Opportunities for Optimism in Contended Main-Memory
Multicore Transactions

Yihe Huang,! William Qian,' Eddie Kohler,' Barbara Liskov? Liuba Shrira®
"Harvard University, Cambridge, MA 2MIT, Cambridge, MA 3Brandeis University, Waltham, MA
yihehuang@g.harvard.edu, wgian@g.harvard.edu, kohler@seas.harvard.edu,
liskov@piano.csail.mit.edu, liuba@brandeis.edu

ABSTRACT

Optimistic concurrency control, or OCC, can achieve excellent
performance on uncontended workloads for main-memory trans-
actional databases. Contention causes OCC’s performance to de-
grade, however, and recent concurrency control designs, such as
hybrid OCC/locking systems and variations on multiversion con-
currency control (MVCC), have claimed to outperform the best
OCC systems. We evaluate several concurrency control designs
under varying contention and varying workloads, including TPC-
C, and find that implementation choices unrelated to concurrency
control may explain much of OCC’s previously-reported degra-
dation. When these implementation choices are made sensibly,
OCC performance does not collapse on high-contention TPC-C.
We also present two optimization techniques, commit-time updates
and timestamp splitting, that can dramatically improve the high-
contention performance of both OCC and MVCC. Though these
techniques are known, we apply them in a new context and high-
light their potency: when combined, they lead to performance gains
of 3.4x for MVCC and 3.6 for OCC in a TPC-C workload.

PVLDB Reference Format:

Yihe Huang, William Qian, Eddie Kohler, Barbara Liskov, and Liuba Shrira.
Opportunities for Optimism in Contended Main-Memory Multicore Trans-
actions. PVLDB, 13(5): 629-642, 2020.

DOI: https://doi.org/10.14778/3377369.3377373

1. INTRODUCTION

The performance of multicore main-memory transactional sys-
tems is a subject of intense study [13,21,23,31,36,37,49-51,57].
Techniques based on optimistic concurrency control (OCC) per-
form extremely well on low-contention workloads, thanks to their
efficient use of shared memory bandwidth and avoidance of un-
necessary memory writes. On high-contention workloads, however,
OCC can experience frequent aborts and, in the worst case, conten-
tion collapse, where performance for a class of transactions crashes
to nearly zero due to repeated conflicts.

Recent designs targeted at high-contention workloads, including
partially-pessimistic concurrency control [50], dynamic transaction

This work 1is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 13, No. 5

ISSN 2150-8097.

DOT: https://doi.org/10.14778/3377369.3377373

629

reordering [57], and multiversion concurrency control (MVCC) [24,
31], change the transactional concurrency control protocol to better
support high-contention transactions. In their evaluations, these de-
signs show dramatic benefits over OCC on high-contention work-
loads, including TPC-C, and some show benefits over OCC even
at low contention [31]. But many of these evaluations compare dif-
ferent code bases, potentially allowing mere implementation differ-
ences to influence the results.

We analyzed several main-memory transactional systems, in-
cluding Silo [49], DBx1000 [56], Cicada [31], ERMIA [24], and
MOCC [50], and found underappreciated engineering choices —
we call them basis factors — that dramatically affect these systems’
high-contention performance. For instance, some abort mechanisms
exacerbate contention by obtaining a hidden lock in the language
runtime.

To better isolate the impact of concurrency control (CC) on per-
formance, we implement and evaluate three CC mechanisms — OCC,
TicToc [57], and MVCC - in a new system, STOv2, that makes
good, consistent implementation choices for all basis factors. We
show results up to 64 cores and for several benchmarks, including
low- and high-contention TPC-C, YCSB, and benchmarks based
on Wikipedia and RUBIiS. With basis factors controlled, OCC per-
formance does not collapse on these benchmarks, even at high con-
tention, and OCC and TicToc significantly outperform MVCC at
low and medium contention. This contrasts with prior evaluations,
which reported OCC collapsing at high contention [15] and MVCC
performing well at all contention levels [31].

In addition, we introduce, implement, and evaluate two optimiza-
tion techniques that can improve performance on high-contention
workloads for all concurrency control schemes we evaluated (OCC,
TicToc, and MVCC). These techniques safely eliminate classes of
conflict that were common in our workloads. First, the commit-
time update technique eliminates conflicts that arise when read-
modify-write operations, such as increments, are implemented us-
ing plain reads and writes. Second, many records have fields that
rarely change; the timestamp splitting technique avoids conflicts
between transactions that read rarely-changing fields and trans-
actions that write other fields. These techniques have workload-
specific parameters, but they are conceptually general, and we ap-
plied them without much effort to every workload we investigated.
Like MVCC and TicToc, the techniques improve performance on
high-contention workloads. However, unlike MVCC, these opti-
mizations have little performance impact at low contention; unlike
TicToc and MVCC, they help on every benchmark we evaluate, not
just TPC-C; and they benefit TicToc and MVCC as well as OCC.
Though the techniques are widely known, our variants are new, and
we are the first to report their application to TicToc and MVCC.

e
('
W
X
)
o
N
GO
Leaf c|EIEIEIE E Leaf

212|222 2 >

“lolglala Q

Ol O O] O O [$]

S| 0| 0| 0| @ o)

||| o
(a) Retrieving a record by key.
Lock | Timestamp | Key Value
(b) Record structure in OSTO.

Ke Head version I Inlined version !
Record | Key 1 | ___comarTtED]
Version| Version Version Version
chain | PENDING COMMITTED ABORTED

(¢) Record structure in MSTO. The record contains a pointer to the head of
the version chain, which may include the inlined version.

Write | Read

. . State
timestamp 1 timestamp
1

Value

(d) Version chain element in MSTO.
Figure 1: STOv2 overview.

The rest of the paper is organized as follows. After describing
our OCC, TicToc, and MVCC implementations (§2) and our ex-
perimental setup (§3), we identify the basis factors we discovered
and characterize their effects on performance (§4). Once basis fac-
tors are fixed, we compare the performance of OCC, TicToc, and
MVCC on a range of high- and low-contention benchmarks (§5).
Next we describe how we implement the commit-time update and
timestamp splitting techniques (§6) and evaluate their performance
(§7). We then describe future work (§8) and related work (§9) and
conclude.

2. BACKGROUND

STOv2, or simply STO, is a reimplementation of the STOvl
software transactional memory system [21]. STOv1 supported only
OCC and, as we describe later, made questionable implementation
choices for some basis factors. STOv2 makes good choices and sup-
ports pluggable concurrency control protocols. We focus on three
protocols: OSTO, the OCC variant; TSTO, the TicToc OCC vari-
ant; and MSTO, the MVCC variant.

Figure 1 provides an overview of the STO system and architec-
ture. STO implements primary and secondary indexes using hash
tables and trees. Unordered indexes use hash tables to map keys
to records. To support range scans in ordered indexes, STO uses
Masstree [33], a highly-concurrent B-tree variant that adopts some
aspects of tries. Transactions are written as C++ programs that
access transactional data structures. Data structure code and the

630

Timestamp Name Definition

Global write wisg Periodically incremented

Thread-local write Wi, Per-transaction snapshot of wisg;
used to mark objects for deletion

Global read rsg < Il’:}ll’l Wiy,

Thread-local read sy, Per-transaction snapshot of rts,

Global GC bound gcts < rr:/lln rtsg,

Figure 2: RCU-related timestamps in STOv2. For all threads th
and at all times, wtsg > Wisy, > rtsg > rtsy, > gcts.

