WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 13: Distributed DBMSs

Xiangyao Yu
10/19/2020

Announcement

Project proposal due: Oct21 Oct 26

Please submit your proposal to the paper review website:
https://wisc-cs764-120.hotcrp.com

https://wisc-cs764-f20.hotcrp.com/

Discussion

High-level interface like SQL
« Any programming language (functional language, python, java)
« Spark, MapReduce
* File system, network API, virtual memory, TensorFlow, PyTorch

Optimizations for storage-disaggregation architecture
« Optimize for data locality: use replica close to computation
 Higher level of consistency for OLTP than OLAP
 Offload some computation to storage (selection/projection)
« Cache intermediate results in the memory of compute nodes
« OLTP: execute select, update, insert, delete completely on storage nodes

Today’s Paper: Mariposa

Mariposa: a wide-area distributed database system

Michael Stonebraker, Paul M. Aoki, Witold Litwin', Avi Pfeffer’, Adam Sah, Jeff Sidell, Carl Staelin’, Andrew Yu*

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720-1776, USA

Edited by Henry F. Korth and Amit Sheth. Received November 1994 / Revised June 1995 / Accepted September 14, 1995

Abstract. The requirements of wide-area distributed data-
base systems differ dramatically from those of local-area
network systems. In a wide-area network (WAN) configura-
tion, individual sites usually report to different system ad-
ministrators, have different access and charging algorithms,
install site-specific data type extensions, and have differ-
ent constraints on servicing remote requests. Typical of the
last point are production transaction environments, which
are fully engaged during normal business hours, and cannot
take on additional load. Finally, there may be many sites
participating in a WAN distributed DBMS.

In this world, a single program performing global query
optimization using a cost-based optimizer will not work
well. Cost-based optimization does not respond well to site-
specific type extension, access constraints, charging algo-
rithms, and time-of-day constraints. Furthermore, traditional
cost-based distributed optimizers do not scale well to a large
number of possible processing sites. Since traditional dis-
tributed DBMSs have all used cost-based optimizers, they
are not appropriate in a WAN environment, and a new ar-
chitecture is required.

We have proposed and impl d an ecc para-
digm as the solution to these issues in a new distributed
DBMS called Mariposa. In this paper, we present the archi-
tecture and implementation of Mariposa and discuss early
feedback on its operating characteristics.

Key words: Databases — Distributed systems — Economic
site — Autonomy — Wide-area network — Name service

U Present address: Université Paris IX Dauphine, Section MIAGE, Place
de Lattre de Tassigny, 75775 Paris Cedex 16, France
v - e - s - -

1 Introduction

The Mariposa distributed database system addresses a fun-
damental problem in the standard approach to distributed
data management. We argue that the underlying assumptions
traditionally made while implementing distributed data man-
agers do not apply to today’s wide-area network (WAN) en-
vironments. We present a set of guiding principles that must
apply to a system designed for modern WAN environments.
We then demonstrate that existing architectures cannot ad-
here to these principles because of the invalid assumptions
just mentioned. Finally, we show how Mariposa can success-
fully apply the principles through its adoption of an entirely
different paradigm for query and storage optimization.

Traditional distributed relational database systems that
offer location-transparent query languages, such as Dis-
tributed INGRES (Stonebraker 1986), R* (Williams et al.
1981), SIRIUS (Litwin 1982) and SDD-1 (Bernstein 1981),
all make a collection of underlying assumptions. These as-
sumptions include:

— Static data allocation: In a traditional distributed DBMS,
there is no mechanism whereby objects can quickly and eas-
ily change sites to reflect changing access patterns. Moving
an object from one site to another is done manually by a da-
tabase administrator, and all secondary access paths to the
data are lost in the process. Hence, object movement is a
very “heavyweight” operation and should not be done fre-
quently.

— Single administrative structure: Traditional distributed da-
tabase systems have assumed a query optimizer which de-
composes a query into “pieces” and then decides where to
execute each of these pieces. As a result, site selection for
query fragments is done by the optimizer. Hence, there is
no mechanism in traditional systems for a site to refuse to
execute a query, for example because it is overloaded or oth-

VLDB Journal 1996

Why Mariposa?

