
The Dangers of Replication and a Solution
Jim Gray (Gray@Microsoft.tom)

Pat Helland (PHelland@Microsoft.tom)

Patrick O’Neil (POneil@cs.UMB, edu)

Dennis Shasha (Shasha@cs,NYU, edu)

Abstract: Update anywhere-anytime-anyway transactional

replication has unstable behavior as the workload scales up: a

ten-fold increase in nodes and traflc gives a thousand fold

increase in deadlocks or reconciliations. Master copy replica-

tion (primary copyj schemes reduce this problem. A simple

analytic model demonstrates these results. A new two-tier

replication algorithm is proposed that allows mobile

(disconnected) applications to propose tentative update trans-

actions that are later applied to a master copy. Commutative

update transactions avoid the instability of other replication

schemes.

1. Introduction

Data is replicated at multiple network nodes for performance

and availability, Eager replication keeps all replicas exactly

synchronized at all nodes by updating all the replicas as part of

one atomic transaction. Eager replication gives serializable

execution – there are no concurrency anomalies. But, eager
replication reduces update performance and increases transac-

tion response times because extra updates and messages are

added to the transaction.

Eager replication is not an option for mobile applications

where most nodes are normally disconnected. Mobile appli-

cations require lazy replication algorithms that asynchronously

propagate replica updates to other nodes after the updating

transaction commits. Some continuously connected systems

use lazy replication to improve response time.

Lazy replication also has shortcomings, the most serious being

stale data versions, When two transactions read and write data

concurrently, one transaction’s updates should be serialized

after the other’s. This avoids concurrency anomalies. Eager

replication typically uses a locking scheme to detect and regu-

late concurrent execution. Lazy replication schemes typically

use a multi-version concurrency control scheme to detect non-

serializable behavior [Bernstein, Hadzilacos, Goodman],
[Berenson, et. al.]. Most multi-version isolation schemes pro-

vide the transaction with the most recent committed value.

Lazy replication may allow a transaction to see a very old

committed value. Committed updates to a local value may be

“in transit” to this node if the update strategy is “lazy”.

Permission to make digitahhard copy of part or all of this work for personal
or classroomuse is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that
copying is by permission of ACM, Inc. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires prior specific permission
aRd/or a fee.

Eager replication delays or aborts an uncommitted trans-

action if committing it would violate serialization. Lazy

replication has a more difficult task because some replica

updates have already been committed when the serializa-

tion problem is first detected. There is usually no auto-

matic way to reverse the committed replica updates, rather

a program or person must reconcile conflicting transac-

tions.

To make this tangible, consider a joint checking account

you share with your spouse. Suppose it has $1,000 in it.

This account is replicated in three places: your check-

book, your spouse’s checkbook, and the bank’s ledger.

Eager replication assures that all three books have the

same account balance. It prevents you and your spouse

from writing checks totaling more than $1,000. If you try

to overdraw your account, the transaction will fail.

Lazy replication allows both you and your spouse to write

checks totaling $1,000 for a total of $2,000 in withdraw-

als. When these checks arrived at the bank, or when you

communicated with your spouse, someone or something

reconciles the transactions that used the virtual $1,000.

It would be nice to automate this reconciliation. The bank

does that by rejecting updates that cause an overdraft.

This is a master replication scheme: the bank has the

master copy and only the bank’s updates really count.

Unfortunately, this works only for the bank. You, your

spouse, and your creditors are likely to spend considerable

time reconciling the “extra” thousand dollars worth of

transactions. In the meantime, your books will be incon-

sistent with the bank’s books. That makes it difficult for

you to perform further banking operations.

The database for a checking account is a single number,

and a log of updates to that number. It is the simplest

database. In reality, databases are more complex and the

serialization issues are more subtle.

The theme of this paper is that update-anywhere-anytime-

anyway replication is unstable,

1. If the number of checkbooks per account increases by

a factor of ten, the deadlock or reconciliation rates
rises by a factor of a thousand.

2. Disconnected operation and message delays mean

lazy replication has more frequent reconciliation.

SIGMOD ’96 6/96 Montreal, Canada
Q 1996 ACM 0-89791 -794-4/9610006 ...$3.50

173

Figure 1; When replicated, a simple single-node transaction

nay apply its updates remotely either as part of the same

~ansaction (eager) or as separate transactions (lazy), In either

;ase, if data is replicated at N nodes, the transaction does N

:imes as much work
A single-node A three-node A three-node
Transaction EagerTransaction LazyTransaction

nwriteA
WriteB
W&3 G
C%tWnit W!%3B

wnteB
Wke !3

writec
write c

WW c
C#?t’&

Ccmrtlk
Cornlnl

(acturill 3 Transactions)

&

WlikiA
writeB
writec
Ccmdt

riteA
WrmB
Wrm(2
C%rim’it

k?AuVwe 5
Wl% c
czmr-it

Simple replication works well at low loads and with a few

nodes. This creates a scaleup pitfall. A prototype system

demonstrates well. Only a few transactions deadlock or need
reconciliation when running on two connected nodes. But the

system behaves very differently when the application is scaled

up to a large number of nodes, or when nodes are disconnected

more often, or when message propagation delays are longer.