STOV2 core library work together to ensure transaction serializabil-
ity. Transactions execute in “one-shot” style: all transaction param-
eters are available when a transaction begins, and transactions run
without communicating with users. We do not support durability or
networking, as they are not primary concerns of this work.

2.1 OSTO

OSTO, the OCC variant, follows the Silo [49] OCC protocol.
During execution time, transaction logic generates read and write
sets. Commit time, which ensures serializability and exposes modi-
fications to other transactions, runs in three phases. In Phase 1, the
OSTO library locks all records in the write set, aborting if deadlock
is suspected. The transaction’s timestamp is selected after Phase 1;
this marks its serialization point. In Phase 2, the library validates
that records in the read set have not changed and are not locked
by other transactions, aborting on validation failure. In Phase 3, the
library installs new versions of the records in the write set, updates
their timestamps, and releases locks.

OSTO aims to avoid memory contention except as required by
workloads. For instance, it chooses transaction timestamps in a
scalable way (as in Silo) and avoids references to modifiable global
state. Read-copy-update (RCU) techniques [34], a form of garbage
collection, are used to recycle memory and reshape data structures.
This lets transactions safely access records after their logical dele-
tion and largely eliminates readers-writer locks. RCU requires a
mechanism for determining when RCU-deleted objects are safe
to free, so STOv2 maintains a set of thread-local variables and
several global variables that are periodically updated by a main-
tenance function. Figure 2 lists these variables. To mark an object
for deletion (e.g., a record or tree node), the transaction running on
thread th stores that object in a list associated with freeing time-
stamp fts = witsy,. Since the object might have been accessed by
concurrently-running transactions, it is unsafe to free the object un-
til all such transactions have committed or aborted. This is detected
using rts: any concurrent transaction th' must have rtsyy < fts, so,
since gcts < rtsyy, it will be safe to free the object once fts < gcts.
An epoch advancer thread periodically increments wts, and recom-
putes rtsg and gcts; this introduces little contention since it runs just
once a millisecond.

2.2 MSTO

MSTO is an MVCC variant based broadly on Cicada [31], though
it lacks some of Cicada’s advanced features and optimizations.
MSTO maintains multiple versions of each record and transactions
can access recent-past states as well as present states. Read-only
transactions can thus always execute conflict-free, since MSTO
effectively maintains consistent database snapshots for all recent
timestamps. MVCC can additionally commit read/write transac-
tions in schedules that OCC and OSTO cannot, such as the one
in Figure 3. However, these benefits come at the cost of memory
usage, which increases memory allocation and garbage collection

t writesx = 4

&
%

nreadsx = 3

t; commits

v v

§

1 writes y = 42 t, commits

Figure 3: Although t, finishes later in time, it can still commit
if placed earlier than ty in the serial order. OCC will abort tp;
MVCC and TicToc can commit it.

overhead and adds pressure on processor caches, and atomic mem-
ory operations, which MSTO invokes more frequently than OSTO.

MSTO, like OSTO, uses indexes to map primary keys to records,
but rather than storing data directly in records, it introduces a layer
of indirection called the version chain (Figure 1c). A record com-
prises a key and a pointer to the head version in the chain. Each
version carries a write timestamp, a read timestamp, and a state, as
well as the record data and a chain pointer. The write timestamp
is the timestamp of the transaction that created the version; it thus
corresponds to an OSTO record’s timestamp. The read timestamp is
the timestamp of the latest committed transaction that observed the
version. The chain is sorted by write timestamp: a committed chain
Vn,-..,v1 With latest version v, will have rts; > wts;, wtsj1 > rts;,
and wts; 1 > wis; for all i.

Before initiating a transaction, MSTO assigns an execution time-
stamp ts;, used for all observations during execution time. For
transactions identified in advance as read-only, #s;, = rtsg; other-
wise, ts;, = wisg. (A read-only transaction executing at rts, is guar-
anteed to experience no conflicts: all read/write transactions at or
prior to that timestamp have committed or aborted, and all future
read/write transactions will have greater timestamps.) When ob-
serving a record, MSTO selects the version visible at tsy;,. For reads,
the version and the record are stored in the read set. For writes, only
the record is stored in the write set.

MSTO’s commit protocol follows Cicada’s. At commit time,
MSTO first chooses a commit timestamp with an atomic increment
on the global write timestamp, £s;,. := wisg++. Then, in Phase 1,
MSTO atomically inserts a new PENDING version with zs;,. into
each modified record’s version chain, ensuring that the chains main-
tain the prescribed timestamp order. Irreconcilable conflicts de-
tected in Phase 1 cause an abort. (Concurrent transactions that ac-
cess a PENDING version in their execution phase will spin-wait un-
til the state changes.) In Phase 2, MSTO checks the read set: if
any version visible at tsy,. differs from the version observed at
tsy,, the transaction aborts; otherwise, MSTO atomically updates
the read timestamp on each version v in the read set to v.rts :=
max{v.rts, sy, }. Finally, in Phase 3, MSTO changes its PENDING
versions to be COMMITTED and enqueues earlier versions for garbage
collection. If a transaction is aborted, its PENDING versions are
changed to ABORTED instead. The commit protocol is used only for
read/write transactions; read-only transactions always commit.

MSTO incorporates one important Cicada optimization, namely
inlined versions. One version can be stored inline with the record.
This reduces memory indirections, and therefore cache pressure,
for values that change infrequently. MSTO fills the inline version
slot when it is empty or has been garbage collected (we do not
implement Cicada’s promotion optimization [31, §3.3]).

2.3 TSTO

TSTO is an OSTO variant that uses TicToc [57] in place of plain
OCC as the CC mechanism. TicToc, like MVCC, uses separate
read and write timestamps for each record, but it maintains only the

631

most recent version. It dynamically computes transactions’ commit
timestamps based on read and write set information. This allows
for more flexible transaction schedules than simple OCC, at the
cost of more complex timestamp management. Except for concur-
rency control, TSTO and OSTO share identical infrastructure. We
do not use the TicToc delta-rts encoding [57, §3.6], which leads to
false aborts in read-heavy workloads; instead, we use separate, full
64-bit words for wts and rzs. This change caused no reduction in
performance.

3. EXPERIMENT SETUP

We conduct our experiments on Amazon EC2 m4.16xlarge dedi-
cated instances, each powered by two Intel Xeon E5-2686 v4 CPUs
(16 cores/32 threads each, 32 cores/64 threads per machine) with
256GB of RAM. Medians of 5 runs are reported with mins and
maxes shown as error bars. Some results show very little varia-
tion so error bars are not always visible. In all experiments, aborted
transactions are automatically retried on the same thread until they
commit.

3.1 Workloads

We measure two standard benchmarks, YCSB (A and B) [7] and
TPC-C [47], with high and low contention settings. We also mea-
sure two additional high-contention workloads modeled after Wiki-
pedia and RUBIS.

The TPC-C benchmark models an inventory management work-
load. We implement the full mix and report the total number of
transactions committed per second across all transaction types, in-
cluding 45% new-order transactions. As required by the TPC-C
specification, we implement a queue per warehouse for delivery
transactions, and assign one thread per warehouse to preferentially
execute from this queue. (“[T]he Delivery transaction must be ex-
ecuted in deferred mode . .. by queuing the transaction for deferred
execution” [48, §2.7].) Delivery transactions for the same ware-
house always conflict, so there is no point in trying to execute them
in parallel on different cores. TPC-C contention is controlled by
varying the number of warehouses. With one warehouse per core,
contention is relatively rare (cross-warehouse transactions still in-
troduce some conflicts); when many cores access one warehouse,
many transactions conflict. We enable Silo’s fast order-ID optimiza-
tion [49], which reduces unnecessary conflicts between new-order
transactions. We implement contention-aware range indexes (§4.5)
and use hash tables to implement indexes that are never range-
scanned. On MVCC systems (MSTO and Cicada), we run read-
only TPC-C transactions slightly in the past, allowing them to com-
mit with no conflict every time.

