
Xiangyao Yu
11/1/2021

CS 764: Topics in Database Management Systems
Lecture 16: Durability

1



Today’s Paper: Durability

Addison-Wesley, 1987 2



Agenda

3

Durability
Force vs. No Force and Steal vs. No Steal
Logging schemes

– REDO only
– UNDO only
– REDO + UNDO
– No REDO + No UNDO



Durability

4

Durability: The database must recover to a valid state no matter 
when a crash occurs 
• Committed transactions should persist
• Uncommitted transactions should roll back



Durability

5

Durability: The database must recover to a valid state no matter 
when a crash occurs 
• Committed transactions should persist
• Uncommitted transactions should roll back

Desired Behavior after system restarts
• T1, T2 should persist
• T3, T4 should be aborted

T1
T2
T3
T4

crash
CB

CB

B

B



Failure Types

6

Transaction failures
– Transaction aborts

System failures
– All volatile states lost

Media failures
– Some persistent states lost

Focus of database research



Write-Ahead Logging (WAL)

7

Before a transaction commits, its modifications must persist 
Before writing dirty data to disk, rollback information must persist

Processor

Disk
DRAM

Page

Log



Write-Ahead Logging (WAL)

8

Before a transaction commits, its modifications must persist 
Before writing dirty data to disk, rollback information must persist
Write-ahead logging: changes are written to the log before updating the 
database tables

– Writing to log incurs sequential IO
Processor

Disk
DRAM

Page

Log



Buffer Management Policy

9

No Steal: Dirty pages stay in DRAM until the transaction commits



Buffer Management Policy

10

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
• Advantage: other transactions can use the buffer slot in DRAM
• Challenge: system crashes after flushing dirty pages but before the 

transaction commits 
=> Dirty data on disk

• Solution: UNDO logging before each update



Buffer Management Policy

11

Force: All dirty pages must be flushed when the transaction commits



Buffer Management Policy

12

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
• Advantage: reduce # random IO
• Challenge: system crashes after the transaction commits but before the dirty 

pages are flushed
=> missing updates from committed transactions

• Solution: REDO logging before each update



Buffer Management Policy

13

Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only



Buffer Management Policy

14

Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only

Disk-based DB



Buffer Management Policy

15

Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only

Disk-based DB Main memory DB



Buffer Management Policy

16

Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only

Disk-based DB Main memory DB

Non-volatile memory DB



REDO Only (no-force + no-steal)
Example: main memory database (e.g., Silo)

– NO STEAL: Memory is large enough to hold working set of transactions
– NO FORCE: Disk contains only the checkpoint and the log 

17



REDO Only (no-force + no-steal)
Example: main memory database (e.g., Silo)

– NO STEAL: Memory is large enough to hold working set of transactions
– NO FORCE: Disk contains only the checkpoint and the log 

Forward processing: Flush REDO log records to disk before commit
Recovery: Replay the log since the last checkpoint 
Checkpoint: Write a consistent snapshot to disk 

18



REDO Only — Extension
Command logging 

– Log commands of transactions (much smaller than the data logging)
– Recovery reruns the transactions in-order

19* Nirmesh Malviya, et al. Rethinking main memory OLTP recovery. ICDE 2014.



REDO Only — Extension
Command logging 

– Log commands of transactions (much smaller than the data logging)
– Recovery reruns the transactions in-order

20* Nirmesh Malviya, et al. Rethinking main memory OLTP recovery. ICDE 2014.



REDO Only — Extension
Command logging 
Parallel logging (Silo)

– Support multiple log streams
– Epoch-based commit 
– Write versioned records to log

21* Tu, Stephen, et al. "Speedy transactions in multicore in-memory databases." SOSP 2013



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

22* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

23* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

– Challenge 3: How to determine the 
right recovery order?

24* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

– Challenge 3: How to determine the 
right recovery order?

– Key idea: maintain ordering using 
vector clock

25* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

– Challenge 3: How to determine the 
right recovery order?

– Key idea: maintain ordering using 
vector clock

26* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



UNDO Only (force + steal)
Example: NVM database, data replication to another node

– STEAL: In-place updates to NVM or backup node cannot be executed 
atomically 

– FORCE: NVM or backup DRAM is fast enough for random writes

27



UNDO Only (force + steal)
Example: NVM database, data replication to another node

– STEAL: In-place updates to NVM or backup node cannot be executed 
atomically 

– FORCE: NVM or backup DRAM is fast enough for random writes

Forward processing: Flush UNDO log records before updating 
records in the tables; commit after all records are updated

– The UNDO log size can be bounded
Recovery: Rollback uncommitted transactions

28



UNDO Only Example
Update states in backup node

– Use one-sided RDMA to avoid 
CPU computation in backup 
node

– Primary sends undo records
and in-place updates which 
are applied in-order

29* Erfan Zamanian, et al. Rethinking database high availability with RDMA networks. VLDB 2019



No UNDO and No REDO (force + no-steal)
Example: NVM database

– NO STEAL: Main memory large enough to hold working set of transactions
– FORCE: NVM or backup DRAM is fast enough for random writes

Forward processing: Must ensure that all updates of a transaction 
are performed using an atomic operation

30



No UNDO and No REDO Example
Multi-version database 

– No in-place update
– Each version has a timestamp

Group commit
– A single log record of a timestamp 

range (cp, cd)
– Transactions before cp commit
– DBMS does not assign timestamps 

larger than cd before next group 
commit

31* Joy Arulraj, et al. Write-behind logging. VLDB 2016



No UNDO and No REDO Example

32Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

32

APPLICATION AVAILABILITY
32

1

100

10,000

Hard Disk 
Drive

Solid State 
Drive

Non-Volatile 
Memory

Write-Behind LoggingWrite-Ahead Logging

Recovery 
Time
(sec)

1000x

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf


No UNDO and No REDO Example

33

33

PERFORMANCE
33

Write-Behind LoggingWrite-Ahead Logging

Throughput
(txn/sec)

1

100

10,000

Hard Disk 
Drive

Solid State 
Drive

Non-Volatile 
Memory

10x

1.3x

Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

32

APPLICATION AVAILABILITY
32

1

100

10,000

Hard Disk 
Drive

Solid State 
Drive

Non-Volatile 
Memory

Write-Behind LoggingWrite-Ahead Logging

Recovery 
Time
(sec)

1000x

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf


REDO and UNDO
Example: Disk-based database 

– STEAL: Memory not large enough to hold working set of transactions (e.g., 
long running transactions)

– NO FORCE: Random writes to disk are slow

Forward processing: Flush UNDO and REDO records before writing 
to data pages
Recovery: ARIES (next lecture)
Checkpoint: Fuzzy checkpoint

34



Q/A – Aries Recovery

35

Which (redo/no-redo vs. undo/no-undo) is used most commonly?
Logging at transaction level instead of operation level?
How does PM change the design space?
Hybrid undo/redo and no-undo/redo? 
Major improvement since 1980s?
How do these algorithms work in distributed systems?



Before Next Lecture
Submit review before next lecture

– C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM 
Transactions on Database Systems, 1992

– Can skip Section 1 and 2 and everything after (including) Section 8
– About 25–30 pages to read 

36

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aries.pdf

