim, we define the projection function Hy :=
(H,H%) = x — (x%s,x [ s), which projects a number
x € {1..P} onto two coordinates, where s is the desired num-
ber of distinct elements in the first dimension and % and /
are modulo and integer division, respectively. Note that this
approach works also for non-quadratic numbers of workers P.
As a building block, we use BASICGROUPEXCHANGE, which is
the BASICEXCHANGE as defined before extended by a parameter
for a projection function H;, which it applies to the partition
IDs while running the in-memory partitioning routine (Line 2
in Algorithm 1).

Algorithm 2 shows how the two-level exchange works. We
first compute the two-dimensional worker ID from p. We then
define the set of coworkers $; that have the same value in
the first coordinate and run BAsicGROUPEXCHANGE on the in-
put to exchange data with this subset of workers. To do so,
we parameterize the routine the following way: First, we use
f1 as FORMATFILENAME, which prefixes all file names with a
distinct bucket of this level, “s3://b{13}”. Second, we have it
apply the projection function H? to the partition ID, which
means that it considers the second coordinate of the IDs for
this round of the exchange. When this function returns, the
second coordinate of the partition ID of any record coincides
with that of the worker ID where it resides. Finally, we re-
verse the roles of the first and second coordinate and run Ba-
SICGROUPEXCHANGE again, now among the group of workers
induced by the other coordinate, ;. After this step, the first


https://aws.amazon.com/about-aws/whats-new/2018/07/amazon-s3-announces-increased-request-rate-performance/
https://aws.amazon.com/about-aws/whats-new/2018/07/amazon-s3-announces-increased-request-rate-performance/
https://forums.aws.amazon.com/message.jspa?messageID=573975#573975
https://forums.aws.amazon.com/message.jspa?messageID=573975#573975
https://aws.amazon.com/s3/pricing/#Request_pricing
https://aws.amazon.com/s3/pricing/#Request_pricing
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Table 2: Cost models of S3-based exchange algorithms.

Algorithm #reads #writes #lists #scans
1l P? P? O(P) 1
1l-wc P? P O(P) 1

21 2PVP  2P\VP  O(P)

2l-we 2P\P 2P O(P)

31 3pVP  3PVP O(P)

3l-we 3pvVP 3P O(P)

coordinate of the partition ID of any record also coincides with
that of the worker ID where it resides, so the exchange is com-
plete.

The two-level approach reduces the number of requests, as
the number of each phase grows only quadratically with the
group size instead of the number of workers. More precisely,
each worker does P/s read and write requests in the first level
and, by definition, s in the second. Thus, together the P work-
ers do Pz/ s and Ps requests in the first and second level, re-
spectively. It is easy to see that s = VP minimizes the sum of
the two terms, so we use this value for the rest of the paper. In
total, the algorithm does hence 2PVP read and write requests
each. At the same time, it reads and writes the input two times
instead of just one, which increases run time and hence the
cost of running the workers. We study this trade-off in more
detail below.

The same idea can be applied to three or more levels to re-
duce the number of requests even further. For k levels, the
partition and worker IDs are projected onto a k-dimensional
grid with side length {/P and BAsicGROUPEXCHANGE is used k
times, once for each dimension (each of which reads and writes
the input once). Table 2 summarizes the characteristics of the
different algorithms.

5.4 Lambada Write Combining

The second optimization consists in writing all partitions pro-
duced by one worker into a single file. We call this technique
“write combining” Instead of reading one entire file per sender,
the receivers now need to read part of one file per sender. We
thus define FORMATFILENAME such that it ignores the param-
eter value for the receiver. We use Parquet as the format of
the files in the exchange operator, so the senders simply write
one row group per receiver. The receivers use the scan oper-
ator from Section 4 to read only the row group that they are
responsible for.

