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Announcement

Guest lecture on Wednesday (Sep. 30) by Shasank Chavan from
Oracle on “Hardware Acceleration with Oracle Database In-Memory”

Student round-table discussion after the talk (2:30—3:30)



Today’s Paper: Optimistic Concurrency Control

On Optimistic Methods for Concurrency
Control

H.T. KUNG and JOHN T. ROBINSON
Carnegie-Mellon University

Most current approaches to concurrency control in database systems rely on locking of data objects
as a control mechanism. In this paper, two families of nonlocking concurrency controls are presented.
The methods used are “optimistic” in the sense that they rely mainly on transaction backup as a
control mechanism, “hoping” that conflicts between transactions will not occur. Applications for
which these methods should be more efficient than locking are discussed.
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1. INTRODUCTION

Consider the problem of providing shared access to a database organized as a
collection of objects. We assume that certain distinguished objects, called the
roots, are always present and access to any object other than a root is gained only
by first accessing a root and then following pointers to that object. Any sequence
of accesses to the database that preserves the integrity constraints of the data is
called a transaction (see, e.g., [4]).

If our goal is to maximize the throughput of accesses to the database, then
there are at least two cases where highly concurrent access is desirable.

ACM Trans. Database Syst. 1981
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Concurrency Control

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Pessimistic: Resolve conflicts eagerly

Optimistic: Ignore conflicts during a transaction’s execution and resolve
conflicts lazily only when at a transaction’s completion time

Other common concurrency control protocols

« Timestamp ordering (T/O)
« Multi-version concurrency control (MVCC)
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 Acquire the right type of locks before accessing data
* Release locks when the transaction commits
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Strict two-phase locking (2PL)
 Acquire the right type of locks before accessing data
* Release locks when the transaction commits
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Pessimistic Concurrency Control

Strict two-phase locking (2PL)
 Acquire the right type of locks before accessing data
* Release locks when the transaction commits

T1

Begin
acquire S lock on A

Read(A) @

acquire X lock on B

Write(B) a

Time |, release lock on A
release lock on B
Commit




Conflicts in 2PL

write(v) 63 Write(X)

release X
release Y
Commit

Time V

Solution 1: T2 waits for T1 to release lock (e.g., wait-die, deadlock-detection)
Solution 2: T2 self aborts (e.g., wait-die, no-wait)
Solution 3: T2 forces T1 to abort (e.g., wound-wait)

12



Deadlock

Time V
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Deadlock
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Deadlock

Time V

T1

Begin

Read(X) 12
Begin
Write(Y)

Write(Y)

g Write(X)
Wait on
: conflict X Wait on

conflict

Both transactions
wait for each other

=> Deadlock
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Deadlock Resolution

Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed
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Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed

NO_WAIT

» The requesting transaction self aborts when a conflict occurs
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* The requesting transaction waits if its priority is higher than the lock owner (wait),
otherwise the requesting transaction self aborts (die)
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Deadlock Resolution

Deadlock detection (DL_DETECT)

« Maintain a wait-for graph among transactions; abort a transaction if a cycle is
formed

NO_WAIT

» The requesting transaction self aborts when a conflict occurs

WAIT_DIE

* The requesting transaction waits if its priority is higher than the lock owner (wait),
otherwise the requesting transaction self aborts (die)

WOUND_WAIT

* The requesting transaction forces the lock owner to abort (wound) if its priority is
higher than the lock owner, otherwise the requesting transaction waits (wait)
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Issues with Pessimistic CC

Overhead
« Overhead of acquiring/releasing locks and maintaining lock metadata
* Even read-only transactions acquire locks

Deadlocks
_imited concurrency
_ocks are held till the end of a transaction

Real workloads have low contention
 Locking is unnecessary if no contention exists
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Optimistic Concurrency Control (OCC)

Goal: eliminating pessimistic locking
Three executing phases:

 Read
» Validation read validation write
» Write \ \ /
\ \ /
- -+
» time

Fig. 1. The three phases of a transaction.
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Read Phase

n = tcreate

tcreate = (
n .= create;
create set := create set U {n},
return n)
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Read Phase

n = tcreate
twrite(n, i, v)

twrite(n, i, v) = (
if n € create set
then write(n, i, v)
else if n € write set
then write(copies|n], i, v)
else (
m := copy(n);
coptes[n] .= m;

write set := write set U {n};

write (copies[n], i, v)))
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Read Phase

n = tcreate
twrite(n, i, v)
value = tread(n, i)

tread(n, i) = (
read set :=read set U {n},
if n € write set
then return read(copies[n], i)
else
return read(n,t))

25



Read Phase

n = tcreate
twrite(n, I, v)
value = tread(n, i)
tdelete(n)

tdelete(n) = (
delete set := delete set U {n}).
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Read Phase

n = tcreate
twrite(n, I, v)
value = tread(n, i)
tdelete(n)

All changes (i.e., inserts, updates, deletes) are kept local to the
transaction without updating the database
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Write Phase

All written values become “global”

for n € write set do exchange(n, copies| n]).