Such systems have higher transaction rates. Suddenly, the

deadlock and reconciliation rate is astronomically higher

(cubic growth is predicted by the model), The database at

each node diverges further and further from the others as rec-

onciliation fails, Each reconciliation failure implies differ-

ences among nodes. Soon, the system suffers system delusion
— the database is inconsistent and there is no obvious way to

repair it [Gray & Reuter, pp. 149-150].

This is a bleak picture, but probably accurate. Simple replica-

tion (transactional update-anywhere-anytime-anyway) cannot

be made to work with global serializability,

In outline, the paper gives a simple model of replication and a

closed-form average-case analysis for the probability of waits,

deadlocks, and reconciliations. For simplicity, the model ig-

nores many issues that would make the predicted behavior

even worse. In particular, it ignores the message propagation

delays needed to broadcast replica updates. It ignores “true”

serialization, and assumes a weak multi-version form of com-

mitted-read serialization (no read locks) [Berenson]. The pa-
per then considers object master replication. Unrestricted lazy

master replication has many of the instability problems of ea-

ger and group replication.

A restricted form of replication avoids these problems: two-

tier replication has base nodes that are always connected, and

mobile nodes that are usually disconnected.
1. Mobile nodes propose tentative update transactions to

objects owned by other nodes. Each mobile node keeps two

object versions: a local version and a best known master

version.

2. Mobile nodes occasionally connect to base nodes and

propose tentative update transactions to a master node.

These proposed transactions are re-executed and may

succeed or be rejected, To improve the chances of suc-

cess, tentative transactions are designed to commute

with other transactions. After exchanges the mobile

node’s database is synchronized with the base nodes.

Rejected tentative transactions are reconciled by the

mobile node owner who generated the transaction.

Our analysis shows that this scheme supports lazy replica-
tion and mobile computing but avoids system delusion:

tentative updates may be ~ejected

state remains consistent,

2. Replication Models

but the base database

Figure 1 shows two ways to propagate updates to replicas:

1. Eager: Updates are applied to all replicas of an object

as part of the original transaction.

2. Lug: One replica is updated by the originating trans-

action. Updates to other replicas propagate asynchro-

nously, typically as a separate transaction for each node.

3.

Figure 2 Updates may be controlled in two ways. Either

all updates emanate from a master copy of the object, or

updates may emanate from any. Group ownership has

many more chances for conflicting updates.
Object Master Object Group

(no master)

Figure 2 shows two ways to regulate replica updates:

1. Group: Any node with a copy of a data item can up-

date it. This is often called update anywhere.

2. Master: Each object has a master node. Only the

master can update the primary copy of the object. All

other replicas are read-only. Other nodes wanting to up-

date the object request the master do the update.

3.

I Table 1: A taxonomy of replication strategiw cotm-ast-

ing propagation strati~y (ea@r or lazy] with tha cmmer-

skip strategy (master or group}.

Proprigaticm

Vs, Lazy Eager
Ownership]

Group N transactions one transaction
N object owners N object owners

Master N transactions one transaction
one object owner one object owner

Two Tier N+ 1 transactions, one object owner

tentative local updates, eager base updates

174

Nodes

Transactions

TPS

Actions

Action_Time

Time_Between_

Disconnects

Disconnected_

time

Message_Delay

A4essage_cpu

Wcs rnd h die model and analysis

number of distinct objects in the data-

base

number of nodes;

each node redicates all obiects

number of concurrent transactions at a

node. This is a derived value.

number of transactions per second origi-

nating at this node.

number of uDdates in a transaction

time to perform an action

mean time between network disconnect

of a node.

mean time node is disconnected from

network

time between update of an object and

update of a replica (ignored)

processing and transmission time needed

to send a replication message or apply a

replica update (ignored)

‘he analysis below indicates that group and lazy replication

are more- prone to serializability ~iola~ions than master and

eager replication

The model assumes the database consists of a fixed set of ob-

jects. There are a fixed number of nodes, each storing a rep-

lica of all objects. Each node originates a fixed number of

transactions per second. Each transaction updates a fixed

number of objects. Access to objects is equi-probable (there

are no hotspots). Inserts and deletes are modeled as updates.

Reads are ignored. Replica update requests have a transmit

delay and also require processing by the sender and receiver.

These delays and extra processing are ignored; only the work

of sequentially updating the replicas at each node is modeled.

Some nodes are mobile and disconnected most of the time.

When first connected, a mobile node sends and receives de-

ferred replica updates. Table 2 lists the model parameters.

One can imagine many variations of this model. Applying

eager updates in parallel comes to mind. Each design alterna-

tive gives slightly different results. The design here roughly

characterizes the basic alternatives. We believe obvious varia-

tions will not substantially change the results here.

Each node generates TPS transactions per second. Each trans-

action involves a fixed number of actions. Each action requires

a fixed time to execute, So, a transaction’s duration is Actions

x Action_Time. Given these two observations, the number of

concurrent transactions originating at a node is:

Transactions = TPS x Actions x Aclion_Time (1)

A more’ careful analysis would consider that fact that, as sys-

tem load and contention rises, the time to complete an action
increases. In a scaleable server system, this time-dilation is a

second-order effect and is ignored here.

