WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 17: ARIES

Xiangyao Yu
11/3/2021

Announcement

Please contact the instructor if you want to discuss about the project
proposal

Today’s Paper: ARIES

ARIES: A Transaction Recovery Method
Supporting Fine-Granularity Locking

and Partial Rollbacks Using
Write-Ahead Logging

C. MOHAN

IBM Almaden Research Center

and

DON HADERLE

IBM Santa Teresa Laboratory

and

BRUCE LINDSAY, HAMID PIRAHESH and PETER SCHWARZ
IBM Almaden Research Center

In this paper we present a simple and efficient method, called ARIES (Algorithm for Recovery
and Isolation Exploiting Semantics), which supports partial rollbacks of transactions, fine-
granularity (e.g., record) locking and recovery using write-ahead logging (WAL). We introduce
the paradigm of repeating history to redo all missing updates before performing the rollbacks of
the loser transactions during restart after a system failure. ARIES uses a log sequence number
in each page to correlate the state of a page with respect to logged updates of that page. All
updates of a transaction are logged. including those performed during rollbacks. By appropriate
chaining of the log records written during rollbacks to those written during forward progress, a
bounded amount of logging is ensured during rollbacks even in the face of repeated failures
during restart or of nested rollbacks We deal with a variety of features that are very important
in building and operating an industrial-strength transaction processing system ARIES supports
fuzzy checkpoints, selective and deferred restart, fuzzy image copies, media recovery, and high
concurrency lock modes (e.g., increment /decrement) which exploit the semantics of the opera-
tions and require the ability to perform operation logging. ARIES is flexible with respect
to the kinds of buffer management policies that can be implemented. It supports objects of
varying length efficiently. By enabling parallelism during restart, page-oriented redo, and
logical undo, it enhances concurrency and performance. We show why some of the System R
paradigms for logging and recovery, which were based on the shadow page technique, need to be
changed in the context of WAL. We compare ARIES to the WAL-based recovery methods of

ACM Trans. Database Syst. 1992.

Baseline REDO/UNDO Design

: . Data structures

Write: Write REDO/UNDO to log; e
. Log entry ;

update the page . - (LSN), txnID, pagelD, data

Commit: Write COMMIT to log i

Recovery: .. T lupledata |

— Forward scan of entire log: redo all
records

— Backward scan of entire log: undo
uncommitted transactions

Baseline REDO/UNDO Design

: . Data structures
Write: Write REDO/UNDO to log; o
: Log entry :
update the page . - (LSN), txnID, pagelD, data
Commit: Write COMMIT to log Datapage
Recovery: 7 Twledaa |

— Forward scan of entire log: redo all (AC“XG)TTra"fSC“m Table
records; keep a table for active S S

transactions

— Backward scan of entire log: undo
uncommitted transactions

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
— Unnecessary to scan the entire log
— Need to undo only records of uncommitted transactions

Limitation of the Baseline Design

Inefficiency in the REDO process
— Unnecessary to redo all records
— Need to redo only records that are not reflected in data pages

Inefficiency in the UNDO process
— Unnecessary to scan the entire log
— Need to undo only records of uncommitted transactions

Lack of checkpointing
— Unnecessary to start from the beginning of log
— Start with the first log record that is not reflected in data pages

Optimize REDO Process

Inefficiency in the REDO process ~ Data structures
— Unnecessary to redo all records ELog fnt(rsL/SN) 0D, pagelD, data i
— Need to redo only records that are not reflected in = ... 20 Tl
the data page : Data page
! — Tuple data

' (Active) Transaction Table
| — TransID

Optimize REDO Process

Inefficiency in the REDO process
— Unnecessary to redo all records

— Need to redo only records that are not reflected in
the data page

Solution: add a version number to each page

— pageLSN: LSN of the log record that describes
the latest update to the page.

