
Xiangyao Yu
9/23/2020

CS 764: Topics in Database Management Systems
Lecture 6: Granularity of Locks

1

Discussion Highlights
SELECT JOB.title, count(*)
FROM JOB, EMP, DEPT
WHERE JOB.jid = EMP.jid
AND EMP.did = DEPT.did
AND DEPT.location=“Madison”
GROUP BY JOB.title

2

Consider only nested loop join and only the cost in terms of the # comparisons
in the join (note that which relation is inner vs. outer in a join does not matter in
this case)

Q1: If only one department is in Madison, what’s the cheapest plan?
(hint: group-by can be partially pushed down)

Q2 [optional]: If all departments are in Madison, what’s the cheapest plan?

|EMP| = 10000 tuples
|DEPT| = 100 tuples
|JOB| = 10 tuples
* assuming one-on-one mapping between jid and title

Discussion Highlights – One Dept. in Madison
SELECT JOB.title, count(*)
FROM JOB, EMP, DEPT
WHERE JOB.jid = EMP.jid
AND EMP.did = DEPT.did
AND DEPT.location=“Madison”
GROUP BY JOB.title

3

|EMP| = 10000 tuples
|DEPT| = 100 tuples
|JOB| = 10 tuples

EMP

DEPT

⋈

JOB

⋈

Group by EMP.jid and EMP.did

EMP

JOB

⋈ DEPT

Group by EMP.jid and EMP.did

Group by jid

Group by title

1000 1

[1000x1]

10 10

[10x10]

1000 10

[1000x10]
1

[1000x1]

* assuming one-on-one mapping between jid and title

⋈

Discussion Highlights – All Dept. in Madison
SELECT JOB.title, count(*)
FROM JOB, EMP, DEPT
WHERE JOB.jid = EMP.jid
AND EMP.did = DEPT.did
AND DEPT.location=“Madison”
GROUP BY JOB.title

4

|EMP| = 10000 tuples
|DEPT| = 100 tuples
|JOB| = 10 tuples

EMP

DEPT

⋈

JOB

⋈

Group by EMP.jid and EMP.did

EMP

JOB

⋈ DEPT

⋈

Group by EMP.jid and EMP.did

Group by jid

Group by title

1000 100

[1000x100]

10 10

[10x10]

1000 10

[1000x10]
100

[1000x100]

* assuming one-on-one mapping between jid and title

Today’s Paper: Granularity of Locks

Modelling in Data Base Management Systems 1976 5

Agenda

6

Transaction basics
Locking
Degree of consistency

ACID Properties in Transactions

7

Atomicity: Either all operations occur, or nothing occurs (all or nothing)
Consistency: Integrity constraints are satisfied
Isolation: How operations of transactions interleave
Durability: A transaction’s updates persist when system fails

This lecture touches A, C, and I

Locking Granularity

8

Locks are a critical part of concurrency control
Choosing a locking granularity
• Entire database
• Relation
• Records …

Locking Granularity

9

Locks are a critical part of concurrency control
Choosing a locking granularity
• Entire database
• Relation
• Records …

Goal: high concurrency and low cost

Increasing concurrency
Increasing overhead when many records are accessed

Locking Granularity

10

Locks are a critical part of concurrency control
Choosing a locking granularity
• Entire database
• Relation
• Records …

Goal: high concurrency and low cost
Solution: Hierarchical locks

Increasing concurrency
Increasing overhead when many records are accessed

Hierarchical Locks

11

DB
|

Areas
|

Files
|

Records

DB
|

Areas
/ \

Files Indices
\ /

Records

Lock a high-level node if a large number of records are accessed
• All descendants are implicitly locked in the same mode

Hierarchical Locks

12

DB
|

Areas
|

Files
|

Records

DB
|

Areas
/ \

Files Indices
\ /

Records

Lock a high-level node if a large number of records are accessed
• All descendants are implicitly locked in the same mode
• Intention lock to avoid conflict with implicit locks

Locking Modes

13

Basic locking modes
• S: Shared lock
• X: Exclusive lock

Locking Modes

14

Basic locking modes
• S: Shared lock
• X: Exclusive lock

Intention modes:
• IS: Intention to share
• IX: Intention to acquire X lock below the lock hierarchy
• SIX: Read large portions and update a few parts

Locking Modes

15

Basic locking modes
• S: Shared lock
• X: Exclusive lock

Intention modes:
• IS: Intention to share
• IX: Intention to acquire X lock below the lock hierarchy
• SIX: Read large portions and update a few parts

Example: read record (T1)
DB

|
Areas

|
Files

|Records

IS

IS

IS

S

Locking Modes

16

Basic locking modes
• S: Shared lock
• X: Exclusive lock

Intention modes:
• IS: Intention to share
• IX: Intention to acquire X lock below the lock hierarchy
• SIX: Read large portions and update a few parts

Example: read record (T1) update record (T2)
DB

|
Areas

|
Files

|Records

IS

IS

IS

S

IX

IX

IX

X

Locking Modes

17

Basic locking modes
• S: Shared lock
• X: Exclusive lock

Intention modes:
• IS: Intention to share
• IX: Intention to acquire X lock below the lock hierarchy
• SIX: Read large portions and update a few parts

Example: read record (T1) update record (T2) scan + occasional updates (T3)
DB

|
Areas

|
Files

|Records

IS

IS

IS

S

IX

IX

IX

X

IX

IX

SIX

lock specific records in X mode

Lock Compatibility

IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

18

Increasing lock strength
X
|

SIX
/ \

S IX
\ /IS

|
NL

Most privileged

least privileged

Lock Compatibility

IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

19

Increasing lock strength
X
|

SIX
/ \

S IX
\ /IS

|
NL

Most privileged

least privileged

Lock Compatibility

IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

20

Increasing lock strength
X
|

SIX
/ \

S IX
\ /IS

|
NL

Most privileged

least privileged

Rules for Lock Requests

21

• Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

Rules for Lock Requests

22

• Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

• Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

Rules for Lock Requests

23

• Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

• Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

• Locks requested root to leaf
• Locks released leaf to root or any order at the end of the

transaction

Summary of Lock Granularity
Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) None S or IS IX or IS, at least one
parent

