
Xiangyao Yu
10/19/2020

CS 764: Topics in Database Management Systems
Lecture 13: Distributed DBMSs

1



Announcement

2

Project proposal due: Oct 21 Oct 26

Please submit your proposal to the paper review website: 
https://wisc-cs764-f20.hotcrp.com

https://wisc-cs764-f20.hotcrp.com/


Discussion

3

High-level interface like SQL
• Any programming language (functional language, python, java)
• Spark, MapReduce
• File system, network API, virtual memory, TensorFlow, PyTorch

Optimizations for storage-disaggregation architecture
• Optimize for data locality: use replica close to computation
• Higher level of consistency for OLTP than OLAP
• Offload some computation to storage (selection/projection)
• Cache intermediate results in the memory of compute nodes
• OLTP: execute select, update, insert, delete completely on storage nodes



Today’s Paper: Mariposa

VLDB Journal 1996
4



Why Mariposa?
Distributed DBMSs are all designed for local-area networks (LAN)
• Static data allocation: data movement is heavyweight and performed 

manually by a database administrator
• Single administrative structure: centralized optimizer; no site can refuse 

work, even under excessive load
• Uniformity: optimizer assumes all sites have same hardware, network, 

ample disk space, etc.

5



Why Mariposa?
Distributed DBMSs are all designed for local-area networks (LAN)
• Static data allocation: data movement is heavyweight and performed 

manually by a database administrator
• Single administrative structure: centralized optimizer; no site can refuse 

work, even under excessive load
• Uniformity: optimizer assumes all sites have same hardware, network, 

ample disk space, etc.

Assumptions no longer true in WAN environment
• Administrator for individual sites
• Constraints on servicing remote requests
• Non-uniform hardware

6



Main Goals of Mariposa
Scalability to a large number of sites (10K or more)

7



Main Goals of Mariposa
Scalability to a large number of sites (10K or more)
Data mobility: no fixed home of data. Data fragments can move 
freely between sites

8



Main Goals of Mariposa
Scalability to a large number of sites (10K or more)
Data mobility: no fixed home of data. Data fragments can move 
freely between sites
No global synchronization: no forced synchronization for data 
updates and schema changes. 

9



Main Goals of Mariposa
Scalability to a large number of sites (10K or more)
Data mobility: no fixed home of data. Data fragments can move 
freely between sites
No global synchronization: no forced synchronization for data 
updates and schema changes. 
Local autonomy: each site has control over its resources. Query and 
data allocation is not done by a central authoritarian query optimizer

10



Main Goals of Mariposa
Scalability to a large number of sites (10K or more)
Data mobility: no fixed home of data. Data fragments can move 
freely between sites
No global synchronization: no forced synchronization for data 
updates and schema changes. 
Local autonomy: each site has control over its resources. Query and 
data allocation is not done by a central authoritarian query optimizer
Easily configurable policies: Local database administrator can 
change the behavior of a Mariposa site based on user activity and 
data access pattern

11



Economics in Mariposa
Resource management is reformulated into a microeconomic 
framework
• Clients and servers have network bank accounts
• Users allocate budget to each query
• Broker obtains bids for a query 
• Servers bids on sub-queries
• Goal: optimize revenue

12



Economics in Mariposa
Resource management is reformulated into a microeconomic 
framework
• Clients and servers have network bank accounts
• Users allocate budget to each query
• Broker obtains bids for a query 
• Servers bids on sub-queries
• Goal: optimize revenue

Why a microeconomic structure? 
• Supports a large number of sites
• Sites can join and leave through buying and selling objects

13



Mariposa Architecture

14

Client
• Queries submitted by user 

applications to client site. Client site 
picks a query budget expressed as a 
bid curve



Mariposa Architecture

15

Middleware layer
• Parser: request catalog information 

from name servers 
• Conventional query optimizer

produces a single-site query execution 
plan
• Query fragmenter: decomposes a 

single site plan into a fragmented 
query plan
• Broker: takes fragments and sends 

out bidding requests; decides which 
sites to accept/reject. 



Mariposa Architecture

16

Local Execution Component
• Bidder: send bid price to the broker
• Executor: execute the query as in a 

conventional DBMS
• Storage manager: storing fragments, 

buying and selling fragments, splitting 
and coalescing fragments



Mariposa Architecture

17

Client site picks a query 
budget expressed as a bid 
curve



Mariposa Architecture

18

Query parsing and single-site 
optimizer
• Assume all fragments are 

merged and reside at a single 
server site



Mariposa Architecture

19

Query fragmenter
• Each table in FROM clause 

can be decomposed into 
fragments 
• Fragments are partitions of 

tables (e.g., range, hash, or 
random) 
• Group operations that can 

proceed in parallel into query 
strides. All subqueries in a 
stride must complete before 
the next stride starts



Mariposa Architecture

20

Broker sends bids requests
• Find processing site for each 

subquery (through 
advertisement) such that the 
cost and delay satisfy the 
budget (i.e., bid curve)
• Bidding vs. purchase order: 

For purchase order, simply 
send subquery to the site most 
likely to win the bid



Mariposa Architecture

21

Bidder
• A Bidder bids if

1. It posseses the referenced 
objects (or 1 of the 2 objects for 
join)

2. It has bid on a subquery whose 
answer is the referenced object

3. It plans to load the object soon 
(e.g., object in host list)

• Actual bid depends on 
hardware and system load
• Send cost and delay back to 

broker



Mariposa Architecture

22

Broker picks sites
• Heuristic greedy algorithm:

1. Find the set of sites with the 
smallest delay

2. Make greedy substitutions of 
sites to reduce cost by 
increasing delay (start with the 
ones with greatest cost 
gradient)



Mariposa Architecture

23

Local execution



Mariposa Architecture

24

Merge results from sites



Storage Management 

25

Manage fragments to maximize profits in local execution component

Buying and selling fragments
• Each site tracks (size, revenue) for fragments
• Make buying/selling decision based on history (similar to cache 

replacement)

Splitting and coalescing
• Too few fragments hinders parallel execution
• Too many fragments lead to higher scheduling overhead
• Let the market pressures dictate the appropriate fragment size



Name Services

26

Decentralized name registration system

Each client/server has local name cache to resolve object names

Broker queries name server if a match is not found

Broker chooses name sever based on quality of service and cost (i.e., 
staleness)



Performance

27

Bidding overhead can be small if query execution takes a long time

Query performance in Mariposa improves over time



Q/A – Mariposa

28

Who needs a WAN database?
Used in commercial systems today? 
• Cohera Corporation -> People Soft (2001) -> Oracle (2004)

Drawback of always using full name instead of common name?
Performance degradation if the query on R1, R2 and R3 runs on all 
the three locations? 
What organizations would setup a database like this?
What if no servers bid on a query?
Security issues? Possible attacks? 



Before Next Lecture
Please submit your proposal to the paper review website: 
• https://wisc-cs764-f20.hotcrp.com

Submit review before next lecture
• Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data processing on 

large clusters. Commun. ACM 2008.

29

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/mapreduce.pdf

