
Xiangyao Yu
10/20/2020

CS 764: Topics in Database Management Systems
Lecture 13: Blink Tree

1



Announcement
Project proposal deadline: Oct. 25

– Submission website: https://wisc-cs764-f21.hotcrp.com
– Format: VLDB or SIGMOD preferred 
– Make sure to include: project name, author list, background and motivation, 

task plan, timeline

Guest lecture next Monday (Oct. 25) from Amazon
– The lecture is offered in online mode
– No round-table discussion

2

https://wisc-cs764-f21.hotcrp.com/


Today’s Paper: B-tree Locking

ACM Trans. Database Syst. 1981 3



Agenda

4

B-Tree Index 
Lock coupling 
Blink-tree

– Search
– Insert

Optimistic lock coupling (OLC)



Index

5

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan 



Index

6

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan 

Primary 
index

Data store



Index

7

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan 

Primary 
index

Data store

Secondary
index



Index

8

Index: Accelerate data retrieval operations in a database table
– E.g., random lookup, range scan 

Primary 
index

Data store

Secondary
index



B-tree

9

Balanced tree data structure 
• Data is sorted
• Supports: search, sequential scan, inserts, and deletes



B-tree

10

Balanced tree data structure 
• Data is sorted
• Supports: search, sequential scan, inserts, and deletes

Properties 
• Every node contains k to 2k keys (except root)
• All leaf nodes are at the same level
• k is typically large; a lookup traverses a small number of levels



B-tree vs. B+ Tree vs. B* Tree

11

B-tree: data pointers stored in all nodes

10

8 14 16

4 9 13 15 17 19

B-tree



B-tree vs. B+ Tree vs. B* Tree

12

B-tree: data pointers stored in all nodes
B+ tree: 

– Data pointers stored only in leaf nodes
– The leaf nodes are linked

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree



B-tree vs. B+ Tree vs. B* Tree

13

B-tree: data pointers stored in all nodes
B+ tree: 

– Data pointers stored only in leaf nodes
– The leaf nodes are linked

B* tree is a misused term in B-tree literature
– Typically means a variant of B+ tree in which each node is least 2/3 full
– In this paper: B+ tree with high key appended to non-leaf nodes (upper bound on values)

10

8 14 16

4 9 13 15 17 19

10

8 14 16

4 9 13 15 17 19

B-tree B+ tree

10

8 14 16

4 9 13 15 17 19

B* tree

9 19

19
high key



Insert Example
Assume k = 2 (at most 4 keys per node)

14



Search Example
Assume k = 2 (at most 4 keys per node)

15



Concurrency Challenge
Assume k = 2 (at most 4 keys per node)
Concurrent search and insert can cause 
problems

16



Lock Coupling
A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)

17



Lock Coupling
A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)
Lock coupling (aka. lock crabbing)

– Lock parent
– Access parent 
– Lock child
– Release parent if child is safe

18



Lock Coupling
A node is unsafe (wrt. insertion) if it is full (i.e., contains 2k keys)
Lock coupling (aka. lock crabbing)

– Lock parent
– Access parent 
– Lock child
– Release parent if child is safe

19

What if the child is unsafe? 
– One solution: split immediately if 

child is unsafe



Limitation of Lock Coupling
The root is locked for every index access and becomes a scalability 
bottleneck

Observation: root and upper levels are rarely changed; lock coupling 
is too conservative

20



Limitation of Lock Coupling
The root is locked for every index access and becomes a scalability 
bottleneck

Observation: root and upper levels are rarely changed; lock coupling 
is too conservative

Concurrency challenge: search may read wrong node due to split 
– Lock coupling solution: guard split using a lock
– Blink tree solution: allow search to find the right node

21



Blink-Tree

22

Feature 1: link pointer to next node at each level key idea



Blink-Tree

23

Feature 1: link pointer to next node at each level 
Feature 2: high key for each node

key idea



Blink-Tree: Insert Algorithm

24

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split



Blink-Tree: Insert Algorithm

25

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1



Blink-Tree: Insert Algorithm

26

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2



Blink-Tree: Insert Algorithm

27

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Before split Step 1 Step 2 Step 3



Blink-Tree: Insert Algorithm

28

Insert to leaf if the leaf node if not full
Illustration of node split (node a is split into a’ and b’)

Q: What if another txn searches a key in b’ before step 3 finishes?

Before split Step 1 Step 2 Step 3



Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree

29



Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree
High key indicates when to follow link pointer

30

15 is found following the link pointer



Concurrent Search & Insert
Assume k = 2 (at most 4 keys per node)
Concurrency problem is solved in Blink tree
High key indicates when to follow link pointer

31

15 is found following the link pointer

Q: Can the algorithm work without high keys



Optimistic Lock Coupling (OLC)
Each tuple contains a 64-bit version counter

32

Lock bit Version number
0 63



Optimistic Lock Coupling (OLC)
Each tuple contains a 64-bit version counter

33

Lock bit Version number
0 63

No scalability bottleneck
– No write to shared 

memory during 
traversal

– Upon conflict, retry 
from root

– Performance similar to 
Blink tree



Evaluation

34Leis, Viktor et al. Optimistic Lock Coupling: A Scalable and Efficient General-Purpose Synchronization 
Method. IEEE Data Eng. Bull. 42 (2019): 73-84.



Q/A – Blink Tree

35

Why at most three locks are used? (why not two?)
Implemented on real systems?
What isolation level is Blink tree?
How is this different from B+ tree?
How does the algorithm perform in in-memory multicore processors?
How are the database indexes selected for a given workload?



Before Next Wednesday
Submit review for

– Viktor Leis, et al., The Adaptive Radix Tree: ARTful Indexing for Main-
Memory Databases. ICDE, 2013

36

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/art.pdf

