WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 7: Optimistic Concurrency Control

Xiangyao Yu
9/28/2020

Announcement

Guest lecture on Wednesday (Sep. 30) by Shasank Chavan from
Oracle on “Hardware Acceleration with Oracle Database In-Memory”

Student round-table discussion after the talk (2:30—3:30)

Today’s Paper: Optimistic Concurrency Control

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.

Key Words and Phrases: databases, concurrency controls, transaction processing
CR Categories: 4.32, 4.33

1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

ACM Trans. Database Syst. 1981

Agenda

Pessimistic concurrency control

Optimistic concurrency control

Concurrency Control

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Concurrency Control

Concurrency control ensures the correctness for concurrent operations
Assume serializable isolation level for this lecture

Pessimistic: Resolve conflicts eagerly

Optimistic: Ignore conflicts during a transaction’s execution and resolve
conflicts lazily only when at a transaction’s completion time

Concurrency Control

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Pessimistic: Resolve conflicts eagerly

Optimistic: Ignore conflicts during a transaction’s execution and resolve
conflicts lazily only when at a transaction’s completion time

Other common concurrency control protocols

« Timestamp ordering (T/O)
« Multi-version concurrency control (MVCC)

Pessimistic Concurrency Control

Strict two-phase locking (2PL)
 Acquire the right type of locks before accessing data
* Release locks when the transaction commits

Pessimistic Concurrency Control

Strict two-phase locking (2PL)
 Acquire the right type of locks before accessing data
* Release locks when the transaction commits

T1

Begin
acquire S lock on A

Read(A) @

Time |,

Pessimistic Concurrency Control

Strict two-phase locking (2PL)
 Acquire the right type of locks before accessing data
* Release locks when the transaction commits

T1

Begin
acquire S lock on A

Read(A) @

acquire X lock on B

Write(B) a

Time |,

10

Pessimistic Concurrency Control

Strict two-phase locking (2PL)
 Acquire the right type of locks before accessing data
* Release locks when the transaction commits

T1

Begin
acquire S lock on A

Read(A) @

acquire X lock on B

Write(B) a

Time |, release lock on A
release lock on B
Commit

Conflicts in 2PL

write(v) 63 Write(X)

release X
release Y
Commit

Time V

Solution 1: T2 waits for T1 to release lock (e.g., wait-die, deadlock-detection)
Solution 2: T2 self aborts (e.g., wait-die, no-wait)
Solution 3: T2 forces T1 to abort (e.g., wound-wait)

12

Deadlock

Time V

12

13

Deadlock

Time V

14

Deadlock

15

Deadlock

Time V

T1

Begin

Read(X) 12
Begin
Write(Y)

Write(Y)

g Write(X)
Wait on
: conflict X Wait on

conflict

Both transactions
wait for each other

=> Deadlock

16

Deadlock Resolution

Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed

17

Deadlock Resolution

Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed

NO_WAIT

» The requesting transaction self aborts when a conflict occurs

18

Deadlock Resolution

Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed

NO_WAIT

» The requesting transaction self aborts when a conflict occurs

WAIT_DIE

* The requesting transaction waits if its priority is higher than the lock owner (wait),
otherwise the requesting transaction self aborts (die)

19

Deadlock Resolution

Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed

NO_WAIT

» The requesting transaction self aborts when a conflict occurs

WAIT_DIE

* The requesting transaction waits if its priority is higher than the lock owner (wait),
otherwise the requesting transaction self aborts (die)

WOUND_WAIT

* The requesting transaction forces the lock owner to abort (wound) if its priority is
higher than the lock owner, otherwise the requesting transaction waits (wait)

20

Issues with Pessimistic CC

Overhead
« Overhead of acquiring/releasing locks and maintaining lock metadata
* Even read-only transactions acquire locks

Deadlocks
_imited concurrency
_ocks are held till the end of a transaction

Real workloads have low contention
 Locking is unnecessary if no contention exists

21

Optimistic Concurrency Control (OCC)

Goal: eliminating pessimistic locking
Three executing phases:

 Read
» Validation read validation write
» Write \ \ /
\ \ /
- -+
» time

Fig. 1. The three phases of a transaction.

22

Read Phase

n = tcreate

tcreate = (
n .= create;
create set := create set U {n},
return n)

23

Read Phase

n = tcreate
twrite(n, i, v)

twrite(n, i, v) = (
if n € create set
then write(n, i, v)
else if n € write set
then write(copies|n], i, v)
else (
m := copy(n);
coptes[n] .= m;

write set := write set U {n};

write (copies[n], i, v)))

24

Read Phase

n = tcreate
twrite(n, i, v)
value = tread(n, i)

tread(n, i) = (
read set :=read set U {n},
if n € write set
then return read(copies[n], i)
else
return read(n,t))

25

Read Phase

n = tcreate
twrite(n, I, v)
value = tread(n, i)
tdelete(n)

tdelete(n) = (
delete set := delete set U {n}).