— REDO scan: Apply REDO only if record.LSN >
page.pagelLSN

— Write: update pagelLSN (for the buffered page) for
each write

Data structures

‘logentry
: — (LSN), txnID, pagelD, data

' Data page
' — Tuple data
— pageLSN

' (Active) Transaction Table
| — TransID

10

Optimize UNDO Process

Inefficiency in the UNDO process _Datastructures
— Unnecessary to scan the entire log - Log f”t(rlL’SN) D, cacelD data
— Need to undo only records of uncommitted ; P PR §
transactions I
' Data page
' — tuple data
— pagelLSN

| (Active) Transaction Table
— transiD

11

Optimize UNDO Process

Inefficiency in the UNDO process ~ Data structures
— Unnecessary to scan the entire log : Log entry ;
: ! — (LSN), txnID, pagelD, data
— Need to undo only records of uncommitted . _ prevLSN 5
transactions
' Datapage @
Solution: link records from the same transaction | - tuple data .
— prevLSN: preceding log record written by the same T PagelSN]
transaction ' (Active) Transaction Table
— lastLSN: LSN of the last log record written by the | — transiD
transaction . “lastlsN
— UNDO scan: Follow lastLSN and prevLSN to undo
records

— REDO scan: update lastLSN in TT based on the
last update of the transaction
12

Checkpoint

Lack of checkpointing Data structures

__

— Unnecessary to start from the beginning of log Log fnt(rsL/SN) e
— Start with the first log record that is not reflected in | _ ;o sN PRSE i

data pages

' Data page
| — tuple data
— pagelLSN

 (Active) Transaction Table
— transl|D
— lastLSN

13

Checkpoint

Lack of checkpointing
— Unnecessary to start from the beginning of log

— Start with the first log record that is not reflected in
data pages

Solution: Maintain a dirty page table
— pagelD: ID of the dirty page
—recLSN: LSN of the first log record since when the
page is dirty
— Fuzzy Checkpoint: log DPT and TT
asynchronously
— REDO scan: start from the smallest LSN in DP

Data structures

‘Logentry
' — (LSN), txnID, pagelD, data
— prevLSN |

__

' Data page
' — tuple data
— pagelLSN

 (Active) Transaction Table
| — transl|D
— lastLSN

' Dirty Page Table
— pagelD
— recLSN

Checkpoint

Lack of checkpointing ~ Data structures
— Unnecessary to start from the beginning of log - Log oY riD. sacelD. data
— Start with the first log record that is not reflected in | _ é)revl_),SIzl(n PRI B
data pages
' Datapage @@

Solution: Maintain a dirty page table .~ tupledata

— pagelD: ID of the dirty page TR i

—recLSN: LSN of the first log record since when the | (Active) Transaction Table

page i dry o ;
— Fuzzy Checkpoint: log DPT and TT

asynchronously Diri Pace Table T
— REDO scan: start from the smallest LSN in DP - f:gfé?\l

Q: Checkpoint the smallest LSN in DPT instead of the entire DPT? 15

Compensation Log Record (CLR)

Before Failure

1 2 3 3 2
Log 1;\" t‘: hd /r //1
\ N -
\ - 7

~-——-----O—’

I is the Compensation Log Record for I
I’ points to the predecessor, if any, of I

The action of applying UNDO leads to a CLR

— In undo scan, do not reapply UNDO if CLR exists
— UndoNxtLSN: LSN of the next record to be

processed during undo scan

Data structures

Loq entry !
— (LSN), txnID, pagelD, data
— prevLSN |
— UndoNxtLSN

. Data page
' — tuple data
— pagelLSN

(Actlve) Transaction Table
— transiD
— lastLSN
— UndoNxtLSN

' Dirty Page Table
— pagelD
— recLSN

ARIES — Big Picture

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

17

ARIES — Big Picture

Goal: Bring the database to the state before the
crash (REDO phase) and rollback uncommitted
transactions (UNDO phase)

Start from the last complete checkpoint

— Analysis phase: rebuild transaction table
(for undo phase) and dirty page table (for
redo phase)
— REDO phase: redo transactions whose
effects may not be persistent before the
crash
— UNDO phase: undo transactions that did
not commit before the crash 18

ARIES — Big Picture

Goal: Bring the database to the state before the

Oldest log rec. of 3 crash (REDO phase) and rollback uncommitted
active transactions = :
at crash 5 transactions (UNDO phase)