Distributed DBMSs are all designed for local-area networks (LAN)

- Static data allocation: data movement is heavyweight and performed
manually by a database administrator

- Single administrative structure: centralized optimizer; no site can refuse
work, even under excessive load

« Uniformity: optimizer assumes all sites have same hardware, network,
ample disk space, etc.

Why Mariposa?

Distributed DBMSs are all designed for local-area networks (LAN)

- Static data allocation: data movement is heavyweight and performed
manually by a database administrator

- Single administrative structure: centralized optimizer; no site can refuse
work, even under excessive load

« Uniformity: optimizer assumes all sites have same hardware, network,
ample disk space, etc.

Assumptions no longer true in WAN environment
« Administrator for individual sites
« Constraints on servicing remote requests
* Non-uniform hardware

Main Goals of Mariposa

Scalability to a large number of sites (10K or more)

Main Goals of Mariposa

Scalability to a large number of sites (10K or more)

Data mobility: no fixed home of data. Data fragments can move
freely between sites

Main Goals of Mariposa

Scalability to a large number of sites (10K or more)

Data mobility: no fixed home of data. Data fragments can move
freely between sites

No global synchronization: no forced synchronization for data
updates and schema changes.

Main Goals of Mariposa

Scalability to a large number of sites (10K or more)

Data mobility: no fixed home of data. Data fragments can move
freely between sites

No global synchronization: no forced synchronization for data
updates and schema changes.

Local autonomy: each site has control over its resources. Query and
data allocation is not done by a central authoritarian query optimizer

10

Main Goals of Mariposa

Scalability to a large number of sites (10K or more)

Data mobility: no fixed home of data. Data fragments can move
freely between sites

No global synchronization: no forced synchronization for data
updates and schema changes.

Local autonomy: each site has control over its resources. Query and
data allocation is not done by a central authoritarian query optimizer

Easily configurable policies: Local database administrator can
change the behavior of a Mariposa site based on user activity and
data access pattern

11

Economics in Mariposa

Resource management is reformulated into a microeconomic
framework

 Clients and servers have network bank accounts

» Users allocate budget to each query

« Broker obtains bids for a query

« Servers bids on sub-queries

- Goal: optimize revenue

12

Economics in Mariposa

Resource management is reformulated into a microeconomic
framework

 Clients and servers have network bank accounts

» Users allocate budget to each query

« Broker obtains bids for a query

« Servers bids on sub-queries

- Goal: optimize revenue

Why a microeconomic structure?
« Supports a large number of sites
» Sites can join and leave through buying and selling objects

13

Mariposa Architecture

Client

* Queries submitted by user
applications to client site. Client site

picks a query budget expressed as a
bid curve

Bid Curve $ |\

Delay

Client Application)

SQL Parser

| Single-Site Optimizer

Middleware
Lay er | Query Fragmenter
I Broker ‘
[Coordinator '
-J: N\
LBidder'
Local — .
Execution | Executor |
Component

‘ Storage Manager |

14

Mariposa Architecture

Middleware layer

 Parser: request catalog information
from name servers

« Conventional query optimizer
produces a single-site query execution
plan

« Query fragmenter: decomposes a
single site plan into a fragmented
query plan

- Broker: takes fragments and sends
out bidding requests; decides which
sites to accept/reject.

Client Application {_

SQL Parser

| Single-Site Optimizer

Middleware
Lay er [Query Fragmenter]

[Coordinatolr '

‘fBidder\'

Local — .
Execution | Executor |

Component

‘ Storage Manager |

15

Mariposa Architecture

Local Execution Component
- Bidder: send bid price to the broker

- Executor: execute the query as in a
conventional DBMS

- Storage manager: storing fragments,
buying and selling fragments, splitting
and coalescing fragments

Middleware
Layer

Client Application {_

SQL Parser

"Single-Site

Optimizer

| Query Fragmenter

Loca_l
Execution

Component

I N
I Broker ‘

[Coordinator '

‘ Executor

-

‘ Storage Manager |

16

Mariposa Architecture

Client site picks a query
budget expressed as a bid

curve

‘, Client Application

Query Iselect * from EMP;

