
Xiangyao Yu
9/16/2020

CS 764: Topics in Database Management Systems
Lecture 4: Query Optimization-1

1

Discussion Highlights
Consider a nested loop join between R and S. Initially R and S are both
stored on disk. The buffer management policy is DBMIN.
• | R | = 4
• | S | = 10
• | M | = 6

• Q1: How many pages need to be read from disk to perform the join?
4 pages to load R (locality set = 4)

+ 10 pages to load S (locality set = 1)

2

Discussion Highlights
Consider a nested loop join between R and S. Initially R and S are both
stored on disk. The buffer management policy is DBMIN.
• | R | = 4
• | S | = 10
• | M | = 4

• Q2: Does the answer to Q1 change when | M | = 4? What is the buffer
management policy for R and S in this case?

R: locality set = 3 pages
S: locality set = 1 page
Load S: 10 pages from disk
Load R + misses due to replacement: 3 + 10 = 13 pages from disk

3

Today’s Paper: Query Optimization-1

SIGMOD 1979 4

Agenda

5

Query Optimization: Motivation
Query Optimization in R
• Notation
• Cost of single relation access paths
• Access path selection for Join
• Nest Queries
• Limitations

Query Optimization: Motivation

Example SQL Query

7

How to evaluate this query?SELECT *
FROM A, B, C
WHERE A.x = B.x
AND B.y = C.y
AND A.z = 13
AND B.y > 90
AND C.x < ‘XYZ’

Example SQL Query

8

SELECT *
FROM A, B, C
WHERE A.x = B.x
AND B.y = C.y
AND A.z = 13
AND B.y > 90
AND C.x < ‘XYZ’

How to evaluate this query?

Solution 1:
cross-product

-> discard tuples based on predicates

This solution is too expensive

Example SQL Query

9

How to evaluate this query?

Solution 2:

SELECT *
FROM A, B, C
WHERE A.x = B.x
AND B.y = C.y
AND A.z = 13
AND B.y > 90
AND C.x < ‘XYZ’

Example SQL Query

10

How to evaluate this query?

Solution 2: Solution 3:

SELECT *
FROM A, B, C
WHERE A.x = B.x
AND B.y = C.y
AND A.z = 13
AND B.y > 90
AND C.x < ‘XYZ’

Example SQL Query

11

How to evaluate this query?

Solution 2: Solution 3:

A query can be executed in multiple ways
Query optimizer goal: SQL -> optimized execution plan
Key decisions: (1) single relation access plan (2) join order

SELECT *
FROM A, B, C
WHERE A.x = B.x
AND B.y = C.y
AND A.z = 13
AND B.y > 90
AND C.x < ‘XYZ’

Query Optimization in System R

System R Storage Architecture

13

Cost = IO cost + Computation cost
= #I/Os + W * RSICARD

RSICARD = #tuples through the RSI interface

#I/Os

RSICARD

Goal: enumerate execution plans and pick
the one with the lowest cost

Statistics

14

NCARD(T) # tuples in T

TCARD(T) # of pages containing tuples in T

P(T) Fraction of segment pages that hold tuples of T.
P(T) = TCARD(T) / # non-empty pages in the segment

ICARD(I) # distinct keys in the index I

NINDEX(I) # pages in index I

High key value and
low key value
Modern systems Keep histogram on table attributes.

Access Paths
Segment Scans
• A segment contains disk pages that can hold tuples from multiple relations
• Segment scan is a sequential scan of all the pages

15

Access Paths
Segment Scans
• A segment contains disk pages that can hold tuples from multiple relations
• Segment scan is a sequential scan of all the pages

Index Scan
• Clustered index scan
• Non-clustered scan
• Scan with starting and stopping key values