In a system of N nodes, N times as many transactions wi 11

be originating per second. Since each update transaction

must replicate its updates to the other (N-1) nodes, it is

easy to see that the transaction size for eager systems

grows by a factor of N and the node update rate grows by

N2. In lazy systems, each user update transaction gener-

ates N-1 lazy replica updates, so there are N times as many

concurrent transactions, and the node update rate is N2

higher. This non-linear growth in node update rates leads

to unstable behavior as the system is scaled up.

3. Eager Replication

Eager replication updates all replicas when a transaction

updates any instance of the object. There are no seriali-

zation anomalies (inconsistencies) and no need for recon-

ciliation in eager systems. Locking detects potential

anomalies and converts them to waits or deadlocks.

With eager replication, reads at connected nodes give cur-

rent data. Reads at disconnected nodes may give stale

(out of date) data. Simple eager replication systems pro-

hibit updates if any node is disconnected. For high avail-

ability, eager replication systems allow updates among
members of the quorum or cluster [Gifford], [Garcia-
Molina]. When a node joins the quorum, the quorum

sends the new node all replica updates since the node was

disconnected. We assume here that a quorum or fault

tolerance scheme is used to improve update availability.

175

Even if all the nodes are connected all the time, updates may

fail due to deadlocks that prevent serialization errors. The fol-

lowing simple analysis derives the wait and deadlock rates of

an eager replication system. We start with wait and deadlock

rates for a single-node system.

In a single-node system the “other” transactions have about
Tranascationsx Actions resources locked (each is about half way

2

complete), Since objects are chosen uniformly from the data-

base, the chance that a request by one transaction will request

a resource locked by any other transaction is:
Transactions Actions . A transaction makes Actions such re-

2 x DB_ size

quests, so the chance that it will wait sometime in its lifetime is

approximately [Gray et. al.], [Gray & Reuter pp. 428]:

Transactions x Actions)ACabm ~ Trarrsactwrrsx ActionsL (2)
Pw= 1–(1–

2x DB_ size 2X DB_Size

A deadlock consists of a cycle of transactions waiting for one

another. The probability a transaction forms a cycle of length

two is PW2 divided by the number of transactions. Cycles of

length j are proportional to PW” and so are even less likely if

PW << 1. Applying equation (1), the probability that the

transaction deadlocks is approximately:
2 4 Tp,$ ~ A~tion_Tim x Acfions5 (3)

PD= ‘w
Transactionsx Actions =

Transactions 4x DB_Slze2 4x DB_Sue2

Equation (3) gives the deadlock hazard for a transaction. The

deadlock rate for a transaction is the probability it deadlock’s

in the next second. That is PD divided by the transaction life-

time (Actions xAction_Time).

TPS x Actions4
Trans_ Deadlock_ rate=

4x DB_ Size=
(4)

Since the node runs Transactions concurrent transactions, the

deadlock rate for the whole node is higher. Multiplying equa-

tion (4) and equation (1), the node deadlock rate is:

TPS2 x Action_ Timex Actions5
Node_ Deadlock_ Rate=

4 x DB_ Size=
(5)

Suppose now that several such systems are replicated using

eager replication — the updates are done immediately as in

Figure 1. Each node will initiate its local load of TPS transac-

tions per secondl. The transaction size, duration, and aggre-
gate transaction rate for eager systems is:

Transaction_Size = Actions x Nodes

Transaction_Duration = Actions x Nodes xAction_Time

Total_TPS = TPS x Nodes (6)

Each node is now doing its own work and also applying the

updates generated by other nodes. So each update transaction

i The assumptionthat transaction arrival rate per node stays constant as

nodes are replicated assumes that nodes are lightly loaded. As the replication

workload increases, the nodes must grow processing and IO power to handle

the increased load. Growing power at an N2 rate is problematic,

actually performs many more actions (Nodes x Actions)

and so has a much longer lifetime — indeed it takes at

least Nodes times longer 2. As a result the total number of

transactions in the system rises quadratically with the

number of nodes:

Total_Transactions = TPS xActions xAction_Time xNodes2 (7)

This rise in active transactions is due to eager transactions

taking N-Times longer and due to lazy updates generating

N-times more transactions. The action rate also rises very

fast with N. Each node generates work for all other nodes.

The eager work rate, measured in actions per second is:
Action_Rate = Total_TPS x Transaction_Size

= TPS xActions x Nodes2 (8)

It is surprising that the action rate and the number of ac-

tive transactions is the same for eager and lazy systems.

Eager systems have fewer-longer transactions. Lazy sys-

tems have more and shorter transactions. So, although

equations (6) are different for lazy systems, equations (7)

and (8) apply to both eager and lazy systems.

Ignoring message handling, the probability a transaction

waits can be computed using the argument for equation

(2). The transaction makes Actions requests while the

other Total_Transactions have Actions/2 objects locked.

