WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 15: Adaptive Radix Tree

Xiangyao Yu
10/27/2020

Today’s Paper: B-tree Locking

The Adaptive Radix Tree:
ARTful Indexing for Main-Memory Databases

Viktor Leis, Alfons Kemper, Thomas Neumann
Fakultdt fiir Informatik
Technische Universitit Miinchen

Boltzmannstrae 3, D-85748 Garching
<lastname>@in.tum.de

Abstract—Main memory capacities have grown up to a point
where most databases fit into RAM. For main-memory database
systems, index structure performance is a critical bottleneck.
Traditional in-memory data structures like balanced binary
search trees are not efficient on modern hardware, because they
do not optimally utilize on-CPU caches. Hash tables, also often
used for main-memory indexes, are fast but only support point
queries.

To overcome these shortcomings, we present ART, an adaptive
radix tree (trie) for efficient indexing in main memory. Its lookup
performance surpasses highly tuned, read-only search trees, while
supporting very efficient insertions and deletions as well. At the
same time, ART is very space efficient and solves the problem
of excessive worst-case space consumption, which plagues most
radix trees, by adaptively choosing compact and efficient data
structures for internal nodes. Even though ART’s performance
is comparable to hash tables, it maintains the data in sorted
order, which enables additional operations like range scan and
prefix lookup.

1. INTRODUCTION

After decades of rising main memory capacities, even large
transactional databases fit into RAM. When most data is
cached, traditional database systems are CPU bound because
they spend considerable effort to avoid disk accesses. This
has led to very intense research and commercial activities in
main-memory database systems like H-Store/VoltDB [1], SAP
HANA [2], and HyPer [3]. These systems are optimized for
the new hardware landscape and are therefore much faster. Our
system HyPer, for pl pil ions to hi

code and gets rid of buffer management, locking, and latching

digit 1
A
digit 2
R
digit 3
o/ T Y E T
leaf nodes

Fig. 1. Adaptively sized nodes in our radix tree

the long pipelines of modern CPUs stall, which causes addi-
tional latencies after every second comparison (on average).
These problems of traditional search trees were tackled by
recent research on data structures specifically designed to be
efficient on modern hardware architectures. The k-ary search
tree [6] and the Fast Architecture Sensitive Tree (FAST) [7]
use data level parallelism to perform multiple comparisons
simultaneously with Singe Instruction Multiple Data (SIMD)
instructions. Additionally, FAST uses a data layout which
avoids cache misses by optimally utilizing cache lines and
the Translation Lookaside Buffer (TLB). While these opti-
mizations improve search performance, both data structures
cannot support incremental updates. For an OLTP database
system which necessitates continuous insertions, updates, and
deletions, an obvious solution is a differential file (delta)

overhead. For OLTP workloads, the Iting plans
are often sequences of index operations. Therefore, index
efficiency is the decisive performance factor.

More than 25 years ago, the T-tree [4] was proposed as
an in-memory indexing structure. Unfortunately, the dramatic
processor architecture changes have rendered T-trees, like all
traditional binary search trees, inefficient on modern hardware.
The reason is that the ever growing CPU cache sizes and
the diverging main memory speed have made the underlying
assumption of uniform memory access time obsolete. B™-tree
variants like the cache sensitive B*-tree [5] have more cache-
friendly memory access patterns, but require more expensive
update operations. Furthermore, the efficiency of both binary
and B -trees suffers from another feature of modern CPUs:
Because the result of comparisons cannot be predicted easily,

ICDE 2013

) i which, however, will result in additional costs.

Hash tables are another popular main-memory data struc-
ture. In contrast to search trees, which have O(logn) access
time, hash tables have expected O(1) access time and are
therefore much faster in main memory. Nevertheless, hash
tables are less commonly used as database indexes. One reason
is that hash tables scatter the keys randomly, and therefore only
support point queries. Another problem is that most hash tables
do not handle growth gracefully, but require expensive reor-
ganization upon overflow with O(n) complexity. Therefore,
current systems face the unfortunate trade-off between fast
hash tables that only allow point queries and fully-featured,
but relatively slow, search trees.

A third class of data structures, known as trie, radix tree,
prefix tree, and digital search tree, is illustrated in Figure 1.

