
Xiangyao Yu
10/27/2020

CS 764: Topics in Database Management Systems
Lecture 15: Adaptive Radix Tree

1

Today’s Paper: B-tree Locking

2ICDE 2013

Outline
B-tree vs. Trie
Adaptive Radix Tree

– Adaptive types
– Collapsing inner nodes
– Search and insert operations

Evaluation

3

B+ Tree Revisit
Modern indexes fit in main memory

Keys are stored in each level of the tree

Must always traverse to the leaf node to check
existence (e.g., cannot stop at an inner node)

4

10

8 14 16

4 9 13 15 17 19

B+ tree

Trie (aka. digital tree or prefix tree)
Path to leaf node represents key of the
leaf

Operation complexity is O(k) where k is
the length of the key

Keys are most often strings and each
node contains characters

5

Source: https://en.wikipedia.org/wiki/Radix_tree

https://en.wikipedia.org/wiki/Radix_tree

Static Radix Tree
Span: The number of bits
within the key used to
determine the next child

6

First byte

Second byte

Third byte

Static Radix Tree
Span: The number of bits
within the key used to
determine the next child

7

First byte

Second byte

Third byte

Large span
=> reduced height
=> exponential tree size

Key Idea: Adaptive Radix Tree

8

Original Radix Tree

Key Idea: Adaptive Radix Tree

9

Original Radix Tree

Optimization 1: adaptive node type

Key Idea: Adaptive Radix Tree

10

Original Radix Tree

Optimization 1: adaptive node type

Optimization 2: collapsing inner nodes

Inner Node Structure

11

Node4 and Node16
Node48
Node256

– 256 child pointers indexed with
partial key byte directly

– (Same as original radix tree)

Inner Node Structure

12

Node4 and Node16
– Store up to 4 (16) partial keys

and the corresponding pointers
– Each partial key is one byte

Node48
Node256

Inner Node Structure

13

Node4 and Node16
Node48

– 256 entries indexed with partial
key byte directly

– Each entry stores a one-byte index
to a child pointer array

– Child pointer array contains 48
pointers to children nodes

Node256

Collapsing Inner Node
Lazy expansion: remove path to
single leaf

– Inner nodes created only required to
distinguish at least two leaf nodes

Path compression: merge one-way
node into child node

– Removes all inner nodes that have
only a single child

14

Collapsing Inner Node
Pessimistic

– Collapsed prefix key stored in each
node as variable length key

15

Collapsing Inner Node
Pessimistic

– Collapsed prefix key stored in each
node as variable length key

Optimistic
– Skip collapsed partial key. Verify with

the real key at the leaf

16

Collapsing Inner Node
Pessimistic

– Collapsed prefix key stored in each
node as variable length key

Optimistic
– Skip collapsed partial key. Verify with

the real key at the leaf
Hybrid

– Store up to a constant-size collapsed
key (8 bytes); once exceeded, switch
to optimistic strategy

17

Search Algorithm

18

B, F

“OO”, D, L

Example: search for FOOD

Insert Algorithm

19

Discussion
Space consumption

– ART requires at most 52 bytes of memory to index a key
– Q: What if the key itself is larger than 52 bytes?

20

Discussion
Space consumption

– ART requires at most 52 bytes of memory to index a key
– Q: What if the key itself is larger than 52 bytes?

Binary comparable keys
– For finite and totally ordered domains, always possible to transform values

to binary-comparable keys

21

Evaluation—Single-Threaded Lookup

22

Evaluation—Single-Threaded Insert

23

Evaluation—Single-Threaded Insert

24

Evaluation – More Baselines

25* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

Evaluation – Memory Usage

26* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

Q/A – Adaptive Radix Tree

30

Use of SIMD in realistic DBs?
Can ART fit well in distributed systems?
Concurrent operations in ART?
Keys that are prefixes of other keys?
ART vs. B-link tree?
What if data does not fit in memory?

Next Week
Philip Bernstein, et al., Concurrency Control and Recovery in
Database Systems, Chapter 6. Addison-wesley, 1987

– Skip 6.4 (covered next lecture), 6.5, 6.7, and exercise
– About 20 pages to read

C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 1992

– Skip Section 1 and everything after (including) Section 8
– May also skip Section 2
– About 25–30 pages to read

31

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/ccontrol-CH6.pdf
http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aries.pdf

