WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 16: Durability

Xiangyao Yu
11/1/2021

Today’s Paper: Durability

Concurrency Control
and Recovery
in Database Systems

PA BERNSTEIN - V. HADZILACOS = N.GOODMAN

Addison-Wesley, 1987

Agenda

Durability
Force vs. No Force and Steal vs. No Steal

Logging schemes
— REDO only
— UNDO only
- REDO + UNDO
—No REDO + No UNDO

Durabillity

Durability: The database must recover to a valid state no matter
when a crash occurs

« Committed transactions should persist
 Uncommitted transactions should roll back

Durabillity

Durability: The database must recover to a valid state no matter

when a crash occurs

« Committed transactions should persist
« Uncommitted transactions should roll back

Desired Behavior after system restarts

* T1, T2 should persist

T3, T4 should be aborted

T2, F—f

Failure Types

Transaction failures
— Transaction aborts

System failures | » Focus of database research
— All volatile states lost

Media failures
— Some persistent states lost

Write-Ahead Logging (WAL)

Before a transaction commits, its modifications must persist

Before writing dirty data to disk, rollback information must persist

Processor

Page

DRAM

Write-Ahead Logging (WAL)

Before a transaction commits, its modifications must persist
Before writing dirty data to disk, rollback information must persist

Write-ahead logging: changes are written to the log before updating the
database tables
— Writing to log incurs sequential 10

Processor

Page
DRAM

Buffer Management Policy

No Steal: Dirty pages stay in DRAM until the transaction commits

Buffer Management Policy

No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
« Advantage: other transactions can use the buffer slot in DRAM
« Challenge: system crashes after flushing dirty pages but before the
transaction commits

=> Dirty data on disk
« Solution: UNDO logging before each update

10

Buffer Management Policy

Force: All dirty pages must be flushed when the transaction commits

11

Buffer Management Policy

Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
« Advantage: reduce # random 10

« Challenge: system crashes after the transaction commits but before the dirty
pages are flushed

=> missing updates from committed transactions
« Solution: REDO logging before each update

12

Buffer Management Policy

(ARIES)

Steal No Steal
Force UNDO only No REDO nor
UNDO
No Force | REDO and REDO only
UNDO logging

13

Buffer Management Policy

No Force | REDO and

Steal No Steal
Force UNDO only No REDO nor
UNDO

UNDO logging

(ARIES)

REDO only

Disk-based DB

14

Buffer Management Policy

No Force | REDO and
UNDO logging

(ARIES)

Disk-based DB

Steal No Steal
Force UNDO only No REDO nor
UNDO

'REDO only

Main memory DB

15

Buffer Management Policy

Steal No Steal

Force UNDO only B%SCE)DO nor Non-volatile memory DB

No Force |REDO and REDO only
UNDO logging

(ARIES)

Disk-based DB Main memory DB

16

REDO Only (no-force + no-steal)

Example: main memory database (e.g., Silo)

— NO STEAL: Memory is large enough to hold working set of transactions
— NO FORCE: Disk contains only the checkpoint and the log

17

REDO Only (no-force + no-steal)

Example: main memory database (e.g., Silo)

— NO STEAL: Memory is large enough to hold working set of transactions
— NO FORCE: Disk contains only the checkpoint and the log

Forward processing: Flush REDO log records to disk before commit
Recovery: Replay the log since the last checkpoint
Checkpoint: Write a consistent snapshot to disk

18

REDO Only — Extension

Command logging
— Log commands of transactions (much smaller than the data logging)
— Recovery reruns the transactions in-order

* Nirmesh Malviya, et al. Rethinking main memory OLTP recovery. ICDE 2014.

19

REDO Only — Extension

Command logging
— Log commands of transactions (much smaller than the data logging)
— Recovery reruns the transactions in-order

| Comman'd-logging —

3)

5 1000 ¢ Physiological-logging ———

S No-logging

L 800 f

c

@©

4

g 600 |

b=

o 400 -

o

=

o

£ 200 +

@)

2

|— 0 | 1 1 1 1
0 10 20 30 40 50 60

Client rate (thousands of tps)

* Nirmesh Malviya, et al. Rethinking main memory OLTP recovery. ICDE 2014.

REDO Only — Extension

Command logging

Parallel logging (Silo)
— Support multiple log streams
— Epoch-based commit
— Write versioned records to log

Throughput (txns/sec)

18M
16M

14M

12M
10M
&M
6M
4M
2M
0

Key-Value
MemSilo

""" MemSilo+GlobalTID

~—r
.....
. .

"o

I I |

* Tu, Stephen, et al. "Speedy transactions in multicore in-memory databases." SOSP 2013

Worker threads

W
[\

21

REDO Only — Extension

Command logging Log 1 Log 2
Parallel logging (Silo) | |

Generalized parallel logging (Taurus)
— Challenge 1: When to commit?

Read-after-write
dependency

Buffered | Persisted
]
1
1
]
1
|
|
1
]
]

(cannot commit after being persistent)

* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020

palayng | pajsisiad

22

REDO Only — Extension

Command logging Log 1 Log 2
Parallel logging (Silo) | |

Generalized parallel logging (Taurus)

— Challenge 1: When to commit?
(cannot commit after being persistent)

Read-after-write
dependency

Buffered | Persisted
1
I
1
1
1
1
I
I
1
1

— Challenge 2: Whether to recover? (Not
all persistent transactions have
committed)

* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020

palayng | pajsisiad

23

REDO Only — Extension

Command logging Log 1 Log 2
Parallel logging (Silo) | |

Generalized parallel logging (Taurus)
— Challenge 1: When to commit?

