
Xiangyao Yu
9/28/2020

CS 764: Topics in Database Management Systems
Lecture 7: Optimistic Concurrency Control

1

Announcement
Guest lecture on Wednesday (Sep. 30) by Shasank Chavan from
Oracle on “Hardware Acceleration with Oracle Database In-Memory”

Student round-table discussion after the talk (2:30—3:30)

2

Today’s Paper: Optimistic Concurrency Control

ACM Trans. Database Syst. 1981 3

Agenda

4

Pessimistic concurrency control
Optimistic concurrency control

Concurrency Control

5

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Concurrency Control

6

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Pessimistic: Resolve conflicts eagerly
Optimistic: Ignore conflicts during a transaction’s execution and resolve
conflicts lazily only when at a transaction’s completion time

Concurrency Control

7

Concurrency control ensures the correctness for concurrent operations

Assume serializable isolation level for this lecture

Pessimistic: Resolve conflicts eagerly
Optimistic: Ignore conflicts during a transaction’s execution and resolve
conflicts lazily only when at a transaction’s completion time

Other common concurrency control protocols
• Timestamp ordering (T/O)
• Multi-version concurrency control (MVCC)

Pessimistic Concurrency Control
Strict two-phase locking (2PL)
• Acquire the right type of locks before accessing data
• Release locks when the transaction commits

8

Pessimistic Concurrency Control
Strict two-phase locking (2PL)
• Acquire the right type of locks before accessing data
• Release locks when the transaction commits

9

T1
Begin
acquire S lock on A
Read(A)

Time

S

Pessimistic Concurrency Control
Strict two-phase locking (2PL)
• Acquire the right type of locks before accessing data
• Release locks when the transaction commits

10

T1
Begin
acquire S lock on A
Read(A)
…
acquire X lock on B
Write(B)

Time

S

X

Pessimistic Concurrency Control
Strict two-phase locking (2PL)
• Acquire the right type of locks before accessing data
• Release locks when the transaction commits

11

T1
Begin
acquire S lock on A
Read(A)
…
acquire X lock on B
Write(B)
…
release lock on A
release lock on B
Commit

Time

S

X

Conflicts in 2PL

12

Time

T1
Begin
Read(X)
…
Write(Y)
…
release X
release Y
Commit

S

X

T2
Begin
Write(X)

Conflict

Solution 1: T2 waits for T1 to release lock (e.g., wait-die, deadlock-detection)
Solution 2: T2 self aborts (e.g., wait-die, no-wait)
Solution 3: T2 forces T1 to abort (e.g., wound-wait)

Deadlock

13

T1
Begin
Read(X) S T2

Time

Deadlock

14

T1
Begin
Read(X) S T2

Time

X
Begin
Write(Y)

Deadlock

15

T1
Begin
Read(X)
…

Write(Y)

S

X

T2
Begin
Write(Y)

Wait on
conflictTime

Deadlock

16

T1
Begin
Read(X)
…

Write(Y)

S

X

T2
Begin
Write(Y)
…

Write(X)
Wait on
conflict Wait on

conflict

Both transactions
wait for each other
=> Deadlock

Time

Deadlock Resolution

17

Deadlock detection (DL_DETECT)
• Maintain a wait-for graph among transactions; abort a transaction if a cycle is

formed

Deadlock Resolution

18

Deadlock detection (DL_DETECT)
• Maintain a wait-for graph among transactions; abort a transaction if a cycle is

formed

NO_WAIT
• The requesting transaction self aborts when a conflict occurs

Deadlock Resolution

19

Deadlock detection (DL_DETECT)
• Maintain a wait-for graph among transactions; abort a transaction if a cycle is

formed

NO_WAIT
• The requesting transaction self aborts when a conflict occurs

WAIT_DIE
• The requesting transaction waits if its priority is higher than the lock owner (wait),

otherwise the requesting transaction self aborts (die)

Deadlock Resolution

20

Deadlock detection (DL_DETECT)
• Maintain a wait-for graph among transactions; abort a transaction if a cycle is

formed

NO_WAIT
• The requesting transaction self aborts when a conflict occurs

WAIT_DIE
• The requesting transaction waits if its priority is higher than the lock owner (wait),

otherwise the requesting transaction self aborts (die)
WOUND_WAIT

• The requesting transaction forces the lock owner to abort (wound) if its priority is
higher than the lock owner, otherwise the requesting transaction waits (wait)

Issues with Pessimistic CC
Overhead
• Overhead of acquiring/releasing locks and maintaining lock metadata
• Even read-only transactions acquire locks

Deadlocks
Limited concurrency
Locks are held till the end of a transaction
Real workloads have low contention
• Locking is unnecessary if no contention exists

21

Optimistic Concurrency Control (OCC)
Goal: eliminating pessimistic locking
Three executing phases:
• Read
• Validation
• Write