16

Predicates
Sargable predicates (Search ARGuments-able)
• Predicates that can be filtered by the RSS
• I.e., column comparison-operator value
• Where clause of query is put in Conjunctive Normal Form (CNF): term AND

term AND term
• Each term is called a boolean factor

17

Predicates
Sargable predicates (Search ARGuments-able)
• Predicates that can be filtered by the RSS
• I.e., column comparison-operator value
• Where clause of query is put in Conjunctive Normal Form (CNF): term AND

term AND term
• Each term is called a boolean factor

Examples of non-sargable
• function(column) = something
• column1 + column2 = something
• column + value = something
• column1 > column2

18

Predicates
Sargable predicates (Search ARGuments-able)
• Predicates that can be filtered by the RSS
• I.e., column comparison-operator value
• Where clause of query is put in Conjunctive Normal Form (CNF): term AND

term AND term
• Each term is called a boolean factor

A predicate matches an index if
1. Predicate is sargable
2. Columns referenced in the predicate match an initial subset of attributes of

the index key

19

Example: Index on (name, age)
predicate1: name=‘xxx’ and age=‘17’ match
predicate2: age=‘17’ not match

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

20

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

21

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

column > value
• F = (high key value - value) / (high key value – low key value)

22

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

column > value
• F = (high key value - value) / (high key value – low key value)

pred1 and pred2
• F = F(pred1) * F(pred2)

pred1 or pred2
• F = F(pred1) + F(pred2) – F(pred1) * F(pred2)

Not pred
• F = 1– F(pred)

23

IO cost
Calculate the number of pages access through IO

24

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

25

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

26

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

clustered index matching
• IO = F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

27

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

clustered index matching
• IO = F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

non-clustered index matching
• IO = F(preds) * (NINDEX(I) + NCARD(T)) # index pages & # data page accesses

28

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

clustered index matching
• IO = F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

non-clustered index matching
• IO = F(preds) * (NINDEX(I) + NCARD(T)) # index pages & # data page accesses

clustered index no matching
• IO = NINDEX(I) + TCARD(T)

29

Access Path Selection for Joins
R ⋈ S
Method 1: nested loops

• Tuple order within a relation does not matter
Method 2: merging scans

• Both relations sorted on the join key

30

Access Path Selection for Joins
R ⋈ S
Method 1: nested loops

• Tuple order within a relation does not matter
Method 2: merging scans

• Both relations sorted on the join key

Tuple order is an interesting order if specified by
• Group by
• Order by
• Equi-join key

More on join cost in the next lecture

31

Access Path Selection for Joins – Example

SELECT NAME, TITLE, SAL, DNAME
FROM EMP, DEPT, JOB
WHERE TITLE=‘CLERK’
AND LOC=‘DENVER’
AND EMP.DNO=DEPT.DNO
AND EMP.JOB=JOB.JOB

Index on EMP.DNO, DEPT.DNO,
EMP.JOB, JOB.JOB

32

Interesting order: (1) DNO, (2) JOB

Access Paths for Each Relation
Access plans for EMP:

• unordered
• Segment scan

• DNO order
• Segment scan + sort
• JOB index scan + sort
• DNO index scan

• JOB order
• Segment scan + sort
• JOB index scan
• DNO index scan + sort

33

Access Paths for Each Relation
Access plans for EMP:

• unordered
• DNO order
• JOB order

Access plans for DEPT
• unordered
• DNO order

Access plans for JOB
• unordered
• JOB order

34

Joining Relations
JOB ⋈ EMP ⋈ DEPT

35

2 access plans 3 access plans 2 access plans

Join(JOB, EMP): 3×2
• Access plans

Joining Relations
JOB ⋈ EMP ⋈ DEPT

36

2 access plans

Join(JOB, EMP): 3×2×2
• Access plans
• Join methods : nested-loop vs. merging scan

2 access plans 3 access plans

Joining Relations
JOB ⋈ EMP ⋈ DEPT

37

2 access plans

Join(JOB, EMP): 3×2×2×2
• Access plans
• Join methods : nested-loop vs. merging scan
• Join order: inner vs. outer

2 access plans 3 access plans

Joining Relations
JOB ⋈ EMP ⋈ DEPT

38

2 access plans

Join(JOB, EMP): 3×2×2×2 = 24
• Access plans
• Join methods : nested-loop vs. merging scan
• Join order: inner vs. outer