5.5 Complexity and Cost Analysis

In Figure 7, we compare the costs of the different algorithms.
Here, we show i exchange levels with and without write com-
bining (wc). To compute the costs for the requests, we use the
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Figure 7: Cost of S3-based exchange algorithms on AWS.

cost models from Table 2 at the rates quoted above ($5 and
$0.4 for 1M read and write requests cost, respectively). The
lower bars in full color represent the read cost, the upper bars
in lighter color represent the write cost of the respective algo-
rithms. BASICEXCHANGE is labeled 11, while the two- and three-
level variants are labeled 21, and 31; variants using write com-
bining are suffixed with -wc. The horizontal range shows the
costs of running the workers. For the purpose of this plot, we
assume that they achieve 85 MiB/s, do not experience waiting
time, and each second costs $3.3 X 10> (which is the current
price on AWS for workers with 2 GiB RAM). The lower edge
of the range represents the running costs of the workers doing
one scan on an input of 100 MiB while the upper edge repre-
sents the costs for three scans of 1 GiB. This range helps to put
the costs of the requests into perspective.

As observed before, the plot shows that the costs of Ba-
SICEXCHANGE do not scale with the number of workers. While
using write combining reduces the write costs to a negligible
amount, the read costs, which still grow quadratically, can still
be dominant in many cases. Using two levels has always lower
request costs than using just one, and, when used with write
combining, reduces the costs of all requests of an exchange be-
low the worker costs in almost all configurations. Using three
levels and write combining brings them to a negligible level in
all configurations considered here.

Overall, the two optimizations give us effective knobs to re-
duce the costs due to requests to storage.

5.6 Extension to Broadcast

The techniques described in this section can be applied to the
broadcast operator in a straight-forward manner, which is use-
ful for broadcast joins. We leave the details as an exercise to the
interested reader, but the main idea is to broadcast the input of
each worker (without partitioning it) among the members of
the same subgroups as defined for the exchange. For example,
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a two-level broadcast consists of a broadcast among the work-
ers of the same column followed by a broadcast among those
of the same row.

6 EVALUATION
6.1 Dataset and Methodology

In most experiments, we use the data sets of the TPC-H bench-
mark [42]. Since our prototype does not support strings yet, we
modify dbgen to generate numbers instead of strings. At scale
factor 1Kk, the size of the data set is 502 GiB; in Parquet using
standard encoding and GZIP compression, the size is 273 GiB.
Following the best practices of big data processing and the sys-
tems we compare to below, we store the Parquet data in files
of about 200 MB.

Unless otherwise mentioned, we measure the end-to-end
query latency, which accounts for the serverless workers’ in-
vocation time, the useful work carried out, and fetching the re-
sults from the result queue in Amazon SQS. We report the me-
dian of three runs in the same data center, as we observed little
variation across data centers in the experiments shown in Fig-
ures 4 and 5, as well as other isolated experiments not shown
(with the exception of invocation into the cloud, as shown in
Table 1).

We compare Lambada with two Query-as-a-Service systems,
Google BigQuery [20] and Amazon Athena [19]. This type of
system has a similar operational simplicity as Lambada, namely
the ability to query data sets from cloud storage without start-
ing or maintaining infrastructure, as well as a usage-based pric-
ing model. QaaS is hence well suited for interactive analytics
on cold data. In contrast, we do not consider Platform-as-a-
Service solutions as they run on virtual machines that the user
starts and stops and pays for while they are running. Exam-
ples include Amazon Redshift, Aurora, RDS, and its other man-
aged DBMSs, Amazon EMR (Elastic MapReduce), and the cor-
responding offerings from the other providers.

6.2 Scan-heavy Queries

We first study the basic performance and cost characteristics
on the two scan-heavy queries of TPC-H (Q1 and Q6) in order
to avoid overlapping effects of more complex workloads. For
the purpose of this section, we sort the LINEITEM relation by
I shipdate in order to show the effect of selection push-downs
on that attribute.