IX (Intention
exclusive)

None X, SIX, IX, IS SIX or IX, all parents

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and
intention exclusive)

S on all desc X, SIX, IX SIX or IX, all parents

X (Exclusive) X o all desc - SIX or IX, all parents

24

Summary of Lock Granularity
Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) None S or IS IX or IS, at least one
parent

IX (Intention
exclusive)

None X, SIX, IX, IS SIX or IX, all parents

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and
intention exclusive)

S on all desc X, SIX, IX SIX or IX, all parents

X (Exclusive) X o all desc - SIX or IX, all parents

25

Summary of Lock Granularity
Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) None S or IS IX or IS, at least one
parent

IX (Intention
exclusive)

None X, SIX, IX, IS SIX or IX, all parents

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and
intention exclusive)

S on all desc X, SIX, IX SIX or IX, all parents

X (Exclusive) X o all desc - SIX or IX, all parents

26

Summary of Lock Granularity
Implicit lock Desc. lock Anc. lock (DAG)

IS (Intention share) None S or IS IX or IS, at least one
parent

IX (Intention
exclusive)

None X, SIX, IX, IS SIX or IX, all parents

S (Share) S on all desc - IX or IS, at least one
parent

SIX (Shared and
intention exclusive)

S on all desc X, SIX, IX SIX or IX, all parents

X (Exclusive) X o all desc - SIX or IX, all parents

27

Dynamic Lock Graphs

28

The lock graph can be dynamic (e.g., indices created, records
inserted)

Must deal with Phantoms

Phantom Effect

29

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

Age Rating
80 1
75 1
90 2
85 2

Sailors

Phantom Effect

30

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1

Age Rating
80 1
75 1
90 2
85 2

Sailors

Phantom Effect

31

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)

Age Rating
80 1
75 1
90 2
85 2
99 1

Sailors

Phantom Effect

32

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2

Age Rating
80 1
75 1
90 2
85 2
99 1

Sailors

Phantom Effect

33

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2
T2 commits

Age Rating
80 1
75 1

85 2
99 1

Sailors

Phantom Effect

34

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2
T2 commits
T1 locks oldest sailor in rating 2

Age Rating
80 1
75 1

85 2
99 1

Sailors

Phantom Effect

35

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

T1 locks oldest sailor in rating 1
T2 inserts a tuple with (age:99, rating:1)
T2 deletes oldest sailor with rating 2
T2 commits
T1 locks oldest sailor in rating 2
T1 commits. Output: (80,1), (85, 2)

Age Rating
80 1
75 1

85 2
99 1

Sailors

Phantom Effect

36

T1: Find oldest sailors for ratings 1 and 2
T2: Insert (age:99, rating:1) and delete oldest
sailor with rating 2

Output: (80,1), (85, 2)

Different from all sequential execution output
• T1 -> T2. Output: (80, 1), (90, 2)
• T2 -> T1. Output: (99, 1), (85, 2)

Age Rating
80 1
75 1

85 2
99 1

Sailors

Phantom

Solution to Phantoms

37

Observation: Inserts and deletes are writes to the index; lookups are
reads to the index

Can lock the index in X or S mode

Optimization: lock intervals and predicate locking
• E.g., lock age=80 and the interval of age > 80 (prevent age 99 from

inserted)

Degree of Consistency (Isolation)

38

How can transactions interleave?

One extreme: concurrent execution produces the same results as
some serial execution (serializability)
• Limited concurrency and performance
• Intuitive and easy to reason about

Another extreme: transaction operations can arbitrarily interleave

Degree of Consistency (Isolation)

39

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

40

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

41

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

42

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

43

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

44

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

45

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No Serializable W->W
W->R
R->W

Degree 2 Long-X
Short-R

No No Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes None

Degree of Consistency (Isolation)

46

Locks Non-
Recoverable

Dirty
Reads

Non-repeatable
or fuzzy Reads

Phantom SQL Isolation
level

Dependenc
y

Degree 3 Long-X
Long-R

No No No No Serializable W->W
W->R
R->W

No No No Yes Repeatable reads

Degree 2 Long-X
Short-R

No No Yes Yes Read committed W->W
W->R

Degree 1 Long-X No Yes Yes Yes Read
uncommitted

W->W

Degree 0 Short-X Yes Yes Yes Yes None

Two-Phase Locking

47

A transaction is two phase if it does not lock an entity after unlocking
some entity
• Growing phase: acquiring locks
• Shrinking phase: releasing locks

Two-phase locking (2PL) guarantees serializability

Two-Phase Locking

48

A transaction is two phase if it does not lock an entity after unlocking
some entity
• Growing phase: acquiring locks
• Shrinking phase: releasing locks

Two-phase locking (2PL) guarantees serializability

Strict 2PL: 2PL + all exclusive locks released after transaction
commits
• Strict 2PL guarantees ACA (Avoiding Cascading Aborts)

Q/A – Granularity of Locks

49

Multi-granularity locks used in modern database?
Research papers focus on tuple-level locking?
SQL vs. NoSQL regarding locking?
How is the action of placing a lock itself thread-safe?
Implementation of Internal locking? (checkout next-key locking)

Before Next Lecture
Submit review for
• H. T. Kung, John T. Robinson, On Optimistic Methods for Concurrency

Control. ACM Trans. Database Syst. 1981.

50

http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/occ.pdf