YCSB models key-value store workloads; YCSB-A is update-
heavy, while YCSB-B is read-heavy. YCSB contention is controlled
by a skew parameter. We set this relatively high, resulting in high
contention on YCSB-A and moderate contention on YCSB-B (the
benchmark is read-heavy, so most shared accesses do not cause con-
flicts). All YCSB indexes use hash tables.

Our Wikipedia workload is modeled after OLTP-bench [10]. Our
RUBIiS workload is the core bidding component of the RUBiS
benchmark [39], which models an online auction site. Both bench-
marks are naturally highly contended. Whenever necessary, indexes
use Masstree to support range queries.

We also evaluate other implementations’ TPC-C benchmarks,
specifically Cicada, MOCC, and ERMIA. All systems use Silo’s
fast order-ID optimization (we enabled it when present and imple-
mented it when not present). We modified Cicada to support deliv-
ery queuing, but did not modify MOCC or ERMIA.

(5]

—4— Inefficient aborts
—#— No hash indexes

N

w

N

=== OSTO Baseline
No contention
regulation
Slow allocator

0 20 40
threads

Throughput (Mtxns/sec)
o
()
Throughput (Mtxns/sec)

-

g
o
o

60 0 20 40

threads

60

(a) One warehouse (high conten-
tion).

Figure 4: OSTO throughput under TPC-C full-mix showing im-

pact of basis factors. Factor optimizations are individually turned

off from the optimized baseline to demonstrate the capping effect

of each factor.

(b) One warehouse per worker (low
contention).

4. BASIS FACTORS

Main-memory transaction processing systems differ in concur-
rency control, but also often differ in implementation choices such
as memory allocation, index types, and backoff strategy. In years
of running experiments on such systems, we have developed a list
of basis factors where different choices can have significant impact
on performance. This section describes the basis factors we have
found most impactful. For instance, OCC’s contention collapse on
TPC-C can stem not from inherent limitations, but from particu-
lar basis factor choices. We describe the factors, suggest a specific
choice for each factor that performs well, and conduct experiments
using both high- and low-contention TPC-C to show their effects on
performance. We end the section by describing how other systems
implement the factors, calling out important divergences.

Figure 4 shows an overview of our results for OSTO, which is
our focus in this section. The heavy line represents the OSTO base-
line in which all basis factors are implemented according to our
guidelines. In every other line, a single factor’s implementation is
replaced with a different choice taken from previous work. The im-
pact of the factors varies, but on high-contention TPC-C, four fac-
tors have 20% or more impact on performance, and two factors can
cause collapse. In TSTO and MSTO, the basis factors have similar
impact, except that memory allocation in MSTO has even larger im-
pact due to multi-version updates; we omit these results for brevity.

4.1 Contention regulation

Contention regulation avoids repeated cache line invalidations
by delaying retry after a transaction experiences a conflict. Over-
eager retry can cause contention collapse; over-delayed retry can
leave cores idle. We recommend randomized exponential backoff
as a baseline for contention regulation. This is not optimal at all
contention levels — under medium contention, it can cause some
idleness — but as with spinlock implementations [35] and network
congestion [1], exponential backoff balances quick retry at low con-
tention with low invalidation overhead at high contention.

The “No contention regulation” lines in Figure 4 show OSTO
performance with no backoff. Silo does not enable backoff by de-
fault [49]. Lack of contention regulation leads to high performance
variations and even performance collapse as contention gets ex-
treme. Silo supports exponential backoff through configuration, but
some comparisons using Silo have explicitly disabled that backoff,
citing (mild) effects at medium contention [30]. This is an unfortu-
nate choice for evaluations including high-contention experiments.

632

4.2 Memory allocation

Transactional systems stress memory allocation by allocating
and freeing many records and index structures. This is particu-
larly true for MVCC-based systems, where every update allocates
memory so as to preserve old versions. Memory allocators can im-
pose hidden additional contention (on memory pools) as well as
other overheads, such as TLB pressure and memory being returned
prematurely to the operating system. We recommend using a fast
general-purpose scalable memory allocator as a baseline, and have
experienced good results with rpmalloc [40]. A special-purpose al-
locator could potentially perform even better, and Cicada and other
systems implement their own allocators. However, scalable alloca-
tors are complex in their own right, and we found bugs in some
systems’ allocators that hobbled performance at high core counts
(85.3). In our experience scalable general-purpose allocators are
now fast enough for use in high-performance transactional soft-
ware. Some systems, such as DBx1000, reduce allocator overhead
to zero by preallocating all record and index memory before experi-
ments begin. We believe this form of preallocation changes system
dynamics significantly — for instance, preallocated indexes never
change size — and should be avoided.

The “Slow allocator” lines in Figure 4 show OSTO performance
using the default glibc memory allocator. The default allocator is
Silo’s default choice [49]. (Silo also supports jemalloc through con-
figuration; this outperforms glibc, but not by much.) OSTO with rp-
malloc performs 1.6 better at high contention, and at low conten-
tion the glibc allocator becomes a bottleneck and stops the system
from scaling altogether.

4.3 Abort mechanism

High-contention workloads stress the abort mechanism in trans-
action systems, since even very fast systems can abort 50% of trans-
action attempts or more. High abort rates do not necessarily corre-
spond to lower throughput on modern systems, and in particular,
reducing abort rates does not always improve performance [31].
However, some abort mechanisms impose surprisingly high hidden
overheads. C++ exceptions — a tempting abort mechanism for pro-
grammability reasons — can acquire a global lock in the language
runtime to protect exception-handling data structures from con-
current modification by the dynamic linker. This lock then causes
all aborted transactions to contend! We recommend implementing
aborts using explicitly-checked return values instead.

The “Inefficient aborts” lines in Figure 4a show OSTO perfor-
mance using C++ exceptions for aborts. STOv1, Silo, and ERMIA
abort using exceptions. Fast abort support offers 1.2—-1.5x higher
throughput at high contention.

4.4 Index types

Transaction systems support different index types for table in-
dexes. Silo, for instance, uses Masstree [33], a B-tree-like struc-
ture, for all indexes. Other systems can choose different structures
based on transaction requirements. Most TPC-C implementations
we have examined use hash tables for indexes unused in range
queries; some implementations use hash tables for all indexes and
implement complex workarounds for range queries [56]. Hash ta-
bles offer O(1) access time where B-trees offer O(logN), and a
hash table can perform 2.5x or more operations per second than a
B-tree even for a relatively easy workload. We recommend using
hash tables when the workload allows it, and B-tree-like indexes
elsewhere.

The “No hash index” lines in Figure 4 show OSTO performance
when all indexes use Masstree, whether or not range scans are re-
quired. Silo and ERMIA lack hash table support. Hash index sup-

leaf node
-l L]]

oid /69}\
Q¥

999 | N

— range scan —» ...|¢----)

wid : did
1 1

wid : did : oid
1 2 1

S
Can Slar[

Figure 5: Example illustrating index contention on the TPC-C
NEW ORDER table. An insert to the end of one district in new-order
can conflict with a range scan in delivery on the adjacent district.