Outline

B-tree vs. Trie

Adaptive Radix Tree
— Adaptive types
— Collapsing inner nodes
— Search and insert operations

Evaluation

B+ Tree Revisit

Modern indexes fit in main memory
Keys are stored in each level of the tree

Must always traverse to the leaf node to check
existence (e.g., cannot stop at an inner node)

B+ tree

N

8

I

16

\

/

\

!
b/
9|>13->

15

——

17 119

N

NSNS NS

Trie (aka. digital tree or prefix tree)

Path to leaf node represents key of the

leaf

Operation complexity is O(k) where Kk is

the length of the key

Keys are most often strings and each

node contains characters

3 romulus
4 rubens Z A\
5 ruber Lom] tﬂg\|
6 rubicon
® °

7 rubicundus
@ |ulus(ﬁ

/. ‘
[oThs EBsE) R
©@ @ ® 6 & O

Source: https://en.wikipedia.org/wiki/Radix tree

1l romane
2 romanus

https://en.wikipedia.org/wiki/Radix_tree

Static Radix Tree

Span: The number of bits Fistoyte. ()

within the key used to Second byte |)
determine the next child | LN
Third byte

)
/ ! ! AR IR AR AR AR A

Static Radix Tree

Span: The number of bits
within the key used to
determine the next child

Large span
=> reduced height
=> exponential tree size

First byte ()
A A NN N

Second byte

()
e R R
Third byte |) ()
/ ! , AR

s=1
3= @
-C L
S 24
()]
N - S=
o 16= ©
o s=3
- ® GPT (s=4
8 = ° LRT (s=6)
® ®s=8 .S=12.S=14 s=16
1 =_ART 8s-32

32MB 128MB 512MB 2GB 8GB 32GB
space consumption (log scale)

Fig. 3. Tree height and space consumption for different values of the span
parameter s when storing 1M uniformly distributed 32 bit integers. Pointers
are 8 byte long and nodes are expanded lazily.

Key Idea: Adaptive Radix Tree

/\

7 71
Z
)

Original Radix Tree

Key Idea: Adaptive Radix Tree

L

[

/\

!/ 71 T Optimization 1: adaptive node type

)

Original Radix Tree

Key Idea: Adaptive Radix Tree

/\

7 7 1
—

)

Original Radix Tree

‘/: T
: |

77

Optimization 1: adaptive node type

N

Optimization 2: collapsing inner nodes

10

Inner Node Structure

Noded4 and Node16 Node256 childpoint .
0 1 2 3 4 5 6 255
L4 5

— 256 child pointers indexed with
partial key byte directly

— (Same as original radix tree)

11

Inner Node Structure

child pointer

Node4 and Node16 et X
— Store up to 4 (16) partial keys ol2]3 pss |
and the corresponding pointers .

— Each partial key is one byte A

Node48 Node16 ke

Node256 g ; ; 2;5 0|
Y

/a\

12

Inner Node Structure

Node4 and Node16 Noded8 child index child pointer

‘0 1
Node48

— 256 entries indexed with partial
key byte directly

— Each entry stores a one-byte index
to a child pointer array

— Child pointer array contains 48
pointers to children nodes

Node256

13

Collapsing Inner Node

Lazy expansion: remove path to
single leaf

— Inner nodes created only required to
distinguish at least two leaf nodes

Path compression: merge one-way
node into child node

— Removes all inner nodes that have
only a single child

e
ae st
.
.

Fig. 6.

[Mlustration of lazy expansion and path compression.

n :

~"path compression(")"
R into child node Syt Iazy.
.......................... A : O expansio "
. remove path :
to single leaf
R Q *

14

Collapsing Inner Node

Pessimistic R
— Collapsed prefix key stored in each ..o ’ R S -

.t

: -~ path compression "
node as variable length key ... meroe one.way node [? [? lazy
Al ! 0

""""" expansion

. remove path .
" @ to single leaf N

Fig. 6. [Illustration of lazy expansion and path compression.

15

Collapsing Inner Node

Pessimistic

— Collapsed prefix key stored in each .
node as variable length key

Optimistic
— Skip collapsed partial key. Verify with
the real key at the leaf

~"path compression(~ |-
merge one-way node o 2
e into child node et - Iazy.
------------------- A . O expansion
. remove path .

to single leaf
R Z O | O

Fig. 6. [Illustration of lazy expansion and path compression.

16

Collapsing Inner Node

Pessimistic

— Collapsed prefix key stored in each
node as variable length key

Optimistic
— Skip collapsed partial key. Verify with
the real key at the leaf

Hybrid
— Store up to a constant-size collapsed
key (8 bytes); once exceeded, switch
to optimistic strategy

R
aest
.
.

Fig. 6.

.l '.-'0
into child node et Iazy.
...................... A : O expa nslon ;

. remove path :
g to single leaf N
O | Q

[Mlustration of lazy expansion and path compression.

17

o =] -1 o> Lh 2w —

— —
—_—

Search Algorithm

search (node, key, depth)

if node==NULL
return NULL
if islLeaf (node)
if leafMatches (node, key, depth)
return node
return NULL
if checkPrefix (node, key,depth) !=node.prefixLen
return NULL
depth=depth+node.prefixLen
next=findChild (node, key[depth])
return search(next, key, depth+l)

Fig. 7. Search algorithm.