The result is approximately:

Actions
PW_ eager= Total_ Transactions x Actions x

2 x DB_ Size

TPS x Action_ Timex Actions3 x Nodes2——
2 x DB_ Size

(9)

This is the probability that one transaction waits. The”

wait rate (waits per second) for the entire system is com-

puted as:

Total_ Eager_ Wait_ Rate

PW_ eager
= x Total_ Transactions

Transaction_ Duration
(lo)

TPS2 x Action_ Timex (Actions x Nodes)3
=

2 x DB_ Size

As with equation (4), The probability that a particular

transaction deadlocks is approximately:

Total_ Transactions x Actions 4
PD_ eager=

4 x DB_ Size 2
(11)

TPS x Action_ Timex Actionss x Nodes=——
4 x DB_ Size2

2 An aftemate model has eager actions broadcast the update to all repli-

cas in one instant. The replicas are updated in parallel and the elapsed

time for each action is constant (independent of N). In our model, we

attempt to capture message handing costs by serializing the individual

updates, If one follows this model, then the processing at each node

rises quadraticly, but the number of concurrent transactions stays con-

stant with scaleup. This model avoids the polynomial explosion of
waits and deadlocks if the total TPS rate is held constant.

176

The equation for a single-transaction deadlock implies the total

deadlock rate. Using the arguments for equations (4) and (5),

and using equations (7) and (1 1):

Total_ Eager_ Deadlock_ Rate

= Total_ Transactions x
PD_eager

Transaction_ Duration
(12)

TPS2 x Action _Time x Actionss x Nodes’
.

4X DB_Size2

If message delays were added to the model, then each transac-

tion would last much longer, would hold resources much

longer, and so would be more likely to collide with other

transactions. Equation (12) also ignores the “second order”

effect of two transactions racing to update the same object at

the same time (it does not distinguish between Master and

Group replication). If DB_Size >> Node, such conflicts will

be rare.

This analysis points to some serious problems with eager rep-

lication. Deadlocks rise as the third power of the number of

nodes in the network, and the fifth power of the transaction

size. Going from one-node to ten nodes increases the deadlock

rate a thousand fold. A ten-fold increase in the transaction size

increases the deadlock rate by a factor of 100,000.

To ameliorate this, one might imagine that the database size

grows with the number of nodes (as in the checkbook example

earlier, or in the TPC-A, TPC-B, and TPC-C benchmarks).

More nodes, and more transactions mean more data. With a

scaled up database size, equation (12) becomes:

Eager_ Deadlock_ Rate_ Scaled_ DB

TPS 2 x Action_ Timex Actionsi x Nodes (13)
.

4x DB_ Size*

Now a ten-fold growth in the number of nodes creates only a

ten-fold growth in the deadlock rate. This is still an unstable

situation, but it is a big improvement over equation (12)

Having a master for each object helps eager replication avoid

deadlocks. Suppose each object has an owner node. Updates

go to this node first and are then applied to the replicas. If,

each transaction updated a single replica, the object-master

approach would eliminate all deadlocks.

In summary, eager replication has two major problems:

1. Mobile nodes cannot use an eager scheme when discon-

nected.

2. The probability of deadlocks, and consequently failed

transactions rises very quickly with transaction size and

with the number of nodes. A ten-fold increase in nodes
gives a thousand-fold increase in failed transactions

(deadlocks).

We see no solution to this problem. If replica updates

were done concurrently, the action time would not in-

crease with N then the growth rate would only be quad-

ratic.

4. Lazy Group Replication

Lazy group replication allows any node to update any

local data. When the transaction commits, a transaction is

sent to every other node to apply the root transaction’s

updates to the replicas at the destination node (see Figure

4), It is possible for two nodes to update the same object

and race each other to install their updates at other nodes.

The replication mechanism must detect this and reconcile

the two transactions so that their updates are not lost.

Timestamps are commonly used to detect and reconcile

lazy-group transactional updates. Each object carries the

timestamp of its most recent update. Each replica update

carries the new value and is tagged with the old object

timestamp. Each node detects incoming replica updates

that would overwrite earlier committed updates. The node

tests if the local replica’s timestamp and the update’s old

timestamp are equal. If so, the update is safe. The local

replica’s timestamp advances to the new transaction’s

timestamp and the object value is updated. If the current

timestamp of the local replica does not match the old

timestamp seen by the root transaction, then the update

may be “dangerous”. In such cases, the node rejects the

incoming transaction and submits it for reconciliation.

Wdta i Root

WA& B TransactIon

Figure 4: A lazy transaction has a root execution that

updates either master or local copies of data. Then subse-

quent transactions update replicas at remote nodes — one

lazy transaction per remote repIica node. The lazy up-

dates carry timestamps of each original object. If the local

object timestamp does not match, the update may be dan-

gerous and some form of reconciliation is needed,

Transactions that would wait in an eager replication sys-

tem face reconciliation in a lazy-group replication system.

Waits are much more frequent than deadlocks because it

takes two waits to make a deadlock. Indeed, if waits are a
rare event, then deadlocks are very rare (rare2). Eager

replication waits cause delays while deadlocks create ap-

plication faults. With lazy replication, the much more

frequent waits are what determines the reconciliation fre-

quency. So, the system-wide lazy-group reconciliation

177

rate follows the transaction wait rate equation (Equation 10):
Lazy_ Group_ Reconciliation_ Rate

~ TPS2 x Action_ Timex (Actions x Nodes)3
(14)

2 x DB_ Size

As with eager replication, if message propagation times were

added, the reconciliation rate would rise. Still, having the rec-

onciliation rate rise by a factor of a thousand when the system

scales up by a factor of ten is frightening.