6.2.1 Effect of Worker Configurations. In this experiment, we
explore the parameter space of worker configurations to gain
a deeper understanding of their impact. Specifically, we vary
the amount of main memory of each worker, M, which influ-
ences the number of CPU cycles the function can use, as well
as the number of files, F, that each worker processes. The lat-
ter parameter indirectly defines the number of workers: the

123

SIGMOD °20, June 14-19, 2020, Portland, OR, USA

o
— )
€ 50 50{ O cold g4
b= ) hot Q
2 25+ ! 25 - 25 - 2
= @ % =X0)
= 550 ,9%) $%0x 0
o 0 T 0 T 0 T
0 5 0 5 0 5
Cost [¢] Cost [¢] Cost [¢]
(a) F =1, varying M.  (b) M=1792 MiB, (c) Varying M
varying F. and F.

Figure 8: TPC-H Query 1 with varying memory (M) and
number of files (F) per worker.

tables is stored in 320 files, so we use W = 320/F workers. We
use TPC-H Query 1 (Q1), which selects 98 % of LINEITEM and
aggregates them to a very small amount of groups, in order
to eliminate effects of more complex plans. We create a fresh
function for each configuration and each repetition and run the
query twice, the first one as a cold run, the second as a hot run.

Figure 8 shows the result. First, we fix the number of files
per worker to F = 1 (i.e, W = 320) vary the memory size al-
located per worker (512, 1024, 1796, 2048, and 3008 MiB). As
Figure 8a shows, by increasing the worker size from 512 to
1796 MiB, execution gets significantly faster. This is because
scanning GZIP-compressed data is CPU-bound and more mem-
ory means more CPU cycles as described in Section 4.1. Inter-
estingly, it also gets marginally cheaper. We attribute this to
the overhead of multi-threading in a configuration where that
does not yield any gains and thus only reduces efficiency. As
we increase the worker size further, the price increases (due to
the linear relationship in the price model), however, without
reducing running time. Similar to related work, we observe a
small penalty on the end-to-end latency of cold runs of about
20 %. This is not only due to a slower invocation time, but also
somewhat slower execution (possibly due to loading of code
from the dependency layer), which affects the price. Despite of
that, both hot and cold execution return in less than 10s and
thus within a timeframe that is suitable interactive analytics.

Figure 8b shows the results for varying the number of files
per worker F = {4,2,1}, and with it the number of work-
ers W = {80, 160, 320}, while fixing the worker size to M =
1796 MiB. This is essentially the same experiment as the sim-
ulation from the Introduction shown in Figure la: using more
workers speeds up execution, but at diminishing gains and thus
increased costs. Finally, Figure 8c shows all different combina-
tions of M and F. Which of the configurations (on the pareto-
optimal front) a user might want to pick depends on her prefer-
ence for price or performance and is out-of-scope of this paper.
In the remainder of the paper, we either manually pick a good
trade-off or show a range of configurations.
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6.2.2 Effect of Push-downs. In order to study the effect of
pushing down selections and projects into the scan operator,
we run the two most scan-bound queries from TPC-H, Query 1
and 6. While Query 1 selects 98 % of the relation and uses seven
attributes, Query 6 selects only 2 % of it but uses four attributes.
In order to eliminate unrelated effects such as invocation time,
we only measure processing time in this experiment, i.e., the
time each worker takes to executes its plan fragment.

Figure 9 shows the processing time of all workers ordered by
increasing processing time using F = 1 and M = 1792 MiB. In
both queries, there are two categories of workers: those where
the processing time is 100 ms to 200 ms and those where it is
2s to 3s. The workers of the former category load the meta-
data of their file (inducing one round-trip to S3), prune out
all row groups due to the min/max indices on 1_shipdate,
and immediately return an empty result. For Query 1, this hap-
pens to about 2 % of the workers; for Query 6, to about 80 %,
which corresponds to the respective selectivity of the filter on
1_shipdate. If the min/max indices were stored in a central
place and available before starting the workers, these workers
would not even be started, but such optimizations are out of the
scope of this paper. The other workers cannot prune out any-
thing, so they load the projected columns from S3 and decom-
press and scan them. For them, the data volume of the projected
columns determines the execution time, which is slightly higher
in Query 1 than in Query 6.

