
Xiangyao Yu
10/7/2020

CS 764: Topics in Database Management Systems
Lecture 10: Aries Recovery

1

Announcement

2

Submit a 1-page course project proposal by Oct. 21
• Project name
• Author list
• Abstract (1-2 paragraphs about your idea)
• Introduction (Why is the problem interesting; what’s your contribution)
• Methodology (how do you plan to approach the problem)
• Task-list and timeline (List of tasks and when you plan to achieve them)

Submission website: https://wisc-cs764-f20.hotcrp.com
VLDB 2020 format: https://vldb2020.org/formatting-guidelines.html
A list of project ideas are updated to the course website
(http://pages.cs.wisc.edu/~yxy/cs764-f20/CS764-Fall2020-project-ideas.pdf)
Post your ideas on Piazza to look for teammates

https://wisc-cs764-f20.hotcrp.com/
https://vldb2020.org/formatting-guidelines.html
http://pages.cs.wisc.edu/~yxy/cs764-f20/CS764-Fall2020-project-ideas.pdf

Today’s Paper: Aries Recovery

ACM Trans. Database Syst. 1992.
3

Agenda

4

Durability
Force vs. No Force and Steal vs. No Steal
ARIES recovery

Durability

5

Durability: The database must recover to a valid state no matter
when a crash occurs
• Committed transactions should persist
• Uncommitted transactions should roll back

Durability

6

Durability: The database must recover to a valid state no matter
when a crash occurs
• Committed transactions should persist
• Uncommitted transactions should roll back

Desired Behavior after system restarts
• T1, T2 should be durable
• T3, T4 should be aborted

T1
T2
T3
T4

crash
CB

CB

B

B

Write-Ahead Logging (WAL)

7

On a crash, data in disk persists, data in memory disappears

Processor

Disk
DRAM

Page

Log

Write-Ahead Logging (WAL)

8

On a crash, data in disk persists, data in memory disappears
Write-ahead logging

• Flush the log record for an update before the corresponding data page gets to disk
• Write all log records for a transaction before commit

Processor

Disk
DRAM

Page

Log

Write-Ahead Logging (WAL)

9

On a crash, data in disk persists, data in memory disappears
Write-ahead logging

• Flush the log record for an update before the corresponding data page gets to disk
• Write all log records for a transaction before commit

Processor

Disk
DRAM

Page

Log

“. . . a DBMS is really two DBMSs, one
managing the database as we know it and a
second one managing the log.”

Michael Stonebraker [1]

[1] M. Stonebraker. The land sharks are on the squawk box. Commun. ACM, 2016

Buffer Management Policy

10

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
• Advantage: other transactions can use the buffer slot in DRAM
• Challenge: system crashes after flushing dirty pages but before the

transaction commits
=> Dirty data on disk

• Solution: UNDO logging before each update

Buffer Management Policy

11

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
• Advantage: reduce # random IO
• Challenge: system crashes after the transaction commits but before the dirty

pages are flushed
=> missing updates from committed transactions

• Solution: REDO logging before each update

Flushing logs can be much cheaper than flushing data pages:
• Log record can be much smaller than a data page
• Logging incurs sequential IO; data page updates incur random IO

Buffer Management Policy

12

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Buffer Management Policy

13

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB

Buffer Management Policy

14

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB Main memory DB

Buffer Management Policy

15

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB Main memory DB

Non-volatile memory DB

Buffer Management Policy

16

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Disk-based DB Main memory DB

Non-volatile memory DB

[1] Philip Bernstein, Vassos Hadzilacos, Nathan Goodman, Concurrency Control and Recovery in Database Systems, 1987

Buffer Management Policy

17

Steal No Steal

Force UNDO only No REDO nor
UNDO

No Force REDO and
UNDO logging
(ARIES)

REDO only

Focus of this lecture

ARIES Logging

18

Data Structures – Log Records
Update log record: contains REDO and UNDO information
Compensate log record (CLR): contains REDO information that rolls
back a previous update log record

19

Data Structures – Log Records
Log record fields
• LSN: address of the first byte of the log record (not actually stored)
• Type: ‘update’, ‘compensate log record (CLR)’, etc.
• TransID: transaction ID
• PageID: identifier of the page to which the updates of this record were

applied
• Data: the actual redo and undo record

20

Data Structures – Log Records
Log record fields
• LSN: address of the first byte of the log record (not actually stored)
• Type: ‘update’, ‘compensate log record (CLR)’, etc.
• TransID: transaction ID
• PageID: identifier of the page to which the updates of this record were

applied
• Data: the actual redo and undo record
• prevLSN: preceding log record written by the same transaction

21

A3A2A1 CLR3 CLR2 CLR1

Data Structures – Log Records
Log record fields
• LSN: address of the first byte of the log record (not actually stored)
• Type: ‘update’, ‘compensate log record (CLR)’, etc.
• TransID: transaction ID
• PageID: identifier of the page to which the updates of this record were

applied
• Data: the actual redo and undo record
• prevLSN: preceding log record written by the same transaction
• UndoNxtLSN: (For CLR) LSN of the next log record of this transaction that

is to be processed during rollback

22

A3A2A1 CLR3 CLR2 CLR1

Data Structures – Data Page
Page_LSN: LSN of the log record that describes the latest update to
the page.