The really bad case arises in mobile computing. Suppose that

the typical node is disconnected most of the time, The node

accepts and applies transactions for a day. Then, at night it

connects and downloads them to the rest of the network. At

that time it also accepts replica updates. It is as though the

message propagation time was 24 hours.

If any two transactions at any two different nodes update the

same data during the disconnection period, then they will need

reconciliation. What is the chance of two disconnected trans-

actions colliding during the Disconnected_Time ?

5. Lazy Master Replication

Master replication assigns an owner to each object. The

owner stores the object’s correct current value, Updates

are first done by the owner and then propagated to other

replicas. Different objects may have different owners.

When a transaction wants to update an object, it sends an

RPC (remote procedure call) to the node owning the ob-

ject. To get serializability, a read action should send read-

lock RPCS to the masters of any objects it reads.

To simplify the analysis, we assume the node originating

the transaction broadcasts the replica updates to all the

slave replicas after the master transaction commits. The

originating node sends one slave transaction to each slave

node (as in Figure 1). Slave updates are timestamped to

assure that all the replicas converge to the same final state,

If the record timestamp is newer than a replica update

timestamp, the update is “stale” and can be ignored. Al-

ternatively, each master node sends replica updates to

slaves in sequential commit order.

If each node updates a small fraction of the database each day Lazy-Master replication is not appropriate for mobile ap-
then the number of distinct outbound pending object updates at placations. A node wanting to update an object must be
reconnect is approximately:

Outbound_ Updates = Disconnect_ Timex TPS x Actions
connected to the object owner and participate in an atomic

(15) transaction with the owner.

Each of these updates applies to all the replicas of an object.

The pending inbound updates for this node from the rest of the

network is approximately (Nodes-1) times larger than this.
Inbound_ Updates

= (Nodes -1)x Disconnect_ Timex TPS x Actions
(16)

If the inbound and outbound sets overlap, then reconciliation is

needed. The chance of an object being in both sets is approxi-

mately:
P(collision)

~ Inbound_ Updates x Outbound_ Updates (17)

DB_SiZe

Nodesx (Disconnect _Time x TPS x Actions)z
.

DB _ Size

Equation (17) is the chance one node needs reconciliation dur-

ing the Disconnect_Time cycle. The rate for all nodes is:
La~y_ Group_ Reconciliation_ Rate =

Nodes
P(collision) x

Disconnect- Time

Disconnect_ Time x (TPS x Actions x Nodes)z
.

DB _ Size

(18)

The quadratic nature of this equation suggests that a system

that performs well on a few nodes with simple transactions

may become unstable as the system scales up.

As with eager systems, lazy-master systems have no rec-

onciliation failures; rather, conflicts are resolved by wait-

ing or deadlock, Ignoring message delays, the deadlock

rate for a lazy-master replication system is similar to a

single node system with much higher transaction rates.

Lazy master transactions operate on master copies of ob-

jects. But, because there are Nodes times more users,

there are Nodes times as many concurrent master transac-

tions and approximately Nodes2 times as many replica

update transactions. The replica update transactions do

not really matter, they are background housekeeping

transactions. They can abort and restart without affecting

the user. So the main issue is how frequently the master

transactions deadlock. Using the logic of equation (4), the

deadlock rate is approximated by:

Lazy. Master_ Deadlock_ Rate= ‘Tps X4:D;):ZT4 (19)

This is better behavior than lazy-group replication. Lazy-

master replication sends fewer messages during the base

transaction and so completes more quickly. Nevertheless,

all of these replication schemes have troubling deadlock

or reconciliation rates as they grow to many nodes.

In summary, lazy-master replication requires contact with

object masters and so is not useable by mobile applica-

tions. Lazy-master replication is slightly less deadlock

prone than eager-group replication primarily because the
transactions have shorter duration.

178

6. Non-Transactional Replication Schemes a kind of commutative update but there are others (e.g.,

adding and subtracting constants from an integer value).

The equations in the previous sections are facts of nature — It would be possible for Notes to support a third form of

they help explain another fact of nature. They show why there transaction:

are no high-update-traffic replicated databases with globally 3. Commutative updates that are incremental transfor-

serializable transactions. mations of a value that can be applied in any order.

Certainly, there are replicated databases: bibles, phone books,

check books, mail systems, name servers, and so on. But up-

dates to these databases are managed in interesting ways —

typically in a lazy-master way. Further, updates are not record-

value oriented; rather, updates are expressed as transactional

transformations such as “Debit the account by $50” instead of

“change account from $200 to $150”.

One strategy is to abandon serializability for the convergence

property: if no new transactions arrive, and if all the nodes are

connected together, they will all converge to the same repli-

cated state after exchanging replica updates. The resulting

state contains the committed appends, and the most recent re-

placements, but updates may be lost.

Lotus Notes gives a good example of convergence [Kawell].

