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CS 764: Topics in Database Management Systems
Lecture 16: Durability
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Today’s Paper: Durability

Addison-Wesley, 1987 2



Agenda
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Durability
Force vs. No Force and Steal vs. No Steal
Logging schemes

– REDO only
– UNDO only
– REDO + UNDO
– No REDO + No UNDO



Durability
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Durability: The database must recover to a valid state no matter 
when a crash occurs 
• Committed transactions should persist
• Uncommitted transactions should roll back



Durability
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Durability: The database must recover to a valid state no matter 
when a crash occurs 
• Committed transactions should persist
• Uncommitted transactions should roll back

Desired Behavior after system restarts
• T1, T2 should persist
• T3, T4 should be aborted
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Failure Types
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Transaction failures
– Transaction aborts

System failures
– All volatile states lost

Media failures
– Some persistent states lost

Focus of database research



Write-Ahead Logging (WAL)
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Before a transaction commits, its modifications must persist 
Before writing dirty data to disk, rollback information must persist

Processor

Disk
DRAM

Page

Log



Write-Ahead Logging (WAL)
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Before a transaction commits, its modifications must persist 
Before writing dirty data to disk, rollback information must persist
Write-ahead logging: changes are written to the log before updating the 
database tables

– Writing to log incurs sequential IO
Processor

Disk
DRAM

Page

Log



Buffer Management Policy
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No Steal: Dirty pages stay in DRAM until the transaction commits



Buffer Management Policy
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No Steal: Dirty pages stay in DRAM until the transaction commits

Steal: Dirty pages can be flushed to disk before the transaction commits
• Advantage: other transactions can use the buffer slot in DRAM
• Challenge: system crashes after flushing dirty pages but before the 

transaction commits 
=> Dirty data on disk

• Solution: UNDO logging before each update



Buffer Management Policy
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Force: All dirty pages must be flushed when the transaction commits



Buffer Management Policy
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Force: All dirty pages must be flushed when the transaction commits

No Force: Dirty pages may stay in memory after the transaction commits
• Advantage: reduce # random IO
• Challenge: system crashes after the transaction commits but before the dirty 

pages are flushed
=> missing updates from committed transactions

• Solution: REDO logging before each update



Buffer Management Policy
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Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only



Buffer Management Policy
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Steal No Steal

Force UNDO only No REDO nor 
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No Force REDO and 
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REDO only

Disk-based DB
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Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only

Disk-based DB Main memory DB



Buffer Management Policy
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Steal No Steal

Force UNDO only No REDO nor 
UNDO

No Force REDO and 
UNDO logging 
(ARIES)

REDO only

Disk-based DB Main memory DB

Non-volatile memory DB



REDO Only (no-force + no-steal)
Example: main memory database (e.g., Silo)

– NO STEAL: Memory is large enough to hold working set of transactions
– NO FORCE: Disk contains only the checkpoint and the log 
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REDO Only (no-force + no-steal)
Example: main memory database (e.g., Silo)

– NO STEAL: Memory is large enough to hold working set of transactions
– NO FORCE: Disk contains only the checkpoint and the log 

Forward processing: Flush REDO log records to disk before commit
Recovery: Replay the log since the last checkpoint 
Checkpoint: Write a consistent snapshot to disk 
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REDO Only — Extension
Command logging 

– Log commands of transactions (much smaller than the data logging)
– Recovery reruns the transactions in-order

19* Nirmesh Malviya, et al. Rethinking main memory OLTP recovery. ICDE 2014.



REDO Only — Extension
Command logging 

– Log commands of transactions (much smaller than the data logging)
– Recovery reruns the transactions in-order

20* Nirmesh Malviya, et al. Rethinking main memory OLTP recovery. ICDE 2014.



REDO Only — Extension
Command logging 
Parallel logging (Silo)

– Support multiple log streams
– Epoch-based commit 
– Write versioned records to log

21* Tu, Stephen, et al. "Speedy transactions in multicore in-memory databases." SOSP 2013



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

22* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

23* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

– Challenge 3: How to determine the 
right recovery order?

24* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

– Challenge 3: How to determine the 
right recovery order?

– Key idea: maintain ordering using 
vector clock

25* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



REDO Only — Extension
Command logging 
Parallel logging (Silo)
Generalized parallel logging (Taurus)

– Challenge 1: When to commit? 
(cannot commit after being persistent)

– Challenge 2: Whether to recover? (Not 
all persistent transactions have 
committed)

– Challenge 3: How to determine the 
right recovery order?

– Key idea: maintain ordering using 
vector clock

26* Xia, Yu, et al. "Taurus: lightweight parallel logging for in-memory database management systems." VLDB 2020



UNDO Only (force + steal)
Example: NVM database, data replication to another node

– STEAL: In-place updates to NVM or backup node cannot be executed 
atomically 

– FORCE: NVM or backup DRAM is fast enough for random writes
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UNDO Only (force + steal)
Example: NVM database, data replication to another node

– STEAL: In-place updates to NVM or backup node cannot be executed 
atomically 

– FORCE: NVM or backup DRAM is fast enough for random writes

Forward processing: Flush UNDO log records before updating 
records in the tables; commit after all records are updated

– The UNDO log size can be bounded
Recovery: Rollback uncommitted transactions
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UNDO Only Example
Update states in backup node

– Use one-sided RDMA to avoid 
CPU computation in backup 
node

– Primary sends undo records
and in-place updates which 
are applied in-order

29* Erfan Zamanian, et al. Rethinking database high availability with RDMA networks. VLDB 2019



No UNDO and No REDO (force + no-steal)
Example: NVM database

– NO STEAL: Main memory large enough to hold working set of transactions
– FORCE: NVM or backup DRAM is fast enough for random writes

Forward processing: Must ensure that all updates of a transaction 
are performed using an atomic operation
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No UNDO and No REDO Example
Multi-version database 

– No in-place update
– Each version has a timestamp

Group commit
– A single log record of a timestamp 

range (cp, cd)
– Transactions before cp commit
– DBMS does not assign timestamps 

larger than cd before next group 
commit

31* Joy Arulraj, et al. Write-behind logging. VLDB 2016



No UNDO and No REDO Example

32Slide from https://www.cc.gatech.edu/~jarulraj/talks/2016.wbl.pdf
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APPLICATION AVAILABILITY
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No UNDO and No REDO Example
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PERFORMANCE
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REDO and UNDO
Example: Disk-based database 

– STEAL: Memory not large enough to hold working set of transactions (e.g., 
long running transactions)

– NO FORCE: Random writes to disk are slow

Forward processing: Flush UNDO and REDO records before writing 
to data pages
Recovery: ARIES (next lecture)
Checkpoint: Fuzzy checkpoint
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Q/A – Aries Recovery
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Which (redo/no-redo vs. undo/no-undo) is used most commonly?
Logging at transaction level instead of operation level?
How does PM change the design space?
Hybrid undo/redo and no-undo/redo? 
Major improvement since 1980s?
How do these algorithms work in distributed systems?



Before Next Lecture
Submit review before next lecture

– C. Mohan, et al. ARIES: A Transaction Recovery Method Supporting Fine-
Granularity Locking and Partial Rollbacks Using Write-Ahead Logging. ACM 
Transactions on Database Systems, 1992

– Can skip Section 1 and 2 and everything after (including) Section 8
– About 25–30 pages to read 
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aries.pdf