Jury
o

w

Delivery throughput
(Ktxns/sec)

OSTO

Index contention

0 0 20 40 60
threads

Figure 6: Throughput of delivery transactions with and without
contention-aware indexes. Showing OSTO results under TPC-C
Sfull mix, one warehouse.

port offers 1.2x higher throughput at any contention level; this is
less than 2.5 because data structure lookups are not the dominant
factor in TPC-C transaction execution.

4.5 Contention-aware indexes

Contention-aware indexes do not greatly affect overall TPC-C
performance, but hugely impact the performance of some classes
of transaction. A contention-aware index is an index that avoids
contention between disjoint ranges. For instance, the NEW ORDER
table in the TPC-C benchmark is keyed by (wid, did,oid), a com-
bination of warehouse ID, district ID, and order ID. The new-order
transaction inserts records at the end of a (wid,did) range, while
the delivery transaction scans a (wid, did) range from its beginning.
Ideally, new-order and delivery transactions would conflict only if
they used the same district (the same (wid, did) pair). However, if
a district boundary falls persistently within a B-tree node, then in
most systems, phantom protection will cause new-order to the ear-
lier district and delivery to the later district to appear to conflict,
inducing aborts in delivery (see Figure 5).

We recommend implementing contention-aware indexing, either
automatically or by taking advantage of static workload properties.
Our baselines implement contention-aware indexing by leveraging
a side effect of Masstree’s trie-like structure [33, §4.1]. Certain key
ranges in Masstree will never cause phantom-protection conflicts.
If, for example, a (wid, did) pair is represented using an exact mul-
tiple of 8 bytes, then scans on one such range will never conflict
with inserts into any other range. To implement contention-aware
indexing, we therefore reserve eight bytes for each key component
in a multi-key index, which maps each key component to distinct
layers of B-trees. This technique avoids false index contention at
the cost of larger key size (24 bytes instead of 8 bytes). We observe
negligible performance overhead under low contention due to this
increase in key size.

Figure 6 shows the impact of contention-aware indexes on de-
livery transactions in a TPC-C full-mix in OSTO. When not using
contention-aware indexes (the “Index contention” line in the fig-
ure), delivery transactions almost completely starve at high conten-
tion. This starvation is similar to the OCC performance collapse

633

under high contention reported in prior work [31]. When executing
delivery transactions in deferred mode, as required by the TPC-C
specification, this starvation of delivery transactions may not actu-
ally lead to a collapse in overall transaction throughput, because
other transactions can still proceed as normal while delivery trans-
actions are being starved in the background.

4.6 Other factors

Transaction internals refers to the mechanisms for maintaining
read sets and write sets. The best internals use fast hash tables that
map logical record identifiers to their physical in-memory loca-
tions, and we recommend strong transaction internals by default.
However, the factors listed above have more performance impact.
Replacing STO’s highly-engineered internals with Cicada’s some-
what simpler versions reduced performance by just 5%.

Every system that can hold more than one lock at a time must
include a deadlock avoidance or detection strategy. Early OCC
database implementations avoided deadlock by sorting their write
sets into a globally consistent order [25,49,57]. Fast sorts are avail-
able; for instance, the memory addresses of records and nodes are
satisfactory sort keys. Transactional memory systems have long re-
lied instead on bounded spinning, where a transaction that waits
too long to acquire a lock assumes it’s deadlocked, aborts, and tries
again. Bounded spinning can have false positives — it can detect
deadlock where there is none — but it has low overhead, and when
two OCC transactions try to lock the same record, the second trans-
action can benefit from aborting early. (The lock indicates upcom-
ing changes to the underlying record, and if those changes happen
it will often cause the transaction to abort anyway.) Our experience
as well as prior study [52, §7.2] finds that write set sorting is ex-
pensive and we recommend bounded spinning for deadlock avoid-
ance. However, write set sorting generally had relatively low impact
(= 10%) on TPC-C. The exception was DBx1000 OCC [57], which
prevents deadlock using an unusually expensive form of write set
sorting: comparisons use records’ primary keys rather than their ad-
dresses, which causes many additional cache misses, and the sort
algorithm is O(n?) bubble sort. Write-set sorting took close to 30%
of the total run time of DBx1000’s “Silo” TPC-C under high con-
tention.

4.7 Summary

Figure 7 summarizes our investigation of basis factors by list-
ing each factor and qualitatively evaluating 8 systems, including
STOvV2, according to their implementations of these factors. We
performed this evaluation through experiment and code analysis.
Each system’s choice is evaluated relative to STOv2’s and char-
acterized as either good (“+”, achieving at least 0.9x STO’s per-
formance), poor (“—”, 0.7-0.9x), or very poor (“——", less than
0.7x).

S. CONCURRENCY CONTROL EVALUA-
TION

Having implemented reasonable choices for the basis factors, we
evaluate STOv2’s three concurrency control mechanisms on our
suite of benchmarks and at different contention levels. Our goal
is to separate the performance impacts of concurrency control from
those of basis factors.

Prior work showed OCC performance collapsing at high con-
tention on TPC-C, but our findings are quite different. OSTO’s
high-contention TPC-C throughput is approximately 0.6x that of

Contention Memory

System regulation allocation Aborts
Silo [49] —— —— ——
STO [21] —— —— ——
DBx1000 OCC [56] + N/A +
DBx1000 TicToc [57] + N/A +
MOCC [50] N/A + +
ERMIA [24] + + __
Cicada [31] + + +
STOV2 (this work) + + +

Transaction Deadlock Contention-
Index types internals avoidance aware index
- - + +
+ + + +
+ — R _—
+ - + ——
+ + + -
- + + +
+ + N/A N/A
+ + + +

Figure 7: How comparison systems implement the basis factors described in §4. On high-contention TPC-C at 64 cores, “+” choices have

at least 0.9x STOv2’s performance, while “—" choices have 0.7-0.9x and “——

MSTO, even at 64 threads. Neither system either scales or col-
lapses. At low contention, however, OSTO throughput is approx-
imately 2% that of MSTO. These results hold broadly for our other
benchmarks.

5.1 Overview

Figure 8 shows the transaction throughput of all three STOv2
variants on all our benchmarks, and with thread counts varying
from 1 to 64. The committed mix of transactions conforms to the
TPC-C specification except in one-warehouse, high core count set-
tings. (The warehouse delivery thread mandated by the specifica-
tion cannot quite reach 4% of the mix when 63 other threads are
performing transactions on the same warehouse; we observe 3.2%.)
Perfect scalability would show as a diagonal line through the origin
and the data point at 1 thread.

Only low-contention benchmarks (TPC-C with one warehouse
per worker, Figure 8b, and YCSB-B, Figure 8d) approach perfect
scalability. (The change in slope at 32 threads is due to our machine
having 2 hyperthreads per core.) On high-contention benchmarks,
each mechanism scales up to 4 or 8 threads, then levels off. Perfor-
mance declines at higher thread counts, but does not collapse.

When scalability is good, performance differences are due pri-
marily to the inherent overhead of each mechanism. In Figure 8b,
for example, TSTO’s more complex timestamp management causes
it to slightly underperform low-overhead OSTO, while MSTO’s
considerably more complex version chain limits its throughput to
0.52x that of OSTO.

