
Xiangyao Yu
10/13/2021

CS 764: Topics in Database Management Systems
Lecture 11: Modern OCC

1



Announcement
Guest lecture next Monday (Oct. 18) in online mode

Round-table discussion after the talk (2:00—3:00 PM)

2



Today’s Paper: Modern OCC

SOSP, 2013 3



Timestamp Allocation Bottleneck

Even a single atomic 
instruction can become a 
scalability bottleneck

4

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)



Timestamp Allocation Bottleneck

Even a single atomic 
instruction can become a 
scalability bottleneck

5

atomic_fetch_and_add(&lsn, size);

1 8 16 24 32
Worker threads

0

2M

4M

6M

8M

10M

Th
ro

ug
hp

ut
(tx

ns
/s

ec
)

X. Yu et al. Staring into the Abyss: An Evaluation of Concurrency 
Control with One Thousand Cores, VLDB 2014



Silo Read Phase
Each tuple contains a 64-bit TID word

6

Status bits Sequence number Epoch number
0 63



Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)

7

Status bits Sequence number Epoch number
0 63



Silo Read Phase
Each tuple contains a 64-bit TID word

Each read returns consistent value and TID word 
– Method 1: Guard the read with a latch (i.e., a short lock)
– Method 2: Optimistic lock (Silo’s approach)

8

do 
v1 = t.read_TID_word()
RS[t.key].data = t.data
v2 = t.read_TID_word() 

while (v1 != v2 or v1.lock_bit == 1); 

Status bits Sequence number Epoch number
0 63



Silo Validation Phase
Phase 1: Lock the write set

9



Silo Validation Phase
Phase 1: Lock the write set

Q: Why need to sort write set?

10



Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set
– Validation fails if (1) the tuple is 

modified since the earlier read or (2) 
the tuple is locked by another 
transaction

11



Silo Validation Phase
Phase 1: Lock the write set

Phase 2: Validate the read set

Phase 3: Write phase

12



Silo OCC is Serializable 

13

read(A) read(B) read(C)

lock write set

serialization 
point

validate read set

write DB and release locks



Silo OCC is Serializable 

Proof idea
– The Silo schedule is equivalent to an idealized schedule where all reads and 

writes of a transaction occur at the serialization point
– (Same strategy can be used to prove that 2PL is serializable)

14

read(A) read(B) read(C)

lock write set

serialization 
point

validate read set

write DB and release locks



Silo vs. OCC 1981

15

Silo OCC 1981



Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections

16

Silo OCC 1981



Silo vs. OCC 1981

• Silo locks tuples in write set; OCC’81 uses global critical sections
• Silo validates using tuple versions; OCC’81 validates against write 

set of previous transactions

17

Silo OCC 1981



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

18



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

19

3, 5 7 10, 13

SELECT * 
FROM table 
WHERE x > 6;

Gap locks



Phantom Protection in 2PL
Gap locks

– A gap lock is a lock on a gap between index records, or a lock on the gap 
before the first or after the last index record (MySQL reference manual)

– Next key lock = index node lock + gap lock before the record

20

3, 5 7 10, 13

SELECT * 
FROM table 
WHERE x > 6;

Gap locks



Phantom Protection in Silo

Validate the versions of accessed index 
nodes 

– May need to consider the next nodes as 
well

21



Phantom Protection in Silo

Validate the versions of accessed index 
nodes 

– May need to consider the next nodes as 
well

22

3, 5 7 10, 13

SELECT * 
FROM table 
WHERE x > 6;



Discussions
Epochs in Silo: A mechanism to enable parallel logging

23



Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

24



Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

Priority and preemption of transactions? 

25



Discussions
Epochs in Silo: A mechanism to enable parallel logging

Granularity of locking: Support coarse-grained “locks” in Silo? 

Priority and preemption of transactions? 

Opacity: Strict serializability for both committed and aborted 
transactions 

– Achieve opacity in 2PL vs. OCC? 

26



Evaluation

27Tanabe, Takayuki, et al. An analysis of concurrency control protocols for in-memory databases with CCBench VLDB 2020



Evaluation

28Zhihan Guo, et al., Releasing Locks As Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase Locking, SIGMOD 2021



Evaluation

29Zhihan Guo, et al., Releasing Locks As Early As You Can: Reducing Contention of Hotspots by Violating Two-Phase Locking, SIGMOD 2021



Q/A – Modern OCC

30

Is in-memory DB practical? 
Source code of Silo and Masstree? 
Silo with distributed databases? 
Why need epochs? 
Why need secondary index?
Example transactions that are not one shot?
Why use locks at all in an optimistic protocol?



Before Next Wednesday
Submit review for

– Philip Lehman, S. Bing Yao, Efficient Locking for Concurrent Operations on 
B-Trees. ACM Transactions on Database Systems, 1981

31

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/blink.pdf