B, F

*\\\\\‘
uc)()u, [),I_

\

Example: search for FOOD

18

R - ™ L o P

— e e e
th B W = O

Insert Algorithm

insert (node, key, leaf, depth)

if node==NULL // handle empty tree 16 if p!=node.prefixlen // prefix mismatch
replace (node, leaf) 17 newNode=makeNode4 ()
return 18 addChild (newNode, key[depth+p], leaf)
if isLeaf (node) // expand node 19 addChild (newNode, node.prefix[p], node)
newNode=makeNode4 () 20 newNode.prefixLen=p
key2=1loadKey (node) 21 memcpy (newNode.prefix, node.prefix, p)
for (i=depth; key[i]l==key2[i]; 1i=i+1) 22 node.prefixLen=node.prefixlLen- (p+1)
newNode.prefix[i-depth]=key[1] 23 memmove (node.prefix, node.prefix+p+l, node.prefixlLen)
newNode.prefixLen=i-depth 24 replace (node, newNode)
depth=depth+newNode.prefixLen 25 return
addChild (newNode, key[depth], leaf) 26 depth=depth+node.prefixLen
addChild (newNode, key2[depth], node) 27 next=findChild(node, key[depth])
replace (node, newNode) 2 if next // recurse
return 29 insert (next, key, leaf, depth+l)
p=checkPrefix (node, key, depth) 30 else // add to inner node
31 if isFull (node)
32 grow (node)
33 addChild(node, key[depth], leaf)

19

Discussion

Space consumption

— ART requires at most 52 bytes of memory to index a key
— Q: What if the key itself is larger than 52 bytes?

20

Discussion

Space consumption

— ART requires at most 52 bytes of memory to index a key
— Q: What if the key itself is larger than 52 bytes?

Binary comparable keys

— For finite and totally ordered domains, always possible to transform values
to binary-comparable keys

21

Evaluation—Single-Threaded Lookup

65K

©
o
1

M lookups/second
3 3
1 1

0=-—

- dense

sparse

I-III
T 19 °¥r & 1T 1 1

ART GPT RB CSB kary FAST HT

M lookups/second

16M

20 =
-dense

15 = sparse
10 =
- I I I
ol .

T T | T T

1 1
ART GPT RB CSB kary FAST HT

M lookups/second

256M
10.0 =
. dense

75 = sparse

50 =

25 = I I

0.0 = -

T T I I T

ART

Fig. 10. Single-threaded lookup throughput in an index with 65K, 16M, and 256M keys.

RB kary FAST
(GPT and CSB crashed)

HT

22

Evaluation—Single-Threaded Insert

15 =
g . dense
O sparse
B 10 -
%)
T
[}
g 5-
§ I
0 -
ART AFlT GPT B CSB

(bulk) (bulk)

Fig. 14. Insertion of 16M keys into an empty index structure.

23

Evaluation—Single-Threaded Insert

15 =
g . dense
O sparse
B 10 -
%)
T
()
g 5-

0 = |
1 T T 1 I T
ART ART GPT RB CSB HT

(bulk) (bulk)

Fig. 14. Insertion of 16M keys into an empty index structure.

20 =
. ART
3!
o 15 =
0
e
S 10 = HT
©
S 5=
O FAST +A
= 0 - — e — A A

T T | T |
0% 25% 50% 75% 100%
update percentage
Fig. 15. Mix of lookups, insertions, and deletions (16M keys).

24

Evaluation — More Baselines

E BwTree Bl OpenBwTree B Skiplist N MassTree [~ B+Tree = ART

3120) o %60» %’ o %60»
o 250, . B E_ 50
S0 S 40|
5 30, 330
520! 520,
(o] o
E 10+ |.§ 10t
Insert 0 Scan 0 Insert Read
Only Only Update Insert Only Only Update Insert Only Only Update Insert

(a) Mono-Int Keys (b) Rand-Int Keys (c) Email Keys
Figure 14: In-Memory Index Comparison (Multi-Threaded) - 20 worker threads. All worker threads are pinned to NUMA node 0.

* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018 25

Evaluation — Memory Usage

Mono Int Rand Int Email Key

(b) Multi-Threaded — Read/Update

* Wang, Ziqi, et al. Building a bw-tree takes more than just buzz words. SIGMOD 2018

8 . : .
__p/ |l OpenBwTree B+Tree
G 5 | Skiplist @ ART 8
>4 3 =
g ™
S,

1

0

26

Q/A — Adaptive Radix Tree

Use of SIMD in realistic DBs?

Can ART fit well in distributed systems?
Concurrent operations in ART?

Keys that are prefixes of other keys?
ART vs. B-link tree?

What if data does not fit in memory?

30

Next Week

Philip Bernstein, et al., Concurrency Control and Recovery in
Database Systems, Chapter 6. Addison-wesley, 1987

— Skip 6.4 (covered next lecture), 6.5, 6.7, and exercise

— About 20 pages to read

C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting
Fine-Granularity Locking and Partial Rollbacks Using Write-Ahead
Logging. ACM Transactions on Database Systems, 1992

— Skip Section 1 and everything after (including) Section 8

— May also skip Section 2

— About 25-30 pages to read

31

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/ccontrol-CH6.pdf
http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aries.pdf