6.2.3 Comparison with Qaa$S Systems. We compare Lambada
with two Query-as-a-Service systems, Google BigQuery [20]
and Amazon Athena [19]. In practice, only Amazon Athena
supports in-situ processing of large-scale datasets. Google Big-
Query can currently only process individual files without prior
loading (which is subject to further restrictions). Large-scale
datasets need to be loaded with an ETL process, during which
they are converted into a proprietary data format and possi-
bly indexed. In this format, our LINEITEM table takes 823 GiB,
which is slightly larger than the uncompressed CSV and over
5 X larger than our Parquet files. The promise of loading into
this format is to allow for faster querying. We still include
Google BigQuery in our study as the system otherwise fits well
and the cloud provider could lift this restriction in the future.
For Amazon Athena, we use the same files as for Lambada,
which corresponds to the recommendations from the provider.
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Both systems have a pay-per-query pricing model that is
based on the number of bytes in the input relations and 1 TiB of
input costs $5 in both systems. Only the bytes in attributes that
are actually used in the query are taken into account and any
type of computation including complex joins are free. How-
ever, selections are handled differently: in Google BigQuery
all columns are always counted in their entirety, whereas in
Amazon Athena only the selected rows of these columns are
counted, i.e., selections are “pushed into the cost model” Google
BigQuery also charges per GB-month of loaded data, which we
ignore in our comparison.

We run Lambada using one worker per file (F = 1), i.e., us-
ing 320 and 3200 workers for scale factors 1k and 10k, respec-
tively. For Google BigQuery, we measure the time for loading
the data, add that to the running time of the query and de-
note this time as “cold”; the query time alone is denoted “hot.”
For Amazon Athena, we observed no noticeable difference be-
tween the first and subsequent runs, so we only show one num-
ber. The result is shown in Figure 10.

Running Time. In terms of end-to-end running time, Lam-
bada is the system that has the most constant latencies. Since
we use proportionally more workers as the data set grows, the
pure processing time per worker stays constant and the latency
only increases due to the (sublinearly) larger effort for invok-
ing the workers, as well as a higher likelihood of stragglers
and similar effects. In contrast, Amazon Athena does not seem
to dedicate more resources for the larger data sets since their
running time increases linearly. In BigQuery, the running time
increases as well, though sublinearly, indicating that it uses
somewhat more resources for the larger scale factor. We can
only speculate why this is the case—at least for these simple
queries, the cloud provider could also dedicate more machines
for a shorter amount of time at an overall unchanged resource
cost. In a system like Lambada, the user has more control and
can thus increase the number of workers with the dataset size
in order to get roughly constant query latencies.

In absolute terms, compared to Amazon Athena, the faster
configurations of Lambada are about 4 X faster for Q1 and on
par for Q6 at SF 1k; at SF 10 k, Lambada is about 26 X and 15 X
faster, respectively. Without taking data loading into account,
Google BigQuery has running times as low as 3.9 sand 1.6 s for
Q1 and Q6 at SF 1 k, respectively, and is thus significantly faster
than Lambada. At SF 10 k, however, it is about 2.3 X slower and
2 X faster. Furthermore, the loading of the two scale factors
takes about 40 min and 6.7 h, respectively. The loading does,
hence, lead to faster querying, but at the price of a huge delay
to the answer of the first query. Overall, the experiment shows
that using serverless compute infrastructure is able to provide
competitive performance compared to commercial Query-as-a-
Service systems and is even able to outperform them, in some
cases by large margins.
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Figure 10: Comparison of Lambada (using F = 1 and varying M) with commercial QaaS systems.