Read-after-write
dependency

Buffered | Persisted
1
I
1
1
1
1
I
I
1
1

(cannot commit after being persistent)

— Challenge 2: Whether to recover? (Not
all persistent transactions have
committed)

— Challenge 3: How to determine the
right recovery order?

* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020

palayng | pajsisiad

24

REDO Only — Extension

Command logging
Parallel logging (Silo)

Generalized parallel logging (Taurus)

— Challenge 1: When to commit?
(cannot commit after being persistent)
— Challenge 2: Whether to recover? (Not
all persistent transactions have

committed)

— Challenge 3: How to determine the
right recovery order?

— Key idea: maintain ordering using
vector clock

Log 1

Buffered | Persisted

Read-after-write
dependency

* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020

palayng | pajsisiad

25

REDO Only — Extension

+~ No Logging SiloR Data —— Taurus Command -+~ Taurus Data |
Command logging 40
Parallel logging (Silo) g5
Generalized parallel logging (Taurus) 825,
— Challenge 1: When to commit? "E o 16 33 48 &1 8o
(cannot commit after being persistent) Number of Worker Threads
— Challenge 2: Whether to recover? (Not (b) TPC-C Payment
all persistent transactions have 2@ 6.0
committed) 2x45]
— Challenge 3: How to determine the 3530
right recovery order? FE ol
— Key idea: maintain ordering using N A S
vector clock (c) TPC-C New-Order

* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020 26

UNDO Only (force + steal)

Example: NVM database, data replication to another node

— STEAL.: In-place updates to NVM or backup node cannot be executed
atomically

— FORCE: NVM or backup DRAM is fast enough for random writes

27

UNDO Only (force + steal)

Example: NVM database, data replication to another node

— STEAL.: In-place updates to NVM or backup node cannot be executed
atomically

— FORCE: NVM or backup DRAM is fast enough for random writes

Forward processing: Flush UNDO log records before updating
records in the tables; commit after all records are updated

— The UNDO log size can be bounded
Recovery: Rollback uncommitted transactions

28

UNDO Only Example

Update states in backup node Cphase o
- Use one-sided RDMAto avoid gmagar) mpspmpsgy T8 & e trplce Commitlogs
ode__ouatoninbackup S AL Wese W
~ Primary sends undo records ~ ® / s \%
and in-place updates which - \, / \i rserse f \3,
are applied in-order .11 ___________ $ X ;
B2 ' e S :

* Erfan Zamanian, et al. Rethinking database high availability with RDMA networks. VLDB 2019 29

No UNDO and No REDO (force + no-steal)

Example: NVM database
— NO STEAL: Main memory large enough to hold working set of transactions

— FORCE: NVM or backup DRAM is fast enough for random writes

Forward processing: Must ensure that all updates of a transaction
are performed using an atomic operation

30

No UNDO and No REDO Example

Multi-version database Group Commit
— No in-place update o o © © o e © T
— Each version has a timestamp | | | | | ime
{} {(101,199)} {(101,199)} {gg:: ;ZZ;’} {1 Gaps
Group commit U U Oreeevene -

Garbage Collection

— A single log record of a timestamp
range (C,, Cy)
— Transactions before ¢, commit

— DBMS does not assign timestamps
larger than c4 before next group
commit

* Joy Arulraj, et al. Write-behind logging. VLDB 2016 31

No UNDO and No REDO Example

APPLICATION AVAILABILITY

. Write-Ahead Logging .Write-Behind Logging

10,000

Recovery (100
Time 11000x
(SeC) 1 | — —

Hard Disk Solid State Non-Volatile
Drive Drive Memory

Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

32

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

No UNDO and No REDO Example

APPLICATION AVAILABILITY

. Write-Ahead Logging .Write-Behind Logging

10,000

Recovery (100
Time }1000x
(sec)

Hard Disk Solid State Non-Volatile
Drive Drive Memory

PERFORMANCE

. Write-Ahead Logging .Write-Behind Logging

$1.3x

10,000
Throughput| ‘1 Ox
(txn/sec)
1

Hard Disk Solid State Non-Volatile
Drive Drive Memory

Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf 33

https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf

REDO and UNDO

Example: Disk-based database

— STEAL: Memory not large enough to hold working set of transactions (e.g.,
long running transactions)

— NO FORCE: Random writes to disk are slow

Forward processing: Flush UNDO and REDO records before writing
to data pages

Recovery: ARIES (next lecture)
Checkpoint: Fuzzy checkpoint

34

Q/A — Aries Recovery

Which (redo/no-redo vs. undo/no-undo) is used most commonly?
_0gging at transaction level instead of operation level?
How does PM change the design space?

Hybrid undo/redo and no-undo/redo?
Major improvement since 1980s?
How do these algorithms work in distributed systems?

35

Before Next Lecture

Submit review before next lecture

— C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM
Transactions on Database Systems, 1992

— Can skip Section 1 and 2 and everything after (including) Section 8
— About 25-30 pages to read

36

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aries.pdf