26

Read Phase

n = tcreate
twrite(n, I, v)
value = tread(n, i)
tdelete(n)

All changes (i.e., inserts, updates, deletes) are kept local to the
transaction without updating the database

27

Write Phase

All written values become “global”

for n € write set do exchange(n, copies| n]).

All created nodes become accessible
All deleted nodes become inaccessible

28

Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the
validation phase

* (i) < t(j) => exists a serial schedule where T;is before T,

29

Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the
validation phase
* (i) < t(j) => exists a serial schedule where T;is before T;

For (i) < t(j), one of the following must be true
1. T, completes its write phase before T, starts its read phase.

2. The write set of T; does not intersect the read set of T;, and T; completes its
write phase before T, starts its write phase.

3. The write set of T; does not intersect the read set or the write set of T;, and
T; completes its read phase before T, completes its read phase.

30

Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the

validation phase
* (i) < t(j) => exists a serial schedule where T;is before T,

For (i) < t(j), one of the following must be true
1. T, completes its write phase before T, starts its read phase.

T 1 i i |

31

Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the

validation phase
* (i) < t(j) => exists a serial schedule where T;is before T,

For (i) < t(j), one of the following must be true

2. The write set of T; does not intersect the read set of T;, and T; completes its
write phase before T, starts its write phase.

32

Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the

validation phase
* (i) < t(j) => exists a serial schedule where T;is before T,

For (i) < t(j), one of the following must be true

3. The write set of T; does not intersect the read set or the write set of T;, and
T; completes its read phase before T, completes its read phase.

33

Serial Validation

thegin = (
start tn := tnc) N -
tend = (Critical Section

(finish tn := tnc;
valid := true;
for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
if valid
then ((write phase); tnc = tnc + 1; tn := tnc));

T 1f valid
g;:: ((;(ﬁgzzug’)) Which transactions will T2, T3,
P and T4 be validated against?

Ty —— Problem: The entire validate
Ty ! —H process happens in the critical
Ts J —H section

T, I J — 34

Improved Serial Validation

tend := (
mid tn := tnc;
valid := true;
for ¢ from start tn + 1 to mid tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;

(finish tn .= tnc;
for ¢t from mid tn + 1 to finish in do
if (write set of transaction with transaction number t intersects read set)
then valid .= false;
if valid

then ((write phase); tnc:= tnc + 1 ¢n:=inc));

if valid . .
then (cleanup) Critical Section

else (backup)).

LE I —i

Part of the validation process
happens outside the critical
section

The optimization can be
applied repeatedly

Readonly transactions do not
enter the critical section

35

Parallel Validation

tend = (
inish tn .= tnc;
finish active ;= (make a copy of active);
active := active U {id of this transaction});

valid ;= true;

for ¢t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
for i € finish active do
if (write set of transaction T; intersects read set or write set)
then valid ;= false;
if valid

then (Critical Sections

(write phase);

(tnc:=tnc + 1;
tn .= tne;
active := active—{id of this transaction});

(active := active—{id of transaction});
{bacRup))).

T 1 i —i

Validation against other transactions
and writes both happen outside the
critical section

Length of the critical section is
independent of the number of
validating transactions

Leading to unnecessary aborts

Q/A - OCC

Why write and validation phases likely take place in RAM?

Hybrid CC that combines OCC and 2PL?
* Yes. Checkout MOCC and CormCC

Concurrent way to deal with unnecessary aborts in parallel validation?

tbegin vs. tcreate?

Why any serial order of transactions acceptable? Shouldn'’t it be the

submission order?
« Strict serializability: If T1 finishes before T2 starts, T1 is before T2 in the global
serial order

Practical systems using 2PL vs. OCC?
OCC vs. 2PL in performance?

37

http://www.vldb.org/pvldb/vol10/p49-wang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-tang.pdf

Group Discussion

What are the downsides of OCC compared to 2PL?

38

Before Next Lecture

Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
* Title: Lecture 7 discussion. group ##
« Authors: Names of students who joined the discussion
« Summary submission Deadline: Tuesday 11:59pm

Submit review for
* Philip L. Lehman, S. Bing Yao: Efficient Locking for Concurrent Operations

on B-Trees. ACM Trans. Database Syst. 1981.
- Before next Monday (Oct. 5)

39

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/blink.pdf