Monetary Cost. For both queries and both scale factors,
Lambada is cheaper than both other systems. Except for Q6
at SF 1k, the difference is about one and two orders of mag-
nitude compared to Amazon Athena and Google BigQuery, re-
spectively. The difference to Google BigQuery is larger even
though the price per TB is the same as that of Amazon Athena
because the format of the former takes more space than that of
the latter. In these cases, the serverless approach of Lambada
is thus clearly more economic.

As expected, selections also have an influence on the cost.
While the price of Q1 is essentially the same as that of Q6 in
Google BigQuery (Q1 being slightly more expensive as it uses
a few more attributes), the difference is significant in Amazon
Athena. This is due to the different selectivities of the queries,
which are taken into account in Amazon Athena’s pricing mod-
el. In Q6, we only pay for the 2 % of the selected rows, while
we pay for 98 % of them in Q1. For Q6, Lambada is thus only
slightly cheaper than Amazon Athena. Lambada also benefits
from the selectivity as discussed in the previous section, but
not to the same degree. For queries with even more selective
predicates, Amazon Athena would eventually become cheaper—
up to the point where a query becomes free if it filters out all
tuples in the input. Even for queries where the min/max fil-
ters of Parquet work perfectly, Lambada’s cost could not be
lowered below the cost of invoking other workers, loading the
plan, fetching the metadata of each file, pruning out all row
groups, and finally returning an empty result. In the most unfa-
vorable case, highly selective queries that cannot benefit from
min/max filters, Lambada would need to scan the entire input.

This discussion shows the role of the pricing model. While
a serverless query processing system like Lambada runs on
infrastructure that is rented per unit of time and has, thus, a
monetary cost that is roughly proportional to the amount of
resources used, the cost model of Query-as-a-Service systems
is designed to be easily understandable by clients and, thus,
extremely simple. It only needs to yield prices that are propor-
tional to the resources used by the overall workload mix ob-
served by the cloud provider. This means that some queries are
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Figure 11: TPC-H queries on Lambada (M = 2 GiB).

necessarily under-priced while others are over-priced,'* such
as the scan-heavy queries in this section. For this type of query,
a serverless solution like Lambada can have the biggest advan-
tage.

6.3 End-to-End Workloads

6.3.1 TPC-H Queries. We now extend our evaluation to more
complex queries. In addition to the two scan-heavy queries
studied above, we implemented four other queries that use a
variety of join variants and groupings. We compare against
Athena and BigQuery as before. For BigQuery, we only run
the queries at SF 1k, as running them at a larger scale is out of
our budget. However, we extrapolate the prices of SF 1k to the
larger scale factor, which should increase proportionally with
the size of the input. For Lambada, we use a worker configura-
tion that balances price and performance.

Figure 11 shows the result. The picture in this query mix is
somewhat different than with the scan-heavy queries of the

14 As we have shown in previous work [32], it is possible to exploit this pricing
model by executing several queries at the price of a single one.
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previous experiments. The advantage of Lambada over Athena
at SF 1k is now reduced: around 10 s for Lambada vs 15sto 25 s
for Athena and a similar difference for the prices. On the one
hand, this is an achievement: even our research prototype is al-
ready competitive with a commercial product and further opti-
mizations could improve both latency and price. On the other
hand, it shows the limits of the usage-based pricing model of
serverless functions when compared with the size-based pric-
ing model of QaaS: While more complex queries run longer
and, thus, increase the number of function-seconds the user is
charged for, the price of QaaS systems is independent of the
query complexity such that (almost) arbitrarily complex joins
and groupings are essentially free. At SF 10 k, Athena does not
seem to use more resources, so its running time is significantly
higher, while Lamabada can keep the running time lower using
more workers.