Some of the high-contention benchmarks impose conflicts that
affect all mechanisms equally. For example, YCSB-A has fewer
than 0.1% read-only transactions and high key skew (many transac-
tions touch the same keys). This prevents TicToc and MVCC from
discovering safe commit orders, so OSTO, TSTO, and MSTO all
scale similarly, and OSTO outperforms MSTO by 1.5-1.7x due
to MSTO overhead (Figure 8c). On other benchmarks, the mech-
anisms scale differently. For example, in high-contention TPC-C
(Figure 8a), OSTO levels off after 4 threads, while MSTO and
TSTO scale well to 8 threads. This is due to OSTO observing more
irreconcilable conflicts and aborting more transactions, allowing
MSTO to overcome its higher overhead and outperform OSTO. At
12 threads with 1 warehouse, 47% of new-order/payment transac-
tions that successfully commit in MSTO would have been aborted
by an OCC-style timestamp validation.

In summary, we do not observe contention collapse, and our
MVCC implementation has significant overhead over OCC at low
contention and even some high-contention scenarios. All these re-
sults differ from previous reports. We do not claim that OCC will
never collapse. It is easy to cause OCC contention collapse for
some transaction classes in a workload, such as by combining fast
transaction processing (“modify single value”) with analytics (“read

634

” choices have less than 0.7 X.

0.6 g

@ w4

< <

S04 s3

3 32

0.2 —— 0STO S

3 —— TSTO 31

£ —— MSTO =

= 0.0 0 25 50 -0 0 25 50

threads # threads

(a) TPC-C, one warehouse (high
contention).

(b) TPC-C, one warehouse per
worker (low contention).

o 5 10.0

30.6 §

a @

53 < 7.5

504 g

= £ 50

Q =%

502 —— 0STO S —— 0STO
3 o 25

° —F— TSTO 3 —F— TSTO
E —%— MSTO = —%— MSTO

. (= .
0.0 0 25 50 0.0 0 25 50
threads # threads

(d) YCSB-B (lower contention:
read-intensive, 5% updates,

(¢) YCSB-A (high contention:
update-intensive, 50% updates,

skew 0.99). skew 0.8).
o o
& 21.5
@ @
$0.2 S
-~ -
2 2
go'l —— 0sTO 0.5 —— 0sTO
3 —#— TSTO 3 —#— TSTO
I= —%— MSTO = —%— MSTO
[= =

0.0 0 25 50 0.0 0 25 50

threads # threads

(e) Wikipedia (high contention). (f) RUBIS (high contention).

Figure 8: STOv2 performance on Wikipedia and RUBIS work-
loads.

entire database”), where MVCC could avoid collapse by executing
read-only queries in the recent past. However, we did find it strik-
ing that these important, real-world-inspired benchmarks did not
collapse, and that some of these benchmarks showed MVCC hav-
ing similar scaling behavior as OCC under contention.

Some differences from prior results are worth mentioning. Our
YCSB-A results are lower than those reported previously [31]. This

50.8 S5
g — OSTO —F— TSTO a. g / —F— TSTO —»— MSTO
946 Mocc AT a4 -4- Cicada
Z bl -»- ERMIA
S s3
5 0.4 — —— MSTO 5
— " >
e // ~ - 4- Cicada s
$0.21] -»- ERMIA = —— 0STO
o SN e MOCC
Fo.0 i Folf
0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50
threads # threads # threads # threads # threads # threads

(a) TPC-C, one warehouse (high contention).

(b) TPC-C, one warehouse per worker (low contention).

Figure 9: Cross-system comparisons: STOv2 baselines and other state-of-the-art systems, TPC-C full mix.

can be attributed to to our use of the YCSB-mandated 1000-byte
records; DBx1000 uses 100-byte records. Cicada’s reported results
for Silo and “Silo’” (DBx1000 Silo) show total or near performance
collapse at high contention, but our OCC measurements show no
such collapse. We attribute this difference to Silo’s lack of conten-
tion regulation, inefficient aborts, and general lack of optimization,
and to DBx1000’s unnecessarily expensive deadlock avoidance and
lack of contention-aware indexing.

5.2 Benefits of reordering

Figure 8a (high-contention TPC-C) shows that TSTO, which im-
plements TicToc concurrency control, has an advantage even over
MSTO (MVCC). TSTO’s dynamic transaction reordering avoids
some conflicts on this benchmark, helping it outperform OSTO by
up to 1.7x; since it keeps only one version per record, it avoids
multi-version overheads and outperforms MSTO by up to 1.3x.
However, this effect is limited to TPC-C. We observed no signifi-
cant benefit of TSTO over OSTO in any other workload.

We believe this effect centers on a conflict between TPC-C’s
new-order and payment transactions. These transactions conflict
while trying to access the same WAREHOUSE table row; new-order
transactions read the tax rate of the warehouse, while payment
transactions increment the year-to-date payment amount of the ware-
house. Note that this particular conflict is a false conflict: the trans-
actions actually access distinct columns in the warehouse table.
Both TicToc and MVCC can reduce aborts due to this conflict by
rescheduling the new-order transaction to commit with an earlier
commit timestamp. This reduces aborts and improves performance,
but it generalizes poorly. Transactions that issue more reads than
new-order are more difficult to reschedule, since reads constrain or-
dering, and TicToc cannot reschedule write-write conflicts. Neither
TicToc nor MVCC addresses the true scalability issue, which is the
false conflict. In §7 we will show that eliminating this class of con-
flicts with timestamp splitting is a more effective and generalizable
approach that applies to all our benchmarks, not just TPC-C.

5.3 Cross-system comparisons

Figure 9 shows how STOv2 baseline systems compare with other
state-of-the-art main-memory transaction systems on TPC-C. We
use reference distributions of Cicada, ERMIA, and MOCC.

Figure 9a shows that both MOCC and ERMIA struggle at high
contention (the reason is locking overhead). Cicada outperforms
both MSTO and OSTO, and matches TSTO’s performance at high
contention. Cicada implements more optimizations than MSTO.
For instance, where other MVCC systems, including MSTO, use
a shared, and possibly contended, global variable to assign ex-
ecution timestamps, Cicada uses “loosely synchronized software
clocks”, a scalable distributed algorithm based on timestamp coun-
ters; and Cicada’s “early version consistency check” and “write

635

set sorting by contention” optimizations attempt to abort doomed
transactions as soon as possible, thereby reducing wasted work.
Nevertheless, Cicada outperforms MSTO by at most 1.25x at all
contention levels, and MSTO slightly ouperforms Cicada at low
contention (Figure 9b). This contrasts with Cicada’s own evalua-
tion, which compared systems with different basis factor choices,
and in which Cicada outperformed all other systems, even on low
contention benchmarks, by up to 3x. At low contention, however,
Cicada’s performance collapses at high core counts due to mem-
ory exhaustion (Figure 9b). This appears to be an issue with Ci-
cada’s special-purpose memory allocator, since there is no exhaus-
tion when that allocator is replaced with jemalloc, the default allo-
cator in DBx1000.

6. HIGH-CONTENTION OPTIMIZATIONS

Our commit-time update (CU) and timestamp splitting (TS) opti-
mization techniques can eliminate whole classes of conflict from
transactional workloads. They improve performance, sometimes
significantly, for all of our workloads on OCC, TicToc, and MVCC,
as we show in the next section. They also exhibit synergy: on some
workloads, TS makes CU far more effective. Our prototype im-
plementations of the these techniques require effort from transac-
tion programmers, as the instantiation of each technique depends
on workload. This differs from CC mechanisms such as TicToc
and MVCC, which require no effort from transaction programmers.
However, the techniques are conceptually general, and applying
them to a given workload is not difficult. CU and TS also elimi-
nate classes of conflict that CC protocols cannot, resulting in bigger
improvements than can be achieved by CC alone.