All created nodes become accessible
All deleted nodes become inaccessible
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Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the
validation phase

* (i) < t(j) => exists a serial schedule where T;is before T,
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Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the
validation phase
* (i) < t(j) => exists a serial schedule where T;is before T;

For (i) < t(j), one of the following must be true
1. T, completes its write phase before T, starts its read phase.

2. The write set of T; does not intersect the read set of T;, and T; completes its
write phase before T, starts its write phase.

3. The write set of T; does not intersect the read set or the write set of T;, and
T; completes its read phase before T, completes its read phase.

30



Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the

validation phase
* (i) < t(j) => exists a serial schedule where T;is before T,

For (i) < t(j), one of the following must be true
1. T, completes its write phase before T, starts its read phase.

T 1 i i |
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Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the

validation phase
* (i) < t(j) => exists a serial schedule where T;is before T,

For (i) < t(j), one of the following must be true

2. The write set of T; does not intersect the read set of T;, and T; completes its
write phase before T, starts its write phase.
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Validation Phase

A transaction /is assigned a transaction number t(i) when it enters the

validation phase
* (i) < t(j) => exists a serial schedule where T;is before T,

For (i) < t(j), one of the following must be true

3. The write set of T; does not intersect the read set or the write set of T;, and
T; completes its read phase before T, completes its read phase.
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Serial Validation

thegin = (
start tn := tnc) N -
tend = ( Critical Section

(finish tn := tnc;
valid := true;
for t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
if valid
then ((write phase); tnc = tnc + 1; tn := tnc));

T 1f valid
g;:: ((;(ﬁgzzug’)) Which transactions will T2, T3,
P and T4 be validated against?

Ty —— Problem: The entire validate
Ty ! —H process happens in the critical
Ts J —H section

T, I J — 34



Improved Serial Validation

tend := (
mid tn := tnc;
valid := true;
for ¢ from start tn + 1 to mid tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;

(finish tn .= tnc;
for ¢t from mid tn + 1 to finish in do
if (write set of transaction with transaction number t intersects read set)
then valid .= false;
if valid

then ((write phase); tnc:= tnc + 1 ¢n:=inc));

if valid . .
then (cleanup) Critical Section

else (backup)).

LE I —i

Part of the validation process
happens outside the critical
section

The optimization can be
applied repeatedly

Readonly transactions do not
enter the critical section
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Parallel Validation

tend = (
inish tn .= tnc;
finish active ;= (make a copy of active);
active := active U {id of this transaction});

valid ;= true;

for ¢t from start tn + 1 to finish tn do
if (write set of transaction with transaction number t intersects read set)
then valid := false;
for i € finish active do
if (write set of transaction T; intersects read set or write set)
then valid ;= false;
if valid

then ( Critical Sections

(write phase);

(tnc:=tnc + 1;
tn .= tne;
active := active—{id of this transaction});

(active := active—{id of transaction});
{bacRup))).

T 1 i —i

Validation against other transactions
and writes both happen outside the
critical section

Length of the critical section is
independent of the number of
validating transactions

Leading to unnecessary aborts




Q/A - OCC

Why write and validation phases likely take place in RAM?

Hybrid CC that combines OCC and 2PL?
* Yes. Checkout MOCC and CormCC

Concurrent way to deal with unnecessary aborts in parallel validation?

tbegin vs. tcreate?

Why any serial order of transactions acceptable? Shouldn'’t it be the

submission order?
« Strict serializability: If T1 finishes before T2 starts, T1 is before T2 in the global
serial order

Practical systems using 2PL vs. OCC?
OCC vs. 2PL in performance?
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http://www.vldb.org/pvldb/vol10/p49-wang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-tang.pdf

Group Discussion

What are the downsides of OCC compared to 2PL?
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Before Next Lecture

Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
* Title: Lecture 7 discussion. group ##
« Authors: Names of students who joined the discussion
« Summary submission Deadline: Tuesday 11:59pm

Submit review for
* Philip L. Lehman, S. Bing Yao: Efficient Locking for Concurrent Operations

on B-Trees. ACM Trans. Database Syst. 1981.
- Before next Monday (Oct. 5)
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https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/blink.pdf