6.3.2  Scientific Workloads. As argued above, data analytics
on serverless computing is most attractive for interactive work-
loads on cold data. This is a common pattern in the initial, ex-
ploratory phase of data analytics, when the user is getting to
know the data set. To illustrate such cases, we apply Lambada
to two scenarios from scientific domains, hydrology and high-
energy physics (HEP), where this pattern is very common. In
both domains, large amounts of massive data sets (often several
terabytes) are shared through public repositories [4, 35]. These
data sets are analyzed by research groups around the world,
who use them in a variety of ways. The scientists running the
analyses often work in small groups and query the data sets
interactively in an ad-hoc fashion. These users thus need a sys-
tem that can (a) scale to their data sets while remaining inter-
active and (b) is cost-effective for their infrequent usage.

Hydrology. We run the queries used in a study of Liu et
al. [30] (described in more detail in [31]) to benchmark data
analysis tools for that domain. The data used in hydrology usu-
ally consists of a number of measurements for each point in
a grid with the three dimensions longitude, latitude, and time.
The queries from the study consist of a spatial selection (Q1),
a temporal selection (Q2), a regridding operation over a spa-
tial selection (Q3), and computing historical values over a spa-
tial selection (Q4 and Q5). The data set from the original study
is not available, so we use one of the many publicly available
ones that are similar in nature and structure: the multi-satellite
precipitation product for the U.S. GPM team [18]. It contains
ten different metrics related to rainfall recorded every 30 min
since June 2000. We converted the data set to Parquet. After
conversion, the data set consists of 2.77 TB.

We run the queries on Lambada using W = 1500 workers
with M = 2GiB and F = 200 files each, which we found to
be a good trade-off in terms of responsiveness and cost. The
results are shown in Figure 12. All queries run in less than 25 s
and are thus interactive. Furthermore, they cost in the order
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Figure 12: Hydrologist (Q1-Q5) and HEP queries (Q6).

of less than $1.3. The entire data set was not analyzed in the
original study [30, 31], but projecting the fastest query runtime,
Lambada improves at least by 5 X. This makes the runtime go
from 140 s to around 20 s.

High-Energy Physics. We run a query used by Cremonesi
et al. [7] to study the applicability of big-data technologies for
HEP tasks, which computes the distribution of the dimuon in-
variant mass. The data sets in this domain typically consist of
massive collections of records called “events.” each of which
has several thousand fields, which are either scalar or nested
inside both records and arrays. The query projects the input
on a small number of nested fields, filters out events with less
than two muons, selects the two most heavy muons of each
of the remaining events, computes their invariant mass, and fi-
nally returns a histogram over that mass. We use the same data
set [5] as the original authors (produced in the Large Hadron
Collider), which contains all “runs” from 2010 RunB consisting
of 2.6 TB of complex nested data.

We run this query on Lambada using W = 1000 workers
with M = 2GiB and F = 29 files each. The results are shown
as Q6 in Figure 12. The query is run in less than 10 s and costs
less than 10 ¢. Note that a much lower number of workers is
sufficient compared to the other experiments. This is due to the
fact that individual queries in this domain usually only select
a tiny subset of the fields (a single-digit number out of sev-
eral thousand). The ability of Lambada to download only the
bytes belonging to the projected fields is therefore crucial as
it allows it to skip over the majority of the input. In order to
understand the improvement with [5], the dimuon invariant
mass computation could be run in 438 s using 800 cores and
13 TB of main memory. Lambada performs this computation
in under 10 s with W = 1000 workers, showing the efficiency
of our system.

6.4 Exchange Operator

We compare the performance of our exchange operator in iso-
lation with the numbers published for similar implementations
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Table 3: Running time of S3-based exchange operators.

#Workers Storage Layer
VMs S3

Pocket [27] 250 58s 98s

500 28s

1000 18s
Locus [38] dynamic 80sto 140s
Qubole [41] 400 580s
Lambada 250 22s

500 15s

1000 13s

in previous work, namely Pocket [26], Qubol [41], and Lo-
cus [38]. We use a dataset of 100 GB because numbers are avail-
able for a dataset of that size for all other systems. Locus and
Qubol use workers with 1536 MiB of main memory; Pocket
uses 3008 MiB workers; for Lambada, we use 2048 MiB of allo-
cated memory.