Smallest recLSN in =

dirty page table _;_ Start from the last complete checkpoint

after Analysis] _ _
— Analysis phase: rebuild transaction table

(for undo phase) and dirty page table (for
redo phase)

Last chkpt —— — REDO phase: redo transactions whose

effects may not be persistent before the
CRASH crash

R U — UNDO phase: undo transactions that did

not commit before the crash 19

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

20

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:

— If ‘update’ or ‘CLR’: insert to transaction table if not exists
— If ‘end’: delete from transaction table

21

Crash Recovery — Analysis Phase

Goal: Rebuild transaction table (for undo phase) and dirty page table
(for redo phase) based on the ones in the last checkpoint

(update transaction table) For each log record:

— If ‘update’ or ‘CLR’: insert to transaction table if not exists
— If ‘end’: delete from transaction table

(update dirty page table) For each log record:
— If ‘update’ or ‘CLR’: insert to dirty page table if not exists (PagelD, RecLSN)

22

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
Dirty page table
PagelD RecLSN

23

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 — update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

v X CRASH, RESTART

Transaction Table

TranslD | LastLSN
T1 10

Dirty page table
PagelD RecLSN
P5 10

24

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20 —'— update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5
v > CRASH, RESTART

Transaction Table

TranslD | LastLSN
T1 10
T2 20

Dirty page table
PagelD RecLSN
P5 10
P3 20

25

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 =+ T1 abort

40 -+ CLR: Undo T1 LSN 10
45-+T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
=L 10
T2 20

Dirty page table
PagelD RecLSN
P5 10
P3 20

26

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—+~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
T3 50
T2 20
Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 50

27

Analysis Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5
\ > CRASH, RESTART

Transaction Table

TranslD | LastLSN
T3 50
T2 60
Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 50

28

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

29

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?

— From log record containing smallest RecLSN in the dirty page table
— Before this LSN, all redo records have been reflected in data pages on disk

30

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?
— From log record containing smallest RecLSN in the dirty page table
— Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

— The page is not in dirty page table (DPT)

— The page is in DPT but redo_record.LSN < DPT[page].recLSN

— After fetching the data page, redo_record.LSN < page.page_LSN

31

Crash Recovery — REDO Phase

Repeat history to reconstruct state at crash
— Reapply all updates (even of aborted transactions), redo CLRs

Where to start?

— From log record containing smallest RecLSN in the dirty page table
— Before this LSN, all redo records have been reflected in data pages on disk

Observation: can skip a redo record for the following cases where the
corresponding page has already been flushed before the crash

— The page is not in dirty page table (DPT)

— The page is in DPT but redo_record.LSN < DPT[page].recLSN

— After fetching the data page, redo_record.LSN < page.page_LSN

Q: Checkpoint the smallest LSN in DPT instead of the entire DPT?

32

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 -+ update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40
P3 0
P1 0

33

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—+ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40
P3 0
P1 0

Update P3 in
buffer pool

No need to flush
P3 now

34

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40
P3 0
P1 0

35

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—+~ update: T3 writes P1
60 — update: T2 writes P5

\ > CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40
P3 0
P1 0

Update P1 in
buffer pool

No need to flush
P1 now

36

REDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5
20—~ update: T2 writes P3
30 - T1 abort

40 - CLR: Undo T1 LSN 10
45— T1 End

50—~ update: T3 writes P1
60 — update: T2 writes P5
\ > CRASH, RESTART

Dirty page table
PagelD RecLSN
P5 10
P3 20
P1 20

Data pages
PagelD Page_LSN
P5 40
P3 0
P1 0

Update P5 in
buffer pool

No need to flush
P5 now

37

Crash Recovery — UNDO Phase

Rollback uncommitted transactions

38

Crash Recovery — UNDO Phase

Rollback uncommitted transactions

Repeat until transaction table is empty:
— Choose largest LastLSN among transactions in the transaction table

— If the log record is an ‘update’: Undo the update, write a CLR, add
record.prevLSN to transaction table
— If the log record is an ‘CLR’: add CLR.UndoNxtLSN to transaction table

— If prevLSN and UpdoNxtLSN are NULL, remove the transaction from
transaction table

