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CS 764: Topics in Database Management Systems
Lecture 14: MapReduce
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Announcement
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Mid-term course evaluation DDL: 10/23

Please submit project proposal to the review website DDL: Oct 26

Please submit a review for the guest lecture within 3 days after the 
lecture DDL: Oct 28 11:59pm



Today’s Paper: MapReduce

OSDI 2004 3



Outline
Background
MapReduce
• Programming model
• Implementation
• Optimizations

MapReduce vs. Databases
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Challenges in Distributed Programming
[Within a server] Multi-threading
[Across servers] Inter-server communication (MPI, RPC, etc.)
Fault tolerance 
Load balancing 
Scalability 
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Distributed Challenges in Databases?
[Within a server] Multi-threading
[Across servers] Inter-server communication (MPI, RPC, etc.)
• The interface is SQL, parallelism is invisible to users

Fault tolerance 
• Logging and high availability, invisible to users

Load balancing 
Scalability 
• Shared-nothing databases are very scalable
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Limitations of Distributed Databases
Programming model: SQL

Data format: Relational (i.e., structured)

Lack of support for failures during an OLAP query
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MapReduce
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MapReduce Programming Model
A user of the MapReduce library writes two functions:

Map function
• Input: <key, value>
• Output: list(<key, value>)

Reduce function
• Input: <key, list(value)>
• Output: list(value)

9



MapReduce Programming Model
A user of the MapReduce library writes two functions:

Map function
• Input: <key, value>
• Output: list(<key, value>)

Reducer function
• Input: <key, list(value)>
• Output: list(value)
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Example: word count



Other Application Examples
Grep:
• Map: emits a line if it matches the pattern
• Reduce: identity function—copy input to output
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Other Application Examples
Grep:
• Map: emits a line if it matches the pattern
• Reduce: identity function—copy input to output

Count of URL access frequency:
• Map: emit ⟨URL, 1⟩
• Reduce: adds values for the same URL and emits ⟨URL, total count⟩
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Other Application Examples
Grep:
• Map: emits a line if it matches the pattern
• Reduce: identity function—copy input to output

Count of URL access frequency:
• Map: emit ⟨URL, 1⟩
• Reduce: adds values for the same URL and emits ⟨URL, total count⟩

Reverse web-link graph:
• Map: outputs ⟨target, source⟩ for each target URL found in page source 
• Reduce: concatenates sources associated with a given target ⟨target, 

list(source)⟩
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Other Application Examples
Grep:
• Map: emits a line if it matches the pattern
• Reduce: identity function—copy input to output

Count of URL access frequency:
• Map: emit ⟨URL, 1⟩
• Reduce: adds values for the same URL and emits ⟨URL, total count⟩

Reverse web-link graph:
• Map: outputs ⟨target, source⟩ for each target URL found in page source 
• Reduce: concatenates sources associated with a given target ⟨target, 

list(source)⟩
Inverted index:
• Map: Emit ⟨word, doc ID⟩ for words in a document
• Reduce: for a word, sorts document IDs and emits ⟨word,list(doc ID)⟩ 14



Implementation
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Implementation – Step 1
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Implementation – Step 2
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Implementation – Step 3
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Implementation – Step 4
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Implementation – Step 5
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Implementation – Step 6
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Implementation – Step 7
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Wake up the user 
program after all map 
and reduce tasks finish
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Master Node
Orchestrates the MapReduce job

For each map task and reduce task, maintains states (idle, in-
progress, or complete) and identity of worker machine

Collect locations of map tasks’ outputs on disk and forward them to 
the reduce tasks
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Fault Tolerance
The master pings every worker periodically

At a timeout, reschedule tasks mapped to this worker to other workers
• Map task: all map tasks are rescheduled 
• Reduce task: incomplete reduce tasks are rescheduled

Master failure
• Unlikely since the master is a single machine
• Abort the MapReduce computation if the master fails
• Single point of failure
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Backup Tasks
A straggler task can take unusually long time to complete
• Bad disk
• Contention with other tasks on the server
• Misconfiguration 

Solution: Schedule backup execution for in-progress tasks when the 
MapReduce computation is close to finish
• Overhead is small (a few percent)
• Improvement is significant (44% for the sort program)
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Other Optimizations
Locality
• Try to schedule a map task on a machine that contains (or is close to) a 

replica of the corresponding input data

Combiner function
• Local reduce function on each map task to reduce the intermediate data size 
• Similar to pushing down group-by in query optimization
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Performance Evaluation — Grep
Grep
• 1 TB of 100-byte records
• Search for a rare three character pattern
• Map: emits a line if it matches the pattern
• Reduce: identity function—copy input to output
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• Input data scan rate increases as more 
machines assigned to the MapReduce 
computation and peaks at over 30 GB/s when 
1764 workers have been assigned 

• The rate declines after map tasks finish 
reading the input data



Performance Evaluation — Sort
Sort
• 1 TB of 100-byte records
• Map: extract a 10-byte key and emit <key, original record in text>
• Reduce: identity function
• Partitioning function: range partition
• Note that a reducer task by default sorts its input data
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Performance Evaluation — Sort
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Two batches of reduce tasks



Performance Evaluation — Sort
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Straggler tasks increase the total runtime by 44%



Performance Evaluation — Sort
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Failure of processes has small performance impact



MapReduce vs. Databases[1]

With user defined functions, Map and Reduce functions can be 
written in SQL; the shuffle between Map and Reduce is equivalent to 
a Group-By

Performance

33[1] Stonebraker, Michael, et al. "MapReduce and parallel DBMSs: friends or foes?." Communications of the ACM 2010



MapReduce vs. Databases[1]

Technical differences
• Repetitive parsing
• Compression
• Pipelining
• Scheduling
• Column-oriented storage
• Query optimization

34[1] Stonebraker, Michael, et al. "MapReduce and parallel DBMSs: friends or foes?." Communications of the ACM 2010



MapReduce vs. Databases[1]

Technical differences
• Repetitive parsing
• Compression
• Pipelining
• Scheduling
• Column-oriented storage
• Query optimization

Conclusions:
• Parallel DBMSs excel at efficient querying of large data sets; MR-style systems 

excel at complex analytics and ETL tasks. 
• High-level languages are invariably a good idea for data-processing systems
• What can DBMS learn from MapReduce? 

• Out-of-the-box experience  (one-button install, auto tuning)
• Semi-structured or un-structured data

35[1] Stonebraker, Michael, et al. "MapReduce and parallel DBMSs: friends or foes?." Communications of the ACM 2010



Q/A – MapReduce
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Computational models that do not work well with MapReduce?
Is the master a single-point of failure and performance bottleneck?
Why old papers have no performance evaluation?
MapReduce used in DBMS? (e.g., Hadapt, Hive, SparkSQL)
Why is the atomic rename necessary in the reducer? 
Other systems like MapReduce (e.g., Apache Hadoop, Spark)
Why do we need sorting and shuffling? 



Discussion
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How to implement the following joining query in MapReduce? 
SELECT * 
FROM S, R
WHERE S.id = R.id



Next Lecture
Mid-term course evaluation DDL: 10/23

Please submit your proposal to the review website: (DDL Oct 26)
• https://wisc-cs764-f20.hotcrp.com

Please submit a review for the guest lecture within 3 days after the 
lecture (by Oct 28 11:59pm)
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