
Xiangyao Yu
11/16/2020

CS 764: Topics in Database Management Systems
Lecture 21: PushdownDB

1

Today’s Paper

2ICDE 2020

Cloud Database Architecture

3

On-premises
• Fixed and limited hardware

resources
• Shared-nothing architecture

Cloud
• Virtually infinite computation & storage,

Pay-as-you-go price model
• Disaggregation architecture

CPU

Mem

HDD

CPU

Mem

HDD

CPU

Mem

HDD

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Storage-Disaggregation Architecture

4

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Features of the disaggregation architecture
• Computation and storage layers are disaggregated
• Limited computation can happen in the storage layer

Storage-Disaggregation Architecture

5

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Features of the disaggregation architecture
• Computation and storage layers are disaggregated
• Limited computation can happen in the storage layer

Advantages
• Lower management cost
• Independent scaling of computation

and storage

Disadvantages
• Network becomes a bottleneck

How to Mitigate the Network Bottleneck?

6

… …CPU

HDD

Mem

CPU

Mem

CPU

Mem

Network

HDD HDD HDD
… …

Solution 1: Move data to computation
• Cache storage data in the computation layer
• Example: Snowflake

Solution 2: Move computation to data
• Pushdown computation to the storage layer
• Example: PushdownDB (this talk)

What about Redshift Spectrum?

The Redshift layer is similar to static caching
The Spectrum layer implements computation pushdown 7

PushdownDB Architecture
CPU
Mem

Network
CPU CPU CPU CPU

Main tenet of database systems: Keep computation close to storage

Key questions to address in this project:
• How to implement relational operators to leverage existing cloud services?
• What are the performance and cost tradeoffs?

8

PushdownDB – Building Blocks

PushdownDB implementation
• Single-node, multi-process Python-based database
• Ubuntu 16.04.5 LTS, Python version 2.7.12.

Source code: https://github.com/yxymit/s3filter.git

CPU
Mem

Network
CPU CPU CPU CPU

EC2 (r4.8xlarge)

10 Gbit Ethernet

S3 Select

Simple Storage Service (S3)

9

https://github.com/yxymit/s3filter.git

Simple Cloud Storage (S3)

Virtually infinite storage capacity with relatively low cost

Partition input relations into multiple shards, each shard is stored as a
separate object in S3

S3 vs. elastic block store (EBS) vs. local store
• Virtually infinite capacity, shared across all nodes, lower cost, durable

CPU
Mem

Network
CPU CPU CPU CPU

Simple Storage Service (S3)

10

S3 Select

Supports limited SQL queries on CSV and Parquet data format
• S3 Select recognizes database schema for both data formats
• Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)

CPU
Mem

Network
CPU CPU CPU CPU

11

Cost Factors
Storage cost

• $0.022/GB/month for data in S3
Data transfer cost

• Free for data transfer within the same region
• $0.09/GB for transferring data out of AWS

S3 select cost
• Data scan cost: $0.002 per GB
• Data return cost: $0.0007 per GB

Network request cost
• $0.0004 per 1,000 requests

Computation cost
• Depends on the instance type
• For r4.8xlarge (32 core, 244 GB of memory), $2.128 per instance per hour

12

Cost Factors
Storage cost

• $0.022/GB/month for data in S3
Data transfer cost

• Free for data transfer within the same region
• $0.09/GB for transferring data out of AWS

S3 select cost
• Data scan cost: $0.002 per GB
• Data return cost: $0.0007 per GB

Network request cost
• $0.0004 per 1,000 requests

Computation cost
• Depends on the instance type
• For r4.8xlarge (32 core, 244 GB of memory), $2.128 per instance per hour

13

S3 Select supports
• Filter
• Project
• Aggregate without group-by

PushdownDB – Supported Operators

PushdownDB supports
– Filter
– Project
– Top-K
– Join
– Group-by

14

Filter

15

Server-side filtering
• Compute server loads entire table from S3 and filters locally

Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10

CPU
Mem

Network
CPU CPU CPU CPU

Filter

16

Server-side filtering
• Compute server loads entire table from S3 and filters locally

S3-side filtering
• Push down predicate evaluation using S3 Select

CPU
Mem

Network
CPU CPU CPU CPU

Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10

Filter

17

Server-side filtering
• Compute server loads entire table from S3 and filters locally

S3-side filtering
• Push down predicate evaluation using S3 Select

Indexing
• Push down predicate evaluation using S3 Select

Example query:
SELECT col1, col2
FROM R
WHERE col1 < 10

Col1 Col2 Col3 Col4 Col5 Col1 start
offset

end
offset

Original Table Index Table

Filter – Evaluation

18

Baseline Join
• Server loads both tables from S3 and joins locally

Join

19

SELECT SUM(O_TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE

O_CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate

Baseline Join
• Server loads both tables from S3 and joins locally

Filtered Join
• Server pushes filtering predicates to S3 to load both tables

Join

20

SELECT SUM(O_TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE

O_CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate

Bloom Join
• Step 1: Server loads the smaller table, builds a bloom filter using join key
• Step 2: Server sends the filter via S3 Select to load the bigger table
• Bloom filter is pushed down as a predicate