Table 3 shows the running time of the various approaches.
Compared to the S3-based baseline implementation in the work
on Pocket, Lambada runs 5 X faster on 250 workers. In con-
trast to that baseline, however, Lambada’s sublinear amount
of requests and the usage of multiple buckets enable it to scale
to 500 and 1000 workers, which reduces running time further.
Compared to the implementation using Pocket (i.e., using VM-
based storage for intermediate results), Lambada is still 2.5 X,
2%, and 1.4 X faster on 250, 500, and 1000 workers, respec-
tively. Locus uses a dynamic number of workers and the paper
does not detail the numbers for the experiment on 100 GiB,
but even with 250 workers, Lambada is about 4 X faster than
Locus’ fastest configuration. Compared to both other systems,
Lambada has the additional advantage of running without any
always-on infrastructure. Qubole, essentially a serverless back-
end for Spark [44], is far off from all other systems, most likely
due to the rate limits that the authors report.

In another experiment, we run the exchange operator on
1TB and 3 TB datasets. It takes 56 s using 1250 workers for the
former and 159 s using 2500 workers for the latter. On a dataset
of 1TB, Locus takes 39 s using a dynamic number of workers
(which could be higher than what we use for Lambada), but
uses VM-based fast storage for intermediate results.

For the larger dataset (3 TB and 2500 workers), waiting time
for stragglers starts getting significant. Figure 13 gives details.
The left sides of the plots show the fastest running time of each
phase observed in any worker as a fraction of the end-to-end
latency (which is dominated by the slowest worker). Plotting
the fastest execution shows an informal lower bound for each
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Figure 13: Break-down and per-phase running time dis-
tribution of TWOLEVELEXCHANGE.

phase. Note that reading the input, as well as writing the par-
tition files and reading them again in each of the two phases,
take exactly the same amount of time since they shuffle the
same amount of data at full network bandwidth. Also note that
the fastest waiting time is that of one round-trip to S3 (around
0.1s), which is so short compared to the reading and writing
that it is not visible in the plot. The dashed line shows the end-
to-end running time of the fastest worker. On the 1 TB dataset,
the fastest worker takes around 85 % of the slowest worker and
is relatively close to the lower bound, ie., to the sum of the
fastest executions of the different phases. On the 3 TB dataset,
the total execution time is more than 2 X as slow as it could
be if all workers could run all phases at maximum speed; more
than half of the total execution time is due to stragglers and
waiting.

The right sides of the plots give details about the stragglers.
For each phase, it gives a distribution of the running time of
each worker ordered by increasing running time. We omit the
three read phases as they do not experience significant tail la-
tencies.”® On both datasets, the write phases have a relatively
stable running time until the 95-percentile. The slowest worker,

5This is not the case when using the default configuration. Instead, ag-
gressive timeouts and retries are necessary to reduce tail latencies, but de-
scribing such optimizations in detail are out of scope of this paper. Then
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however, is about 30 % and 4 X slower than the median for the
small and big datasets, respectively. These latencies propagate:
The waiting time in the first round is significant for a large
number of workers because each worker that is slow with writ-
ing causes wait time for all workers in its group. In turn, those
workers start later with the next phase and thus cause wait
time for even more workers. While the wait time is moderate
for the small dataset, it dominates the execution time of the
larger one. Further research is required to reduce the tail laten-
cies appearing at these scales. Nonetheless, our experiments
show that exchange operators can be implemented under a
purely serverless paradigm and even outperform approaches
with always-on infrastructure.

7 RELATED WORK

Our work has two main lines of related work: data analytics
on cold data and serverless computing.