23

Data Structures – Transaction Table
Transaction table: One entry per active transaction

Each entry contains
• TransID: Transaction ID
• Status: prepared (P) or unprepared (U)
• LastLSN: LSN of the last log record written by the transaction
• UndoNxtLSN: LSN of the next record to be processed during rollback

24

Data Structures – Dirty Page Table (DPT)
Dirty page table: One entry per dirty page in buffer pool

Each entry contains
• PageID: ID of the page
• RecLSN: LSN of the first log record since when the page is dirty

(the page on disk is up to date before RecLSN)

25

Data Structures – Checkpoint
A checkpoint is a snapshot of the database
• Reduces recovery time

In ARIES, A checkpoint contains
• Transaction Table
• Dirty page table

Fuzzy checkpoint
• Checkpoints can be taken asynchronously

26

Data Structures – Big Picture

27

Processor

Log

DRAM

Disk

Checkpoint

Data Structures – Big Picture

28

Processor

Data
page

Log

DRAM

Disk

Data
page

Checkpoint

Data Structures – Big Picture

29

Processor

Data
page

Log

DRAM

Disk

Data
page

log records

Checkpoint

Data Structures – Big Picture

30

Processor

Data
page

Log

DRAM

Disk

Data
page

log records
Transaction table

Dirty page table Checkpoint
Transaction table

Dirty page table

Normal Processing
Write-ahead logging
• Flush log before flushing the corresponding data page
• Flush all logs before committing the transaction

Maintain the transaction table and dirty page table

Rollback
• Must UNDO previous update
• Write compensate log record (CLR) for the UNDO operation

Checkpoint
• Periodically flush transaction table and dirty page table to disk

31

Crash Recovery – Big Picture

32

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Crash Recovery – Big Picture

33

Oldest log rec. of
active transactions
at crash

Smallest recLSN in
dirty page table
after Analysis

Last chkpt

CRASH
A R U

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint
• Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)
• REDO phase: redo transactions whose

effects may not be persistent before the
crash
• UNDO phase: undo transactions that did

not commit before the crash

Crash Recovery – Analysis Phase

34

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

Crash Recovery – Analysis Phase

35

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
• If ‘update’ or ‘CLR’: insert to transaction table if not exists
• If ‘end’: delete from transaction table

Crash Recovery – Analysis Phase

36

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
• If ‘update’ or ‘CLR’: insert to transaction table if not exists
• If ‘end’: delete from transaction table

(update dirty page table) For each log record:
• If ‘update’ or ‘CLR’: insert to dirty page table if not exists (PageID, RecLSN)

Analysis Phase – Example

37

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN

PageID RecLSN

Analysis Phase – Example

38

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10

PageID RecLSN
P5 10

Analysis Phase – Example

39

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10
T2 20

PageID RecLSN
P5 10
P3 20

Analysis Phase – Example

40

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10
T2 20

PageID RecLSN
P5 10
P3 20

Analysis Phase – Example

41

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 20

PageID RecLSN
P5 10
P3 20
P1 50

Analysis Phase – Example

42

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

Crash Recovery – REDO Phase

43

Repeat history to reconstruct state at crash
• Reapply all updates (even of aborted transactions), redo CLRs

Crash Recovery – REDO Phase

44

Repeat history to reconstruct state at crash
• Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
• From log record containing smallest RecLSN in the dirty page table
• Before this LSN, all redo records have been reflected in data pages on disk

Crash Recovery – REDO Phase

45

Repeat history to reconstruct state at crash
• Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
• From log record containing smallest RecLSN in the dirty page table
• Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

• The page is not in dirty page table (DPT)
• The page is in DPT but redo_record.LSN < DPT[page].recLSN
• After fetching the data page, redo_record.LSN ≤ page.page_LSN

REDO Phase – Example

46

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

REDO Phase – Example

47

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Crash Recovery – UNDO Phase

48

Rollback uncommitted transactions
• Transactions in transaction table did not commit before the crash
• Undo each update log record of these transactions

Crash Recovery – UNDO Phase

49

Rollback uncommitted transactions
• Transactions in transaction table did not commit before the crash
• Undo each update log record of these transactions

Repeat until transaction table is empty:
• Choose largest LastLSN among transactions in the transaction table
• If the log record is an ‘update’: Undo the update, write a CLR, add

record.prevLSN to transaction table
• If the log record is an ‘CLR’: add CLR.UndoNxtLSN to transaction table
• If prevLSN and UpdoNxtLSN are NULL, remove the transaction from

transaction table

UNDO Phase – Example

50

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 50
T2 60 60

UNDO Phase – Example

51

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 50
T2 60 70 60 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)

UNDO Phase – Example

52

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 80 50 null
T2 70 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)

UNDO Phase – Example

53

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 80 null
T2 70 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End

UNDO Phase – Example

54

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN

T2 70 90 20 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)

UNDO Phase – Example

55

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN

T2 90 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)
95 T2 End

Crash During Restart – Example

56

begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

CLR: Undo T2 LSN 20, T2 end90

No need to undo LSN 60 and
LSN 50 again due to the CLRs
created in the previous restart

Can created a checkpoint to
reduce the cost of future restart

Summary
ARIES: WAL supporting STEAL/NO-FORCE
• Checkpointing: A quick way to limit the amount of log to scan on recovery.

Recovery works in 3 phases:
• Analysis: Forward from last checkpoint
• Redo: Forward from oldest RecLSN.
• Undo: Backward from end to first LSN of oldest transaction alive at crash

Upon UNDO, write CLRs

57

Q/A – Aries Recovery

58

Too long, too many variables…
What’s the main contribution?
Why REDO aborted transactions in the REDO phase?
Why don’t we worry about deadlocks when using latches?
Why REDO when log_record.LSN > page.LSN?
Physical and logical consistency?
Latches vs. Locks?
Logs consume large disk space
Log becomes a bottleneck in modern systems?
Technique still valid for modern systems?

Before Next Lecture
Look for teammates for the course project J

Submit review before next lecture
• C. Mohan, et al., Transaction Management in the R* Distributed Database

Management System. ACM Trans. Database Syst. 1986.

59

http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/R-XactMgmt.pdf