22

Read Phase
n = tcreate

23

Read Phase
n = tcreate
twrite(n, i, v)

24

Read Phase
n = tcreate
twrite(n, i, v)
value = tread(n, i)

25

Read Phase
n = tcreate
twrite(n, i, v)
value = tread(n, i)
tdelete(n)

26

Read Phase
n = tcreate
twrite(n, i, v)
value = tread(n, i)
tdelete(n)

All changes (i.e., inserts, updates, deletes) are kept local to the
transaction without updating the database

27

Write Phase
All written values become “global”

All created nodes become accessible
All deleted nodes become inaccessible

28

Validation Phase
A transaction i is assigned a transaction number t(i) when it enters the
validation phase
• t(i) < t(j) => exists a serial schedule where Ti is before Tj

29

Validation Phase
A transaction i is assigned a transaction number t(i) when it enters the
validation phase
• t(i) < t(j) => exists a serial schedule where Ti is before Tj

For t(i) < t(j), one of the following must be true
1. Ti completes its write phase before Tj starts its read phase.
2. The write set of Ti does not intersect the read set of Tj, and Ti completes its

write phase before Tj starts its write phase.
3. The write set of Ti does not intersect the read set or the write set of Tj, and

Ti completes its read phase before Tj completes its read phase.

30

Validation Phase
A transaction i is assigned a transaction number t(i) when it enters the
validation phase
• t(i) < t(j) => exists a serial schedule where Ti is before Tj

For t(i) < t(j), one of the following must be true
1. Ti completes its write phase before Tj starts its read phase.
2. The write set of Ti does not intersect the read set of Tj, and Ti completes its

write phase before Tj starts its write phase.
3. The write set of Ti does not intersect the read set or the write set of Tj, and

Ti completes its read phase before Tj completes its read phase.

31

Ti

Tj

Validation Phase
A transaction i is assigned a transaction number t(i) when it enters the
validation phase
• t(i) < t(j) => exists a serial schedule where Ti is before Tj

For t(i) < t(j), one of the following must be true
1. Ti completes its write phase before Tj starts its read phase.
2. The write set of Ti does not intersect the read set of Tj, and Ti completes its

write phase before Tj starts its write phase.
3. The write set of Ti does not intersect the read set or the write set of Tj, and

Ti completes its read phase before Tj completes its read phase.

32

Ti

Tj

Validation Phase
A transaction i is assigned a transaction number t(i) when it enters the
validation phase
• t(i) < t(j) => exists a serial schedule where Ti is before Tj

For t(i) < t(j), one of the following must be true
1. Ti completes its write phase before Tj starts its read phase.
2. The write set of Ti does not intersect the read set of Tj, and Ti completes its

write phase before Tj starts its write phase.
3. The write set of Ti does not intersect the read set or the write set of Tj, and

Ti completes its read phase before Tj completes its read phase.

33

Ti

Tj

Serial Validation

34

Critical Section

T1
T2
T3
T4

Problem: The entire validate
process happens in the critical
section

Which transactions will T2, T3,
and T4 be validated against?

Improved Serial Validation

35

Critical Section

Part of the validation process
happens outside the critical
section

The optimization can be
applied repeatedly

Readonly transactions do not
enter the critical section

T1
T2
T3
T4

Parallel Validation

36

Validation against other transactions
and writes both happen outside the
critical section

Length of the critical section is
independent of the number of
validating transactions

Leading to unnecessary aborts

T1
T2
T3
T4

Critical Sections

Q/A – OCC

37

Why write and validation phases likely take place in RAM?
Hybrid CC that combines OCC and 2PL?

• Yes. Checkout MOCC and CormCC
Concurrent way to deal with unnecessary aborts in parallel validation?
tbegin vs. tcreate?
Why any serial order of transactions acceptable? Shouldn’t it be the
submission order?

• Strict serializability: If T1 finishes before T2 starts, T1 is before T2 in the global
serial order

Practical systems using 2PL vs. OCC?
OCC vs. 2PL in performance?

http://www.vldb.org/pvldb/vol10/p49-wang.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-tang.pdf

Group Discussion

38

What are the downsides of OCC compared to 2PL?

Before Next Lecture
Submit discussion summary to https://wisc-cs764-f20.hotcrp.com
• Title: Lecture 7 discussion. group ##
• Authors: Names of students who joined the discussion
• Summary submission Deadline: Tuesday 11:59pm

Submit review for
• Philip L. Lehman, S. Bing Yao: Efficient Locking for Concurrent Operations

on B-Trees. ACM Trans. Database Syst. 1981.
• Before next Monday (Oct. 5)

39

https://wisc-cs764-f20.hotcrp.com/
http://pages.cs.wisc.edu/~yxy/cs764-f20/papers/blink.pdf

