
Xiangyao Yu
11/3/2021

CS 764: Topics in Database Management Systems
Lecture 17: ARIES

1

Announcement

2

Please contact the instructor if you want to discuss about the project
proposal

Today’s Paper: ARIES

ACM Trans. Database Syst. 1992.
3

Baseline REDO/UNDO Design
Write: Write REDO/UNDO to log;
update the page
Commit: Write COMMIT to log
Recovery:

– Forward scan of entire log: redo all
records

– Backward scan of entire log: undo
uncommitted transactions

4

Data structures
Log entry

– (LSN), txnID, pageID, data

Data page
– Tuple data

Baseline REDO/UNDO Design
Write: Write REDO/UNDO to log;
update the page
Commit: Write COMMIT to log
Recovery:

– Forward scan of entire log: redo all
records; keep a table for active
transactions

– Backward scan of entire log: undo
uncommitted transactions

5

Data structures

(Active) Transaction Table
– TransID

Log entry
– (LSN), txnID, pageID, data

Data page
– Tuple data

Limitation of the Baseline Design
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in data pages

6

Limitation of the Baseline Design
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
– Unnecessary to scan the entire log
– Need to undo only records of uncommitted transactions

7

Limitation of the Baseline Design
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
– Unnecessary to scan the entire log
– Need to undo only records of uncommitted transactions

Lack of checkpointing
– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in data pages

8

Optimize REDO Process
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in

the data page

9

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table
– TransID

Data page
– Tuple data

Optimize REDO Process
Inefficiency in the REDO process

– Unnecessary to redo all records
– Need to redo only records that are not reflected in

the data page

Solution: add a version number to each page
– pageLSN: LSN of the log record that describes

the latest update to the page.
– REDO scan: Apply REDO only if record.LSN >

page.pageLSN
– Write: update pageLSN (for the buffered page) for

each write

10

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table
– TransID

Data page
– Tuple data
– pageLSN

Optimize UNDO Process
Inefficiency in the UNDO process

– Unnecessary to scan the entire log
– Need to undo only records of uncommitted

transactions

11

Data structures
Log entry

– (LSN), txnID, pageID, data

(Active) Transaction Table
– transID

Data page
– tuple data
– pageLSN

Optimize UNDO Process
Inefficiency in the UNDO process

– Unnecessary to scan the entire log
– Need to undo only records of uncommitted

transactions

Solution: link records from the same transaction
– prevLSN: preceding log record written by the same

transaction
– lastLSN: LSN of the last log record written by the

transaction
– UNDO scan: Follow lastLSN and prevLSN to undo

records
– REDO scan: update lastLSN in TT based on the

last update of the transaction
12

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSN

Checkpoint
Lack of checkpointing

– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in

data pages

13

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSN

Checkpoint
Lack of checkpointing

– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in

data pages

Solution: Maintain a dirty page table
– pageID: ID of the dirty page
– recLSN: LSN of the first log record since when the

page is dirty
– Fuzzy Checkpoint: log DPT and TT

asynchronously
– REDO scan: start from the smallest LSN in DP

14

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSN

Dirty Page Table
– pageID
– recLSN

Checkpoint
Lack of checkpointing

– Unnecessary to start from the beginning of log
– Start with the first log record that is not reflected in

data pages

Solution: Maintain a dirty page table
– pageID: ID of the dirty page
– recLSN: LSN of the first log record since when the

page is dirty
– Fuzzy Checkpoint: log DPT and TT

asynchronously
– REDO scan: start from the smallest LSN in DP

15

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN

(Active) Transaction Table
– transID
– lastLSN

Data page
– tuple data
– pageLSN

Dirty Page Table
– pageID
– recLSN

Q: Checkpoint the smallest LSN in DPT instead of the entire DPT?

Compensation Log Record (CLR)

The action of applying UNDO leads to a CLR
– In undo scan, do not reapply UNDO if CLR exists
– UndoNxtLSN: LSN of the next record to be

processed during undo scan

16

Data structures
Log entry

– (LSN), txnID, pageID, data
– prevLSN
– UndoNxtLSN

(Active) Transaction Table
– transID
– lastLSN
– UndoNxtLSN

Data page
– tuple data
– pageLSN

Dirty Page Table
– pageID
– recLSN

ARIES – Big Picture

17

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

ARIES – Big Picture

18

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint
– Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)

– REDO phase: redo transactions whose
effects may not be persistent before the
crash

– UNDO phase: undo transactions that did
not commit before the crash

ARIES – Big Picture

19

Oldest log rec. of
active transactions
at crash

Smallest recLSN in
dirty page table
after Analysis

Last chkpt

CRASH
A R U

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint
– Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)

– REDO phase: redo transactions whose
effects may not be persistent before the
crash

– UNDO phase: undo transactions that did
not commit before the crash

Crash Recovery – Analysis Phase

20

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

Crash Recovery – Analysis Phase

21

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
– If ‘update’ or ‘CLR’: insert to transaction table if not exists
– If ‘end’: delete from transaction table