Notes is a lazy group replication design (update anywhere,

anytime, anyhow). Notes provides convergence rather than an

ACID transaction execution model. The database state may

not reflect any particular serial execution, but all the states will

be identical. As explained below, timestamp schemes have the

lost-update problem,

Lotus Notes achieves convergence by offering lazy-group rep-

lication at the transaction level. It provides two forms of up-

date transaction:

1. Append adds data to a Notes file. Every appended note

has a timestamp. Notes are stored in timestamp order. If all

nodes are in contact with all others, then they will all con-

verge on the same state.

2. Timestamped replace a value replaces a value with a

newer value. If the current value of the object already has a

timestamp greater than this update’s timestamp, the incom-

ing update is discarded.

If convergence were the only goal, the timestamp method

would be sufficient. But, the timestamp scheme may lose the

effects of some transactions because it just applies the most

recent updates. Applying a timestamp scheme to the check-

book example, if there are two concurrent updates to a check-
book balance, the highest timestamp value wins and the other

update is discarded as a “stale” value. Concurrency control

theory calls this the lost update problem. Timestamp schemes

are vulnerable to lost updates.

Lotus Notes, the Internet name service, mall systems, Mi-

crosoft Access, and many other applications use some of

these techniques to achieve convergence and avoid delu-

sion.

Microsoft Access offers convergence as follows. It has a

single design master node that controls all schema updates

to a replicated database. It offers update-anywhere for

record instances. Each node keeps a version vector with

each replicated record. These version vectors are ex-

changed on demand or periodically. The most recent up-

date wins each pairwise exchange. Rejected updates are

reported [Hammond].

The examples contrast with a simple update-anywhere-

anytime-anyhow lazy-group replication offered by some

systems. If the transaction profiles are not constrained,

lazy-group schemes suffer from unstable reconciliation

described in earlier sections. Such systems degenerate

into system delusion as they scale up.

Lazy group replication schemes are emerging with spe-

cialized reconciliation rules. Oracle 7 provides a choice

of twelve reconciliation rules to merge conflicting updates

[Oracle]. In addition, users can program their own recon-

ciliation rules. These rules give priority certain sites, or

time priority, or value priority, or they merge commutative

updates. The rules make some transactions commutative.

A similar, transaction-level approach is followed in the

two-tier scheme described next.

7. Two-Tier Replication

An ideal replication scheme would achieve four goals:

Availability and scalability: Provide high availability

and scalability through replication, while avoiding in-

stability.

Mobility: Allow mobile nodes to read and update the da-

tabase while disconnected from the network.

Serializability: Provide single-copy serializable transac-

tion execution.

Convergence: Provide convergence to avoid system delu-

sion.

Convergence is desirable, but the converged state should re- The safest transactional replication schemes, (ones that
fleet the effects of all committed transactions. In general this avoid system delusion) are the eager systems and lazy
is not possible unless global serialization techniques are used. master systems. They have no reconciliation problems

(they have no reconciliation). But these systems have
In certain cases transactions can be designed to commute, so other problems. As shown earlier:
that the database ends up in the same state no matter what

transaction execution order is chosen. Timestamped Append is

179

1. Mastered objects cannot accept updates if the master node

is not accessible. This makes it difficult to use master

replication for mobile applications.

2. Master systems are unstable under increasing load.

Deadlocks rise quickly as nodes are added.

3. Only eager systems and lazy master (where reads go to the

master) give ACID serializability.

Circumventing these problems requires changing the way the
sYstem is used. We believe a scaleable replication system

must function more like the check books, phone books, Lotus

Notes, Access, and other replication systems we see about us.

Lazy-group replication systems are prone to reconciliation

problems as they scale up. Manually reconciling conflicting

transactions is unworkable. One approach is to undo all the

work of any transaction that needs reconciliation — backing

out all the updates of the transaction. This makes transactions

atomic, consistent, and isolated, but not durable — or at least

not durable until the updates are propagated to each node. In

such a lazy group system, every transaction is tentative until all

its replica updates have been propagated. If some mobile rep-

lica node is disconnected for a very long time, all transactions

will be tentative until the missing node reconnects. So, an

undo-oriented lazy-group replication scheme is untenable for

mobile applications.

The solution seems to require a modified mastered replication

scheme. To avoid reconciliation, each object is mastered by a

node — much as the bank owns your checking account and

your mail server owns your mailbox. Mobile agents can make

tentative updates, then connect to the base nodes and immedi-

ately learn if the tentative update is acceptable.

The two-tier replication scheme begins by assuming there are

two kinds of nodes:

Mobile nodes are disconnected much of the time. They store a

replica of the database and may originate tentative trans-

actions. A mobile node may be the master of some data

items.

Base nodes are always connected. They store a replica of the

database. Most items are mastered at base nodes.

Replicated data items have two versions at mobile nodes:

Master Version: The most recent value received from the ob-

ject master. The version at the object master is the master
version, but disconnected or lazy replica nodes may have

older versions.

Tentative Version: The local object may be updated by tenta-

tive transactions. The most recent value due to local up-

dates is maintained as a tentative value.

Similarly, there are two kinds of transactions:

Base Transaction: Base transactions work only on master

data, and they produce new master data. They involve at

most one connected-mobile node and may involve several

base nodes.