L
Bid Curve EB

‘7 SQL Parser

'

select

Parse Tree I

EMP

‘Single-Site Optimizer |

select

Plan Tree

SS(EMP)

“ Query Fragmenter ‘

l

Fragmented MERGE ™|

Plan SS(EMP1)
SS(EMP2)

SS(EMP3)

| Coordinator ™|

Executor
A ‘ ,v‘

select
Execute |
Query § ss(ewp1)

Bid

i i select
‘ \ ‘
" Broker | SS(EMP1)

IYOU WIN!!!

Bid Acceptance

Local
‘,B.dd -ﬁ‘ Execution
I(sss. DELAY) Bidder Component
Request For Bid
Middleware
Layer

17

Mariposa Architecture

\‘ Client Application ‘

Query parsing and single-site e E—

optimizer i
« Assume all fragments are |”°‘_B

merged and reside at a single
server site :

Coordinator T |

Execute
Query § ss(ewp1)

Single-Site Optimizer | J— Exlégﬁ?ilon
I(sss. pezay) | | Bidder | Component
select Bid L
Plan Tree ‘
SS(EMP)

| Query Fragmenter ‘

l

select
‘ . select
Fragmented MERGE™] T (|
= Broker SS(EMP1)

Plan SS(EMP1)
SS(EMP2)
SS(EMP3)

I YOU WIN!!!] Middleware

Bid Acceptance L ayer

Mariposa Architecture

Query fragmenter

« Each table in FROM clause
can be decomposed into
fragments

* Fragments are partitions of
tables (e.g., range, hash, or
random)

« Group operations that can
proceed in parallel into query
strides. All subqueries in a
stride must complete before
the next stride starts

\‘ Client Application ‘
' 1

Y

Query lselect * from EMP;

" | Answer

‘7 SQL Parser

select

Single-Site Optimizer

cccccc

Plan Tree

| Query Fragmenter

eeeeee

Coordinator T |

Executor ‘

Local
' - Execution
I ($$$, DELAY) Bidder ‘ Component
Bid
.} -select
|

= Broker
|‘ YOU WINIII Middleware
Bid Acceptance Layel‘

19

Mariposa Architecture

Broker sends bids requests

 Find processing site for each
subquery (through
advertisement) such that the
cost and delay satisfy the
budget (i.e., bid curve)

- Bidding vs. purchase order:
For purchase order, simply
send subquery to the site most
likely to win the bid

| Client Application
’ i
1
Query lselect * f MP
Bid Curve $ N
I DDDDD
I

17 SQL Parser

select

Coordinator T |

Executor ‘

eeeeee

— _ — Local
\Smgle-Slte Optimizer) . - Execution
I ($$$, DELAY) Bidder ‘ Component
Bid
Plan Tree
| Query Fragmenter
EEEEEE l
eeeeee
Fragmented ME
o ‘ Broker
‘ Request For Bid
R — Middleware
Bid Acceptance Layer

20

Mariposa Architecture

Bidder
* A Bidder bids if

1. It posseses the referenced
objects (or 1 of the 2 objects for
join)

2. It has bid on a subquery whose
answer is the referenced object

3. It plans to load the object soon
(e.g., object in host list)

 Actual bid depends on
hardware and system load

« Send cost and delay back to
broker

7\ Client Application ‘
‘ 1

" | Answer

SQL Parser

select

Single-Site Optimizer |

Plan Tree

| Query Fragmenter

Coordinator T |

Executor ‘

Local
' - Execution
($$$, DELAY) Bidder ‘ Component
Bid
.} select
|
= Broker (EMP1)
I YOU WIN!!! Middleware
Bid Acceptance Layel‘

21

Mariposa Architecture

Broker picks sites

 Heuristic greedy algorithm:

1. Find the set of sites with the
smallest delay

2. Make greedy substitutions of
sites to reduce cost by
increasing delay (start with the
ones with greatest cost
gradient)

\‘ Client Application ‘
‘ 1

Y

Query lselect * from EMP;

Coordinator T |

Execute
Query § ss(ewp1)

Plan Tree

SS(EMP2)

SS(EMP3)

Local

‘Bidd "‘—I Execution
I—,-(sss' o Component
Bid
" elect
|
= Broker S(EMP1)
Request For Bid
I YOU WIN!!! Middleware
Bid Acceptance Layel‘

22

Mariposa Architecture

Local execution

Query Iselect * from EMP;

L
Bid Curve $ B

{ \ Client Application

L)

Jeff, 100K,...
Paul, 100K,...