6.1 Commit-time updates

The read and write sets central to OCC and MVCC systems rep-
resent read-modify-write operations as pairs of reads and writes.
An increment, for example, becomes a read of the old value fol-
lowed by a write of the new value. Unfortunately, this represen-
tation can cause conflicts beyond those required by operation se-
mantics. If the result of an increment is not otherwise observed by
its transaction, the increment could be represented in terms of con-
currency control as a kind of blind write, where the write set con-
tained a notation indicating the value should be incremented when
the transaction commits. Since blind writes are subject to fewer
conflicts than reads, this design can eliminate many conflicts.

The commit-time update feature in STOv2 represents certain
read-modify-write operations as varieties of blind write, thus allow-
ing many transactions to avoid semantically unnecessary conflicts.
Commit-time updates work for OCC, TicToc, and MVCC. The im-
plementation centers on function objects called updaters that act
as operations on a record type. A write set component can either

class NewOrderStockUpdater {
public:
NewOrderStockUpdater (int32_t qty, bool remote)
: update_qty(qty), is_remote(remote) {}

void operate(stock_value& sv) const {

if ((sv.s_quantity - 10) >= update_qty)
sv.s_quantity -= update_qty;

else
sv.s_quantity += (91 - update_qgty);

sv.s_ytd += update_qty;

sv.s_order_cnt += 1;

if (is_remote)
sv.s_remote_cnt += 1;

}

private:
int32_t update_qty;
bool is_remote;

};

(a) Commit-time updater for STOCK table records in TPC-C’s new-order
transaction. The operate method encodes the operation (stock deduction
and replenishment).

| Inlined version I

Ke i
Record y Head Yersmn ' comuITTED |
Version: Version : : \Version : Version
chain : PENDINGA : ':COMMITTEDA: ABORTED

(b) Record structure in MSTO with commit-time updates. The
COMMITTEDA version encodes an updater. Concurrent transactions can
insert more delta versions either before or after the COMMITTEDA.

Figure 10: Commit-time updates.

be a value, as in conventional CC, or an updater indicating a read-
modify-write. Each updater encodes the operation to be performed
on a record and any parameters to that operation. When invoked, it
modifies the record according to its encoded parameters. Its execu-
tion is isolated to a single record: it may access the record and its
encoded parameters, but not any other state. A single transaction
may invoke many updaters, however.

Updaters have benefit when they eliminate transactional reads.
A transaction can use an updater when a record is updated by read-
modify-write, the record is not otherwise observed, and the record
does not further affect the transaction’s execution, either in terms
of control flow or data flow. Here, for example, T1 could use an
updater to modify x (the updater would perform the boxed opera-
tions), but T2 should not (part of x is returned from the transaction
so x must be observed):

T1:
tmp = y.coll;
x.col2 += 1;
x.col3 = max(tmp, x.coll);
return tmp;

T2:
tmp = y.coll;
x.coll += tmp;
return x.coll;

OCC and TicToc updaters are invoked at commit time, in the in-
stall phase (see §2.1, Phase 3), while the relevant record is locked.
In MVCC, however, updaters are added to the version chain as in-
dependent entities called delta versions. This preserves transaction
ordering flexibility: just as MVCC blind writes can commit out of
order (when allowed by read timestamps), delta versions can be
added out of order to a version chain. Delta versions contain an up-
dater rather than a materialized record value (Figure 10b). Reading
a delta version thus requires a flattening procedure, which com-
putes a materialized value by invoking updaters in order, oldest to

636

newest, on a copy of the preceding full (non-delta) version. The re-
sulting materialized value is copied into the delta version, creating a
full version ready for reading. Multiple threads can flatten concur-
rently; delta versions are locked only during the final copy stage.
Transactions must also be prevented from inserting delta versions
into chains that are concurrently being flattened.

Delta versions impact MSTO’s garbage collection, since a ver-
sion may be marked for deletion only if a newer full version ex-
ists (a newer delta version does not suffice). MSTO ensures that
whenever a full version is created — either directly, through a con-
ventional write, or indirectly, when a read flattens a delta version —
all older versions are enqueued for RCU garbage collection. Flat-
tening is periodically applied to infrequently-read records to ensure
version chains do not grow without bound.

We evaluate many classes of commit-time updates, such as 64-bit
integer addition, integer max, blind writes, and updates specialized
for specific TPC-C transactions.

Commit-time updates relate to commutativity, which has long
been used to reduce conflicts and increase concurrency in transac-
tional systems [3, 6,21, 54]. Though they can represent both com-
mutative and non-commutative read-modify-write operations, they
do not support some optimizations possible only for commutative
operations [37].

Our current MSTO commit-time update implementation is con-
servative and could be improved. When commit-time updates are
enabled, to facilitate safe interactions between updates and reads,
MSTO transactions initially execute at timestamp sy, = rts,, the
global read timestamp, rather than wts,, the global write timestamp.
This forces all reads (which may trigger flattening) to happen be-
fore all commit-time modifications (the only operations that insert
delta versions), leading to more commit-time invalidations for these
reads.

6.2 Timestamp splitting

Many database records comprise multiple pieces of state sub-
ject to different access patterns. For instance, records in a rela-
tional database may have many columns, some of which are ac-
cessed more often or in different ways. Schema transformations
such as row splitting and vertical partitioning [38] use these pat-
terns to reduce database I/O overhead by, for example, only keep-
ing frequently-accessed record fragments in a memory cache. The
timestamp splitting optimization uses these patterns to avoid classes
of contention.

Timestamp splitting divides a record’s columns into subsets and
assigns one timestamp per subset. When modifying a record, the
system updates all timestamps that overlap the modified columns,
but when observing a record, the system can observe just those
timestamps sufficient to cover the observed columns. In a typical
example, shown in Figure 11, one timestamp covers infrequently-
modified columns while another timestamp covers the rest of the
record. Simple splitting like this is frequently useful. In TPC-C’s
CUSTOMER table, the columns with the customer’s name and ID are
often observed but never modified, whereas other columns, such as
those containing the customer’s balance, change frequently; using a
separate timestamp for name and ID allows observations that only
access name and ID to proceed without conflict even as balance-
related columns change.

OSTO and TSTO implement timestamp splitting by changing
records to contain one or more timestamps, rather than exactly one
timestamp, as shown in Figure 11. MSTO currently implements
timestamp splitting in a more heavyweight manner, with vertical
partitioning: each record is split into multiple tables with the same
primary key. This is more expensive than OSTO’s implementation,

I —

|
Lock _Frequent ‘ I_nfrequent Key _ Va!ue _
timestamp 1 timestamp Col1 : Col2 i Col3 : Col4
l —

Figure 11: Record structure in OSTO with timestamp splitting.
The frequent timestamp protects the frequently-updated columns,
while the infrequent timestamp only updates if coll or col2
change. This allows transactions that only read coll and col2 to
avoid conflicts with those that only write col3 and col4.

and we plan to investigate a lighter-weight implementation strategy
in future work. Although all systems support arbitrary numbers of
timestamps per record, our evaluation only shows results for two
timestamps. Additional timestamps have costs as well as benefits
— for instance, read and write sets as well as record layouts take
more memory — and on all of our benchmarks, three timestamps
performed worse than two. The implementation also currently re-
quires record subsets to be disjoint.