Tentative Transaction: Tentative transactions work on

local tentative data. They produce new tentative ver-

sions. They also produce a base transaction to be run

at a later time on the base nodes.

Tentative transactions must follow a scope rule: they may

involve objects mastered on base nodes and mastered at

the mobile node originating the transaction (call this the

transaction’s scope), The idea is that the mobile node and

all the base nodes will be in contact when the tentative

transaction is processed as a “real” base transaction — so

the real transaction will be able to read the master copy of

each item in the scope.

Local transactions that read and write only local data can

be designed in any way you like. They cannot read-or

write any tentative data because that would make them

LG1l LC.ILIVC,

Figwe 5: The two-tier-replication scheme. Base nodes

store replicas of the database. Each object is mastered al

some node, Mobile nodes store a replica of the database.

but are usually disconnected. Mobile nodes accumulate

tentative transactions that run against the tentative data-

base stored at the node. Tentative transactions are reproc-

essed as base transactions when the mobile node recoin

nects to the base. Tentative transactions may fail when

remocessed.

~!iEE!&,,,
“ee”ode

The base transaction generated by a tentative transaction
may fail or it may produce different results. The base

transaction has an acceptance criterion: a test the result-

ing outputs must pass for the slightly different base trans-

action results to be acceptable. To give some sample ac-

ceptance criteria:

● The bank balance must not go negative.
● The price quote can not exceed the tentative quote.
● The seats must be aisle seats.

If a tentative transaction fails, the originating node and

person who generated the transaction are informed it

failed and why it failed. Acceptance failure is equivalent

to the reconciliation mechanism of the lazy-group replica-
tion schemes. The differences are (1) the master database

is always converged — there is no system delusion, and

(2) the originating node need only contact a base node in

order to discover if a tentative transaction is acceptable,

180

To continue the checking account analogy, the bank’s version

of the account is the master version. In writing checks, you

and your spouse are creating tentative transactions which result

in tentative versions of the account. The bank runs a base

transaction when it clears the check. If you contact your bank

and it clears the check, then you know the tentative transaction

is a real transaction,

Consider the two-tier replication scheme’s behavior during

connected operation. In this environment, a two-tier system

operates much like a lazy-master system with the additional

restriction that no transaction can update data mastered at

more than one mobile node. This restriction is not really

needed in the connected case.

Now consider the disconnected case. Imagine that a mobile

node disconnected a day ago. It has a copy of the base data as

of yesterday. It has generated tentative transactions on that

base data and on the local data mastered by the mobile node.

These transactions generated tentative data versions at the mo-

bile node. If the mobile node queries this data it sees the ten-

tative values. For example, if it updated documents, produced

contracts, and sent mail messages, those tentative updates are

all visible at the mobile node.

When a mobile node connects to a base node, the mobile node:

1. Discards its tentative object versions since they will soon

be refreshed from the masters,

2. Sends replica updates for any objects mastered at the mo-

bile node to the base node “hosting” the mobile node,

3. Sends all its tentative transactions (and all their input pa-

rameters) to the base node to be executed in the order in

which they committed on the mobile node,

4. Accepts replica updates from the base node (this is stan-

dard lazy-master replication), and

5. Accepts notice of the success or failure of each tentative

transaction.

The “host” base node is the other tier of the two tiers. When

contacted by a mobile note, the host base node:

1. Sends delayed replica update transactions to the mobile

node,

2. Accepts delayed update transactions for mobile-mastered

objects from the mobile node.

3. Accepts the list of tentative transactions, their input mes-

sages, and their acceptance criteria. Reruns each tentative

transaction in the order it committed on the mobile node.

During this reprocessing, the base transaction reads and

writes object master copies using a lazy-master execution

model. The scope-rule assures that the base transaction

only accesses data mastered by the originating mobile

node and base nodes. So master copies of all data in the

transaction’s scope are available to the base transaction.
If the base transaction fails its acceptance criteria, the base
transaction is aborted and a diagnostic message is returned

to the mobile node. If the acceptance criteria requires the

base and tentative transaction have identical outputs, then

subsequent transactions reading tentative results written

by T will fail too. On the other hand, weaker accep-

tance criteria are possible.

4. After the base node commits a base transaction, it

propagates the lazy replica updates as transactions

sent to all the other replica nodes. This is standard

lazy-master.

5. When all the tentative transactions have been reproc-

essed as base transactions, the mobile node’s state is

converged with the base state.

The key properties of the two-tier replication scheme are:

1. Mobile nodes may make tentative database updates,

2. Base transactions execute with single-copy serializa-

bility so the master base system state is the result of a

serializable execution.

3. A transaction becomes durable when the base trans-

action completes.

4. Replicas at all connected nodes converge to the base

system state.

5. If all transactions commute, there are no reconcilia-

tions.

This comes close to meeting the four goals outlined at the

start of this section.

When executing a base transaction, the two-tier scheme is

a lazy-master scheme. So, the deadlock rate for base

transactions is given by equation (19). This is still an N2

deadlock rate. If a base transaction deadlocks, it is re-

submitted and reprocessed until it succeeds, much as the

replica update transactions are resubmitted in case of

deadlock.