Data analytics on cold data. Performing data analytics
over cold data has been studied extensively by both academia [8,
10, 28] and industry [22, 23]. Topics range from techniques for
avoiding to fetch data from cold storage [1] to using cold stor-
age devices as cheap storage for intermediate results [3]. How-
ever, all of this work is done in the context of long-running sys-
tems that are typically maintained by a dedicated department
of a large institution and therefor targets a somewhat different
use case than serverless computing.

Serverless computing in general. Recently, there have
been many systems design proposals that leverage serverless
functions in different settings. Examples include distributed
make [11, 27], sorting [24, 27, 38, 40], video encoding [2, 11,
12], image and video classification [2, 11, 27], unit tests [11],
as well as MapReduce-style [24, 25, 38, 40] and SQL-style ana-
lytics [38]. We relate to these works in the sense they also use
serverless workers for cost-efficiency at infrequent usage.

Fouladi et al. [11] also observe the invocation bottleneck.
The present several techniques to increase the invocation rate
from what we call the driver, which reduces the startup time
of 1000 workers to around 6s. As discussed in Section 3, this
may be too long for even larger numbers of workers. The two-
level mechanism we propose instead manages to start several
thousand workers in under 4s.

Serverless data analytics systems. The most similar work
to ours may be Flint [25]. The authors propose a rewrite of
the Apache Spark execution layer using serverless workers and
cloud storage. However, its query execution time is more than
10 X higher for similar queries run in Lambada. For instance,
Flint takes around 100 s for scanning a 1 TB of data whereas
Lambada would take 10 s with the same amount of workers.

basic idea is described by Amazon’s “Performance Guidelines for Ama-
zon S3” at https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-
performance-guidelines.html#optimizing-performance-guidelines-retry.
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This shows the difference between designing a system from
scratch and refitting an existing one and that the latter may
introduce inefficiencies that overcompensate the potential eco-
nomic advantage of serverless. Even more similar is the work
on Starling [37], which was concurrent to ours and presented
at the same venue.

It is also possible to use general-purpose serverless frame-
works such as PyWren [24] for data analytics. However, the
user would then have to re-implement most of the techniques
we describe in this paper as part of the query logic, which is
much less convenient and likely to be less efficient.

Data exchange in serverless systems. Previous work has
proposed solutions for data exchange in the serverless con-
text [26, 27, 38]. For example, Klimovic et al. [27] design an
elastic, fast, and fully managed storage system for ephemeral
data. Similarly, Pu et al. [38] design a system for intermediate
data that uses a combination of AWS ElasticCache and AWS
S3. Their motivation, however, lies in the limitations of the
basic operator and its quadratic number of requests. As we
show, this is not a fundamental problem of exchange. Further-
more, the solutions consist of additional services, which com-
promises the advantages of a serverless system.

Critique of serverless computing. Hellerstein et al. [17]
argue that serverless functions are not suitable for data ana-
lytics. By building a full-fledged query processing system we
show that the serverless paradigm is, in fact, viable for interac-
tive analytics on cold data.

At the same time, we agree that serverless functions do have
short-comings for job-oriented applications like Lambada, as
well as all other work on serverless mentioned in this section.
We argue that, instead, this type of application would require
“serverless clusters,” a concept we proposed in [33].

8 CONCLUSIONS

In this work, we show that data analytics on serverless com-
puting is technically possible and economically viable for in-
teractive use on cold data. Through the implementation of a
full-fledged system, Lambada, we identify a number of chal-
lenges and propose solutions for them: tree-based invocation
of workers for fast start-up, a design for scan operators that
balances cost and performance of cloud storage, and a purely
serverless exchange operator. The latter overcomes limitations
that were previously thought to be inherent to the serverless
paradigm. Thanks to our optimizations, Lambada can answer
queries on more than 1 TB of data in about 15 s, which makes it
competitive with commercial Query-as-a-Service systems and
an order of magnitude faster than job-scoped VM infrastruc-
ture.
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