Timestamp splitting can expose additional commit-time update
opportunities. For example, this transaction appears not to benefit
from commit-time updates, since it observes x.coll and x.col2:

tmp = y.coll;
x.coll += tmp;
return x.col2;

However, if x.coll and x.col2 are covered by different times-
tamps, the modification to x.coll can be implemented via an up-
dater — x. coll is not otherwise observed.

6.3 Implementation in workloads

To implement CU and TS, we manually inspected our workloads.
For TS, we generally assign records’ frequently-updated columns
to a separate timestamp. In YCSB, column access is random and
we partition columns evenly into two disjoint timestamps. Trans-
action programs identify the columns they access, but the column-
to-timestamp assignment is handled automatically by our library.
For CU, we create an updater type per operation. Some examples:
in RUBIS, an updater changes an item’s max-bid and quantity
columns; in TPC-C, an updater on warehouse increments its ytd
(orders year-to-date) field, and one on customer updates several
of its fields for orders and payments. The shortest updater takes
about 10 lines of code, including boilerplate; the longest, on TPC-
C’s CUSTOMER table, takes about 30 lines.

Commit-time updates reduce transaction read set sizes. For ex-
ample, the read sets for TPC-C new-order transactions shrink by
30% on average, and payment transactions by 50%. Smaller read
sets mean fewer read-write dependency edges between transactions
and fewer conflicts.

The implementation of these optimizations was facilitated by the
STO platform, which allows application programmers to partici-
pate in some aspects of concurrency control through its transaction-
aware datatypes.

7. OPTIMIZATIONS EVALUATION

We now evaluate the commit-time update and timestamp split-
ting optimizations to better understand their benefits at high con-
tention, their overheads at low contention, and their applicability to
different workloads and CC techniques. We conduct a series of ex-
periments on STOv2 with these optimizations, using all three CC
mechanisms, and measure them against TPC-C, YCSB, Wikipedia,
and RUBIS workloads.

637

7.1 Combined effects

Figure 12 shows the effects of applying commit-time updates
(CU) and timestamp splitting (TS) together under high and low con-
tention, and on TPC-C and YCSB workloads.

In high-contention TPC-C (Figure 12a), CU+TS greatly improves
throughput of all three CC mechanisms, with gains ranging from
2x (TSTO) to 3.9x (OSTO). These gains are larger than those of
the CC algorithms alone.

High-contention TPC-C and YCSB-A did not scale to 64 threads
under any of our three CC algorithms, but once CU+TS are added,
MSTO does scale at least that far (though not perfectly). OSTO and
TSTO schemes cannot sustain throughput at high contention due to
the inherent limitations of single-version CCs for handling read-
only transactions. However, optimized MSTO does not outperform
its OSTO or TSTO counterparts until extremely high contention
(1-warehouse TPC-C at more than 20 cores, skewed write-heavy
YCSB-A at more than 12 cores), and optimized OSTO and TSTO
always outperform unoptimized MSTO.

For low-contention TPC-C, CU+TS adds about 10% performance
overhead to OSTO and TSTO. This is roughly comparable to the
difference between unoptimized TSTO and OSTO at low conten-
tion, and is significantly less than the difference between unop-
timized MSTO and OSTO. However, CU+TS adds close to 30%
overhead for low-contention TPC-C in MSTO. The cause is garbage
collection of long delta version chains, specifically warehouse ytd
values. Garbage collector improvements could potentially reduce
this overhead; alternately, perhaps MVCC systems should consider
switching off CU when contention is low. In all cases, the added
overhead of CU+TS does not affect scalability.

Although YCSB-B is a relatively low-contention benchmark,
CU+TS improves the performance of both OSTO and TSTO. Upon
investigation, we discovered that CU+TS reduces the amount of
data retrieved from and written to the database by accessing only
the columns specified. CU+TS still incurs a small overhead for
MSTO because (1) TS is implemented using vertical partitioning,
which results in additional index lookups, and (2) CU for MSTO
introduces delta versions for updates, which incurs allocation and
flattening overhead.

CU+TS also benefits all three CCs under the high-contention Wi-
kipedia and RUBiS workloads, as shown in Figures 12e and 12f.
In Wikipedia, CU+TS improves performance by 2.6-3.5x at high
core counts, while in RUBIS the gains vary from 1.2-1.4 X, depend-
ing on the underlying CC used.

In summary, CU+TS benefits all three CCs measured, and can
be applied to benefit many different workloads.

7.2 Separate effects

Figure 12g shows the distinct effects of CU and TS on our
high-contention benchmarks for OCC and MVCC. In some work-
loads, such as TPC-C, CU and TS produce greater benefits to-
gether than would be expected from their individual performance.
This is especially clear for MSTO: CU and TS reduce performance
when applied individually, but improve performance by 3.38x at
64 threads when applied in combination. This is because many
frequently-updated columns can be updated using CU, but only if
the infrequently-updated column values use a separate timestamp.
Of the two optimizations, CU is more frequently useful on its own.
For instance, the highest overall performance for Wikipedia is ob-
tained by applying CU to OSTO. This is an indication that write-
write conflicts are predominant in these workloads, since CU re-
duces the impact of write-write conflicts while TS reduces the im-
pact of read-write false sharing.

1.5 —7— TSTO+CU+TS o 9 —x— MSTO+CU+TS
o ~ —#— TSTO e v
3 <. * 5 4 —%— MSTO
< [N K. /' <
X i S [X X
£1.07 = A . : 23
=3 ! —.— osTo+CU+Ts I/ FF——y / =
] j —— 0STO ; /]
B, i ¥ a2 —x
. : B X
5051 7 / 5] ¢ ex=
3 e —%- MSTO+CU+TS 31{ / —— OSTO+CU+TS / —1— TSTO+CU+TS el
£ f —%— MSTO < —— OSTO —F— TSTO
Fo0.0 Fo
0 25 50 0 25 50 0 25 50 0 25 50 0 25 50 0 25 50
threads # threads # threads # threads # threads # threads
(a) TPC-C, one warehouse (high contention). (b) TPC-C, one warehouse per worker (low contention).
53 o
9 —— OSTO+CU+TS —7— TSTO+CU+TS | —x— MSTO+CU+TS g10.0 —%= MSTO+CU+TS
G —— 0sTo —— TSTO —— MSTO 2 = MSTO
g 2)(‘X/ s 75
s - =
= X 5 5.0
3 g, 7 3
gl —/}_._-—--'—’\-s_\‘_‘._ r_}‘ \T“"'-r ‘)(/ _ccn
5 |7 [/ 3 25 —— 0STO+CU+TS —7— TSTO+CU+TS
e |\ ?/P__’_M' *)‘/x——x—x—x—x—x £ —— 0sTO —— TSTO
o F 0.0
0 25 50 0 25 50 0 25 50) 25 50 0 25 50 0 25 50
threads # threads # threads # threads # threads # threads

(c) YCSB-A (high contention: update-intensive, 50% updates, skew 0.99).

o
o

(d) YCSB-B (lower contention: read-intensive, 5% updates, skew 0.8).