The reconciliation rate for base transactions will be zero if

all the transactions commute. The reconciliation rate is

driven by the rate at which the base transactions fail their

acceptance criteria.

Processing the base transaction may produce results dif-

ferent from the tentative results. This is acceptable for

some applications. It is fine if the checking account bal-

ance is different when the transaction is reprocessed.

Other transactions from other nodes may have affected the

account while the mobile node was disconnected. But,

there are cases where the changes may not be acceptable.

If the price of an item has increased by a large amount, if

the item is out of stock, or if aisle seats are no longer

available, then the salesman’s price or delivery quote must

be reconciled with the customer.

These acceptance criteria are application specific. The

replication system can do no more than detect that there is

a difference between the tentative and base transaction.
This is probably too pessimistic a test. So, the replication

system will simply run the tentative transaction. If the

tentative transaction completes successfully and passes the

acceptance test, then the replication system assumes all is

well and propagates the replica updates as usual.

181

Users are aware that all updates are tentative until the transac- - - “ “ “ “

tion becomes a base transaction. If the base transaction fails,

the user may have to revise and resubmit a transaction. The

programmer must design the transactions to be commutative

and to have acceptance criteria to detect whether the tentative

transaction agrees with the base transaction effects.

, i?igure 6: Executing tentative and base transactions in two-tier I

replication. I

Thinking again of the checkbook example of an earlier section.

The check is in fact a tentative update being sent to the bank.

The bank either honors the check or rejects it. Analogous

mechanisms are found in forms flow systems ranging from tax

filing, applying for a job, or subscribing to a magazine. It is an

approach widely used in human commerce.

This approach is similar to, but more general than the Data

Cycle architecture [Herman] which has a single master node

for all objects.

The approach can be used to obtain pure serializability if the

base transaction only reads and writes master objects (current

versions).

8. Summary

Replicating data at many nodes and letting anyone update the

data is problematic. Security is one issue, performance is an-

other. When the standard transaction model is applied to a

replicated database, the size of each transaction rises by the

degree of replication. This, combined with higher transaction

rates means dramatically higher deadlock rates.

It might seem at first that a lazy replication scheme will solve

this problem. Unfortunate y, lazy-group replication just con-

verts waits and deadlocks into reconciliations. Lazy-master
replication has slightly better behavior than eager-master repli-

cation. Both suffer from dramatically increased deadlock as

the replication degree rises. None of the master schemes allow

mobile computers to update the database while disconnected
from the system.

The solution appears to be to use semantic tricks (timestamps,

and commutative transactions), combined with a two-tier rep-

lication scheme. Two-tier replication supports mobile nodes

and combines the benefits of an eager-master-replication
scheme and a local update scheme.

9. AcKnowlecigments

Tanj (John G.) Bennett of Microsoft and Alex Thomasian

of IBM gave some very helpful advice on an earlier ver-

sion of this paper. The anonymous referees made several

helpful suggestions to improve the presentation.

10. References

Bernstein, P.A., V. Hadzilacos, N. Goodman, Concurrency
Control and Recovery in Database Systems, Addison Wesley,
Reading MA., 1987.

Berenson, H., Bernstein, P.A., Gray, J., Jim Melton, J., O’Neil,
E., ONeil, P., “A Critique of ANSI SQL Isolation Levels,”
Proc. ACM SIGMOD 95, pp. 1-10, San Jose CA, June 1995.

Garcia Molina, H. “Performance of Update Algorithms for Rep-

licated Data in a Distributed Database,” TR STAN-CS-79-

744, CS Dept., Stanford U., Stanford, CA., June 1979.

Garcia Molina, H., Barbara, D., “How to Assign Votes in a Dis-

tributed System,” J. ACM, 32(4). Pp. 841-860, October,

1985.

Gifford, D. K., “Weighted Voting for Replicated Data;’ Proc.

ACM SIGOPS SOSP, pp: 150-159, Pacific Grove, CA, De-

cember 1979,

Gray, J., Reuter, A., Transaction Processing: Concepts and

Techniques, Morgan Kaufmann, San Francisco, CA. 1993.

Gray, J., Homan, P, Korth, H., Obermarck, R., “A Strawman

Analysis of the Probability of Deadlock;’ IBM RJ 2131, IBM

Research, San Jose, CA., 1981.

Hammond, Brad, “Wingman, A Replication Service for Micro-

soft Access and Visual Basic”, Microsoft White Paper,

bradha@microsoft. com

Herman, G., Gopal, G, Lee, K., Weinrib, A., “The Datacycle

Architecture for Very High Throughput Database Systems,”

Proc. ACM SIGMOD, San Francisco, CA. May 1987,

Kawell, L.., Beckhardt, S., Halvorsen, T., Raymond Ozzie, R.,

Greif, I.,’’Replicated Document Management in a Group

Communication System,” Proc. Second Conference on Com-

puter Supported Cooperative Work, Sept. 1988.

Oracle, “Oracle7 Server Distributed Systems: Replicated Data,”

Oracle part number A21903.March 1994, Oracle, Redwood

Shores, CA. Or http://www.oracle. com/products/oracle7/

server/whitepapers/replication/htmlfindex

182