Mike, 10K, ... |Answer

Delay

v . IJefi, 100K, ...
.] Paul, 100K,...)
' Coordinator Mike, 10K,... |Answer
‘ SQL Parser
‘ Executor
select) ¥
Parse Tree ’_ sele'ct.
* EMP Execute |

‘Single-Site Optimizer |

select

Plan Tree
SS(EMP)

“ Query Fragmenter ‘

select

Fragmented MERGE
Plan SS(EMP1)
SS(EMP2)
SS(EMP3)

Query I ss(emp1)

I ($$$, DELAY)

/ -
Bidder |

Local
Execution

Component

Bid

>“ Broker |

select
\
SS(EMP1)

Request For Bid

IYOU WIN!!!

Bid Acceptance

Middleware
Layer

23

Mariposa Architecture

Merge results from sites

Query lselect * from EMP;

L
Bid Curve $ B

{ \ Client Application ~‘

L)

Jeff, 100K,...
Paul, 100K,...

Mike, 10K, ... |Answer
Delay
, . IJefi, 100K, ...
. Paul, 100K,...)
' Coordinator Mike, 10K,... |Answer
J - J
‘ SQL Parser ’
‘ Executor
select) i
Parse Tree i 1 sele'ct
* EMP Execute |
Query I ss(emp1)
(@t .) Local
Single-Site Optimizer | E .
\) (- xecution
$$$, DELAY Bidder‘
| st Component
select Bid L
Plan Tree
SS(EMP)
Query Fragmenter
select |
‘ PR SE— select
Fragmented MERGE T (|
Plan 85(EMP1) >\(Broker] SS(EMP1)
SS(EMP2))
SS(EMP3) Request For Bid

IYOU WIN!!!

Bid Acceptance

Middleware
Layer

24

Storage Management

Manage fragments to maximize profits in local execution component

Buying and selling fragments
« Each site tracks (size, revenue) for fragments

« Make buying/selling decision based on history (similar to cache
replacement)

Splitting and coalescing
* Too few fragments hinders parallel execution
« Too many fragments lead to higher scheduling overhead
 Let the market pressures dictate the appropriate fragment size

25

Name Services

Decentralized name registration system

Each client/server has local name cache to resolve object names

Broker queries name server if a match is not found

Broker chooses name sever based on quality of service and cost (i.e.,
staleness)

26

Performance

Bidding overhead can be small if query execution takes a long time

Steps
1 2 3 4 5 6

Elapsed time Brokering 13.06 12.78 18.81 13.97 8.9 10.06

(s) Total 44930 477.74 40361 42882 3943 384.04
R1 1 1 1 1 3 3
Location of R2 2 2 1 11 13 13
(site) R3 13 3 3 3 3 3
Site 1 97.6 97.6 955 97.2 102.3 0.0
Revenue Site 2 2.7 2.7 35 1.9 19 1.9
(per query) Site 3 177.9 177.9 177.9 177.9 1653 267.7

Query performance in Mariposa improves over time

27

Q/A — Mariposa

Who needs a WAN database?

Used in commercial systems today?
» Cohera Corporation -> People Soft (2001) -> Oracle (2004)

Drawback of always using full name instead of common name?

Performance degradation if the query on R1, R2 and R3 runs on all
the three locations?

What organizations would setup a database like this?
What if no servers bid on a query?
Security issues? Possible attacks?

28

Before Next Lecture

Please submit your proposal to the paper review website:
* https://wisc-cs764-120.hotcrp.com

Submit review before next lecture
« Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on

large clusters. Commun. ACM 2008.

29

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/mapreduce.pdf