Crash Recovery – Analysis Phase

22

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:
– If ‘update’ or ‘CLR’: insert to transaction table if not exists
– If ‘end’: delete from transaction table

(update dirty page table) For each log record:
– If ‘update’ or ‘CLR’: insert to dirty page table if not exists (PageID, RecLSN)

Analysis Phase – Example

23

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN

PageID RecLSN

Analysis Phase – Example

24

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10

PageID RecLSN
P5 10

Analysis Phase – Example

25

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10
T2 20

PageID RecLSN
P5 10
P3 20

Analysis Phase – Example

26

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T1 10
T2 20

PageID RecLSN
P5 10
P3 20

Analysis Phase – Example

27

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 20

PageID RecLSN
P5 10
P3 20
P1 50

Analysis Phase – Example

28

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

Crash Recovery – REDO Phase

29

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Crash Recovery – REDO Phase

30

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table
– Before this LSN, all redo records have been reflected in data pages on disk

Crash Recovery – REDO Phase

31

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table
– Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

– The page is not in dirty page table (DPT)
– The page is in DPT but redo_record.LSN < DPT[page].recLSN
– After fetching the data page, redo_record.LSN ≤ page.page_LSN

Crash Recovery – REDO Phase

32

Repeat history to reconstruct state at crash
– Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
– From log record containing smallest RecLSN in the dirty page table
– Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

– The page is not in dirty page table (DPT)
– The page is in DPT but redo_record.LSN < DPT[page].recLSN
– After fetching the data page, redo_record.LSN ≤ page.page_LSN

Q: Checkpoint the smallest LSN in DPT instead of the entire DPT?

REDO Phase – Example

33

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

REDO Phase – Example

34

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Update P3 in
buffer pool

No need to flush
P3 now

REDO Phase – Example

35

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

REDO Phase – Example

36

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Update P1 in
buffer pool

No need to flush
P1 now

REDO Phase – Example

37

begin_checkpoint
end_checkpoint
update: T1 writes P5
update: T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table

Dirty page table

TransID LastLSN
T3 50
T2 60

PageID RecLSN
P5 10
P3 20
P1 50

PageID Page_LSN
P5 40
P3 0
P1 0

Data pages

Update P5 in
buffer pool

No need to flush
P5 now

Crash Recovery – UNDO Phase

38

Rollback uncommitted transactions

Crash Recovery – UNDO Phase

39

Rollback uncommitted transactions

Repeat until transaction table is empty:
– Choose largest LastLSN among transactions in the transaction table
– If the log record is an ‘update’: Undo the update, write a CLR, add

record.prevLSN to transaction table
– If the log record is an ‘CLR’: add CLR.UndoNxtLSN to transaction table
– If prevLSN and UpdoNxtLSN are NULL, remove the transaction from

transaction table

UNDO Phase – Example

40

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 50
T2 60 60

UNDO Phase – Example

41

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 50
T2 60 70 60 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)

UNDO Phase – Example

42

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 50 80 50 null
T2 70 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)

UNDO Phase – Example

43

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN
T3 80 null
T2 70 20

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End

UNDO Phase – Example

44

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN

T2 70 90 20 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)

UNDO Phase – Example

45

begin_checkpoint
end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10
T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART

LSN LOG

00
05
10
20
30
40
45
50
60

Transaction Table
TransID LastLSN UndoNxtLSN

T2 90 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)
80 CLR: Undo T3, LSN 50, (null)
85 T3 End
90 CLR: Undo T2, LSN 20, (null)
95 T2 End

Crash During Restart – Example

46

begin_checkpoint, end_checkpoint
update: T1 writes P5
update T2 writes P3
T1 abort
CLR: Undo T1 LSN 10, T1 End
update: T3 writes P1
update: T2 writes P5
CRASH, RESTART
CLR: Undo T2 LSN 60
CLR: Undo T3 LSN 50, T3 end
CRASH, RESTART

LSN LOG
00,05

10
20
30

40,45
50
60

70
80,85

CLR: Undo T2 LSN 20, T2 end90

No need to undo LSN 60 and
LSN 50 again due to the CLRs
created in the previous restart

Can created a checkpoint to
reduce the cost of future restart

Q/A – ARIES

47

• How to know all dirty pages of one txn are flushed in order to write
"END" log?
• Checkpointed DPT may not reflect logs in between start and end

checkpointing, does it matter?
• Is Steal + No force the fastest?
• What’s the intuition behind the ARIES design?
• How much space do such logs generally consume?
• Is ARIES generally for distributed DB?
• What is the performance overhead of logging?

Before Next Lecture
Submit review before next lecture

– C. Mohan, et al., Transaction Management in the R* Distributed Database
Management System. ACM Transactions on Database Systems, 1986

48

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/R-XactMgmt.pdf