39

UNDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5

20—~ update T2 writes P3

30 - T1 abort

40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5
X CRASH, RESTART

Transaction Table

TranslID LastLSN | UndoNxtLSN
T3 50 50
T2 60 60

40

UNDO Phase — Example

LSN LOG Transaction Table
: TransID | LastLSN | UndoNxtLSN
A~ 00 —-— begin_checkpoint T3 50 50
05 —-— end_checkpoint T2 6070 60 20

10 - update: T1 writes P5

20—~ update T2 writes P3
30 ___ T1 abort LSN LOG (undoNextLSN)

. 70 CLR: Undo T2,LSN 60, (20)
40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 —— update: T2 writes P5
>:< CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
TransD | LastLSN | UndoNxtLSN
+ 00— begin_checkpoint T3 50 80 50 null
05 —-— end_checkpoint T2 70 20

10 - update: T1 writes P5
20—~ update T2 writes P3

30 _E_ T1 abort LSN LOG (UndONeXtLSN)

: | 70 CLR:UndoT2,LSN60, (20)
40 == CLR: Undo T1 LSN 10 80 CLR:UndoT3,LSN50, (null)
45--T1 End

50—+~ update: T3 writes P1
60 — update: T2 writes P5
X CRASH, RESTART

UNDO Phase — Example

LSN LOG Transaction Table
TransD | LastLSN | UndoNxtLSN
+ 00— begin_checkpoint T3 80 Aull
05 —-— end_checkpoint T2 70 20

10 - update: T1 writes P5
20—~ update T2 writes P3

30 _E_ T1 abort LSN LOG (UndONeXtLSN)

: | 70 CLR:UndoT2, LSN60, (20)
40 == CLR: Undo T1 LSN 10 80 CLR:UndoT3,LSN50, (null)
45--T1 End 85 T3 End

50—~ update: T3 writes P1
60 — update: T2 writes P5
X CRASH, RESTART

UNDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5

20—+ update T2 writes P3

30 - T1 abort

40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5
> CRASH, RESTART

Transaction Table

TranslID LastLSN | UndoNxtLSN

T2 0 90 20 null

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60,

80 CLR: Undo T3, LSN 50,

85 T3 End

90 CLR: Undo T2, LSN 20,

UNDO Phase — Example

LSN___LOG

00 —-— begin_checkpoint

05 —-— end_checkpoint

10 - update: T1 writes P5

20—~ update T2 writes P3

30 - T1 abort

40 - CLR: Undo T1 LSN 10

45— T1 End

50—~ update: T3 writes P1

60 — update: T2 writes P5
X CRASH, RESTART

Transaction Table

TransID LastLSN | UndoNxtLSN

T2 90 Aol

LSN LOG (undoNextLSN)
70 CLR: Undo T2, LSN 60, (20)

80
85
90
95

CLR: Undo T3, LSN 50, (null)
T3 End
CLR: Undo T2, LSN 20, (null)
T2 End

45

Crash During Restart — Example

LSN LOG
00,05—5— begin_checkpoint, end_checkpoint No need to undo LSN 60 and

10— update: T1 writes P5 LSN 50 again due to the CLRs
20 _i_ update T2 writes P3 created in the previous restart

30 - T1 abort
40,45 — CLR: Undo T1 LSN 10, T1 End
50 —— update: T3 writes P1
60 —— update: T2 writes P5
 CRASH, RESTART
70—~ CLR: Undo T2 LSN 60
80,85 — CLR: Undo T3 LSN 50, T3 end

> CRASH, RESTART
90 —-CLR:UndoT2LSN 20, T2 end

Can created a checkpoint to
reduce the cost of future restart

46

Q/A — ARIES

* How to know all dirty pages of one txn are flushed in order to write
"END" log?

» Checkpointed DPT may not reflect logs in between start and end
checkpointing, does it matter?

* |Is Steal + No force the fastest?

» What’s the intuition behind the ARIES design?

* How much space do such logs generally consume?
* Is ARIES generally for distributed DB?

* What is the performance overhead of logging?

47

Before Next Lecture

Submit review before next lecture
— C. Mohan, et al., Transaction Management in the R* Distributed Database

Management System. ACM Transactions on Database Systems, 1986

48

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/R-XactMgmt.pdf