g X 5 —x— MSTO+CU+TS gz,o e | Jm ,[o .
? f/' T | f/' T~g.—._g| o MSTO o E ./,/I \I_.%A[I '/_f T\},%—f— ‘{'
504 / ,')(/ 515 SIS
E /'/ a ‘z“
= j4 . V4 51.0
202{ \ / _C;
% —-— OSTO+CU+TS —F— TSTO+CU+TS / 3 0.51"_._ osto+cu+Ts ~7— TSTO+CU+TS %= MSTO+CU+TS
= —— 0STO —#— TSTO "_é —— 0STO —#— TSTO —%— MSTO
k00 0 25 50 0 25 50 0 25 50 0.0 0 25 50 0 25 50 0 25 50
threads # threads # threads # threads # threads # threads

(e) Wikipedia (high contention,). (f) RUBIS (high contention).
Benchmark OSTO OSTO+CU OSTO+TS OSTO+CU+TS MSTO MSTO+CU MSTO+TS MSTO+CU+TS
TPC-C 276 286 (1.04x) 432 (1.57x) 1001 (3.63x) 431 269 (0.62x) 410 (0.95%) 1456 (3.38x)
YCSB 473 855 (1.81x) 466 (0.99x) 844 (1.78 %) 326 1851 (5.68x) 687 (2.11x) 2487 (7.64x%)
Wikipedia 170 487 (2.86x) 167 (0.98x) 483 (2.84x) 128 311 (2.43x) 128 (1.01x) 449 (3.52%)
RUBIS 1378 1924 (1.40x) 1368 (0.99x) 1957 (1.42x) 1475 1692 (1.15x) 1505 (1.02x) 1721 (1.17x)

(g) Throughput in Ktxns/sec at 64 threads in high-contention benchmarks, with improvements over respective baselines in parentheses.

Figure 12: STOv2 performance with commit-time updates and timestamp splitting (CU+TS).

CU alone performs badly on some MSTO benchmarks; on high-
contention TPC-C, MSTO+CU achieves 0.62x the throughput of
MSTO alone. This is due to our current conservative implementa-
tion: when CU is enabled MVCC transactions execute in the re-
cent past and experience more conflicts and more aborts. A proto-
type CU implementation that executes MVCC+CU transactions at
the current timestamp, rather than the recent past, performs better,
achieving 0.95 x the throughput of MSTO alone. CU+TS performs
equally well in both systems, since T'S allows even the conservative
CU to avoid all relevant conflicts.

8. FUTURE WORK

In future work, we hope to investigate the remaining bottlenecks
in STOv2’s performance. We plan to focus on the MSTO imple-
mentation of both timestamp splitting and commit-time updates;
in addition MSTO might benefit from garbage collection improve-
ments and additional Cicada optimizations. In OSTO the transac-
tion processing machinery accounts for just 4.2% of the total run-
time in low-contention TPC-C, leaving little room for further im-
provement.

Additionally, we believe that static analysis could help identify
potential hotspots for false sharing in indexes and database records.
This could lead to tools that more fully automate the application of
commit-time updates and timestamp splitting.

9. RELATED WORK

9.1 Modern concurrency control research

Concurrency control is a central issue for databases and work
goes back many decades [18]. As with many database properties,
the best concurrency control algorithm can depend on workload,
and OCC has long been understood to work best for workloads
“where transaction conflict is highly unlikely” [27]. Since OCC
transactions cannot prevent other transactions from executing, OCC
workloads can experience starvation of whole classes of transac-
tions. Locking approaches, such as two-phase locking (2PL), lack
this flaw, but write more frequently to shared memory. Performance
tradeoffs between OCC and locking depend on technology charac-
teristics as well as workload characteristics, however, and on mul-
ticore main-memory systems, with their high penalty for memory

638

contention, OCC can perform surprisingly well even for relatively
high-conflict workloads and long-running transactions. This work
was motivated by a desire to better understand the limitations of
OCC execution, especially on high-conflict workloads.

The main-memory Silo database [49,58] introduced an OCC pro-
tocol that, unlike other implementations [8, 27], lacked any per-
transaction contention point, such as a shared timestamp counter.
Though Silo addressed some starvation issues by introducing snap-
shots for read-only transactions, and showed some reasonable re-
sults on a high-contention workload, subsequent work has reported
that Silo still experiences performance collapse on other high-con-
tention workloads. These discrepancies are due to its basis factor
implementations, as discussed in §4.

Since Silo, many new concurrency control techniques have been
introduced. We concentrate on those that aim to preserve OCC’s
low-contention advantages and mitigate its high-contention flaws.

TicToc’s additional read timestamp allows it to commit some
apparently-conflicting transactions by reordering them [57]. Time-
stamp maintenance becomes more expensive than OCC, but re-
ordering has benefits for high-contention workloads. We present
results for our implementation of TicToc.

Transaction batching and reordering [11] aims to discover more
reordering opportunities by globally analyzing dependencies within
small batches of transactions. It improves OLTP performance at
high contention, but requires more extensive changes to the com-
mit protocol to accommodate batching and intra-batch dependency
analyses. We consider our workload-specific optimizations orthog-
onal to these techniques as our optimizations eliminate unnecessary
dependency edges altogether instead of working around them.

Hybrid concurrency control in MOCC [50] and ACC [46] uses
online conflict measurements and statistics to switch between OCC-
like and locking protocols dynamically. Locking can be expensive
(it handicaps MOCC in our evaluation), but prevents starvation.

MVCC [4,41] systems, such as ERMIA [24] and Cicada [31],
keep multiple versions of each record. The multiple versions al-
low more transactions to commit through reordering, and read-only
transactions can always commit. ERMIA uses a novel commit-time
validation mechanism called the Serial Safety Net (SSN) to en-
sure strict transaction serializability. ERMIA transactions perform
a check at commit time that is intended to be cheaper and less con-
servative than OCC-style read set validations, and to allow more
transaction schedules to commit. The SSN mechanisms in ERMIA,
however, involve expensive global thread registration and dereg-
istration operations that limited its scalability [S0]. In our experi-
ments, ERMIA’s locking overhead — a kind of basis factor — further
swamps any improvements from its commit protocol. Cicada con-
tains optimizations that reduce overhead common to many MVCC
systems, and in its measurements, its MVCC outperforms single-
version alternatives in both low- and high- contention situations.
This disagrees with our results, which show OSTO outperforming
Cicada at low contention (Figure 9b). We believe the explanation
involves basis factor choices in Cicada’s OCC comparison systems.
Our MSTO MVCC system is based on Cicada, though we omit sev-
eral of its optimizations.

Optimistic MVCC still suffers from many of the same problems
as single-version OCC. When executing read-write transactions
with serializability guarantees, read-write and write-write conflicts
still result in aborts. Optimizations such as commit-time updates
and timestamp splitting can alleviate these conflicts.

Static analysis can improve the performance of high-contention
workloads, since given an entire workload, a system can discover
equivalent alternative executions that generate many fewer con-
flicts. Transaction chopping [44] uses global static analysis of all

639

possible transactions to break up long-running transactions such
that subsequent pieces in the transaction can be executed conflict-
free. More recent systems like IC3 [51] combine static analysis
with dynamic admission control to support more workloads. Static
analysis techniques are complementary to our work, and we hope
eventually to use static analysis to identify and address false shar-
ing in secondary indexes and database records, and to automate the
application of commit-time updates and timestamp splitting.

9.2 Basis factors

Several prior studies have measured the effects of various basis
factors on database performance. A recent study found that a good
memory allocator alone can improve analytical query processing
performance by 2.7x [14]. A separate study presented a detailed
evaluation of implementation and design choices in main-memory
database systems, with a heavy focus on MVCC [55].