Join

SELECT ...
FROM S3Object
WHERE SUBSTRING(’1000011...111101101’,

((69 * CAST(attr as INT) + 92) % 97) % 68 + 1, 1) = ’1’

21

SELECT SUM(O_TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE

O_CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate

Join – Evaluation

22

SELECT SUM(O_TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE

O_CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper_c_acctbal
AND O_ORDERDATE < upper_o_orderdate

Group-By
SELECT c_nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_nationkey;

Example
group-by query

23

Group-By
SELECT c_nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_nationkey;

Example
group-by query

24

Server-Side Group-By
• Compute server loads entire table from S3 and performs group-by

Filtered Group-By
• Pushes filtering predicates to S3 when loading the table

S3-Side Group-By
• Step 1: S3 Select to obtain all c_nationkey values
• Step 2: Load data from S3 through the following S3 Select

Group-By
SELECT c_nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_nationkey;

Example
group-by query

SELECT
sum(CASE WHEN c_nationkey = 0 THEN c_acctbal ELSE 0 END),
sum(CASE WHEN c_nationkey = 1 THEN c_acctbal ELSE 0 END)
...

FROM customer;

25

S3-Side Group-By
• Step 1: S3 Select to obtain all c_nationkey values
• Step 2: Load data from S3 through the following S3 Select

• Limitation: Significant computation in S3 if many groups exist

Group-By
SELECT c_nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_nationkey;

Example
group-by query

SELECT
sum(CASE WHEN c_nationkey = 0 THEN c_acctbal ELSE 0 END),
sum(CASE WHEN c_nationkey = 1 THEN c_acctbal ELSE 0 END)
...

FROM customer;

26

S3-Side Group-By
Hybrid Group-By

• Step 1: S3 Select to obtain all c_nationkey values (can skip if histograms are available)
• Step 2: Perform S3-side group by for only populous groups

• Step 3: In parallel to Step 2, load the rest columns to server and performs group-by locally

Group-By
SELECT c_nationkey, sum(c_acctbal)
FROM customer
GROUP BY c_nationkey;

Example
group-by query

SELECT
sum(CASE WHEN c_nationkey = 0 THEN c_acctbal ELSE 0 END)

FROM customer;

SELECT c_nationkey, sum(c_acctbal)
FROM customer
WHERE c_nationkey <> 0;

27

Group-By – Evaluation
Runtime Cost Breakdown

Hybrid group-by reduces runtime by 31%
Hybrid group-by increases cost due to multiple scans

28

Top-K

Server-Side Top-K
• Compute server loads entire table from S3 and performs top-K

29

SELECT *
FROM lineitem
ORDER BY l_extendedprice ASC
LIMIT K

Example
top-K query

Top-K

Sampling-based top-K
• Observation: if have seen K values less than a threshold, there is no need to load values

greater than the threshold

30

SELECT *
FROM lineitem
ORDER BY l_extendedprice ASC
LIMIT K

Example
top-K query

Top-K

Sampling-based top-K
• Phase 1: Load a sample of S records (load only the columns in ORDER BY clause) and

calculate the threshold
• Phase 2: Load all records that are smaller than the threshold

31

SELECT *
FROM lineitem
ORDER BY l_extendedprice ASC
LIMIT K

Example
top-K query

Top-K

Sampling-based top-K
• Phase 1: Load a sample of S records (load only the columns in ORDER BY clause) and

calculate the threshold
• Phase 2: Load all records that are smaller than the threshold

32

SELECT *
FROM lineitem
ORDER BY l_extendedprice ASC
LIMIT K

Example
top-K query

Total network traffic:

• B: size of each row in bytes
• S: the sample contains S rows
• α: fraction of a row for the sampling phase
• N: table contains N rows

D is minimized when

! = #$
%

Top-K Evaluation

33

Evaluation – All Operators and TPC-H

Overall, PushdownDB reduces runtime by 6.7× and reduces cost by 30%

34

Suggestions for S3 Select
1. Multiple byte ranges for each GET request
2. Index inside S3
3. More efficient Bloom filters
4. Partial group-by
5. Computation-aware pricing

Ongoing development on PushdownDB
• Rewrite the framework with C++
• Hybrid caching and pushdown
• Workload-specific caching policy

Discussion and Ongoing Work

13/14

PushdownDB – Q/A
For the bloom filter, why need k hash functions instead of 1?
How to handle node failures?
What if the compute node runs out of memory?
Competitor to S3 select outside of Amazon?
Would the indexing technique work for Snowflake as well?
Can operator pushdown be extended to other systems?
How stable are AWS prices?
Can a shared-nothing architecture perform better?

36

PushdownDB Discussion
Is it a good idea to entirely push the join operator to the storage
layer? What are the main benefits and limitations of doing this?

Can you think of other aspects of databases (i.e., besides operator
pushdown) or other applications that can also benefit from the
storage-disaggregation architecture?

37

Next Lecture
Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
• Title: Lecture 21 discussion. group ##
• Authors: Names of students who joined the discussion

Deadline: Tuesday 11:59pm

Submit review for
• Verbitski, Alexandre, et al., Amazon Aurora: Design Considerations for High

Throughput Cloud-Native Relational Databases, SIGMOD 2017

38

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/aurora-sigmod-17.pdf