Join(EMP, DEPT): 3×2×2×2 = 24
• Access plans
• Join methods
• Join order

2 access plans 3 access plans

Joining Relations
JOB ⋈ EMP ⋈ DEPT

39

Join(Join(JOB, EMP), DEPT)
Join(JOB, Join(EMP, DEPT))

2 access plans

Join(JOB, EMP): 3×2×2×2 = 24
• Access plans
• Join methods : nested-loop vs. merging scan
• Join order: inner vs. outer

Join(EMP, DEPT): 3×2×2×2 = 24
• Access plans
• Join methods
• Join order

2 access plans 3 access plans

Joining Relations
JOB ⋈ EMP ⋈ DEPT

40

Many of these plans can be pruned early
(More on this next lecture)

Join(Join(JOB, EMP), DEPT)
Join(JOB, Join(EMP, DEPT))

2 access plans

Join(JOB, EMP): 3×2×2×2 = 24
• Access plans
• Join methods : nested-loop vs. merging scan
• Join order: inner vs. outer

Join(EMP, DEPT): 3×2×2×2 = 24
• Access plans
• Join methods
• Join order

2 access plans 3 access plans

Nested Queries
select name from emp where salary >

(select avg(salary) from emp);
• Optimize and compute the inner block before evaluating the outer block

41

Nested Queries
select name from emp where salary >

(select avg(salary) from emp);
• Optimize and compute the inner block before evaluating the outer block

select name from emp E where salary >
(select salary from emp M where M.ID=E.mgrID)

• Subquery evaluated once for every emp tuple in the outer query block! This
is very expensive

42

Nested Queries
select name from emp where salary >

(select avg(salary) from emp);
• Optimize and compute the inner block before evaluating the outer block

select name from emp E where salary >
(select salary from emp M where M.ID=E.mgrID)

• Subquery evaluated once for every emp tuple in the outer query block! This
is very expensive

Alternatively

43

SELECT E.name
FROM emp E, emp M
WHERE E.salary > M.salary
AND M.ID=E.mgrID

Nested Queries
select name from emp where salary >

(select avg(salary) from emp);
• Optimize and compute the inner block before evaluating the outer block

select name from emp E where salary >
(select salary from emp M where M.ID=E.mgrID)

• Subquery evaluated once for every emp tuple in the outer query block! This
is very expensive

Alternatively

44

SELECT E.name
FROM emp E, emp M
WHERE E.salary > M.salary
AND M.ID=E.mgrID

Is this predicate
sargable?

Limitations
• Optimizer complexity: O(n2n-1), n is the number of tables
• Ignore group by and aggregates optimizations
• Limited optimization of nested queries
• Cost model too simplistic
• RSS allows tuples from different relations on the same page;

modern systems don’t do this

45

Q/A – Query Optimization-1

46

Experimental validation of cost functions?
• More accurate cost functions can be used for specific systems

How to prune access paths? (more on this next lecture)
Can segment scan be better than index scan?
What’s more common? Procedural vs. non-procedural?
Are queries CPU bound?
How is the weighting factor (W) determined?
Is the optimizer optimal?

Group Discussion

SELECT ENAME
FROM EMP
WHERE DNAME = ‘CS”;

47

ENAME DNAME
EMP

TCARD = 100 # data pages
NCARD = TCARD * 100 # tuples
DEPT.IDX_ENAME (clustered)
DEPT.IDX_DNAME (non-clustered)

Q1: What are the possible access paths on EMP?
Q2: Assume selectivity factor F = 1/10 for predicate DNAME=‘CS’, which access
path should be picked for the query above?

Before Next Lecture
Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
• Title: Lecture 4 discussion. group ##
• Authors: Names of students who joined the discussion
• Summary submission Deadline: Thursday 11:59pm

Before next lecture, submit review for
• Surajit Chaudhuri, An Overview of Query Optimization in Relational

Systems. PODS 1998.

48

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/chaudhuri98.pdf

