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Announcement

Midterm exam
* Nov. 15 (Monday) noon—Nov. 17 (Monday) noon
» Central time
* The exam questions will be emailed to you
- Email your answers to the instructor by the deadline



Today’s Paper: Distributed Transactions in R*

Transaction Management in the R*
Distributed Database Management System

C. MOHAN, B. LINDSAY, and R. OBERMARCK
IBM Almaden Research Center

This paper deals with the transaction management aspects of the R* distributed database system. It
concentrates primarily on the description of the R* commit protocols, Presumed Abort (PA) and
Presumed Commit (PC). PA and PC are extensions of the well-known, two-phase (2P) commit
protocol. PA is optimized for read-only transactions and a class of multisite update transactions, and
PC is optimized for other classes of multisite update transactions. The optimizations result in reduced
intersite message traffic and log writes, and, consequently, a better response time. The paper also
discusses R*’s approach toward distributed deadlock detection and resolution.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks): Distributed
Systems—distributed databases; D.4.1 [Operating Systems): Process Management—concurrency;
deadlocks; synchronization; D.4.7 [Operating Systems): Organization and Design—distributed sys-
tems; D.4.5 [Operating Systems): Reliability—fault tolerance; H.2.0 [Datab Manag t]:
General—concurrency control; H.2.2 [Database Management|: Physical Design—recovery and
restart; H.2.4 [Database Management|: Systems—distributed systems; transaction processing; H.2.7
[Database Management]: Database Administration—logging and recovery

General Terms: Algorithms, Design, Reliability
Additional Key Words and Phrases: Commit protocols, deadlock victim selection

1. INTRODUCTION

R* is an experimental, distributed database management system (DDBMS)
developed and operational at the IBM San Jose Research Laboratory (now
renamed the IBM Almaden Research Center) [18, 20]. In a distributed database
system, the actions of a transaction (an atomic unit of consistency and recovery
[13]) may occur at more than one site. Our model of a transaction, unlike that
of some other researchers’ [25, 28], permits multiple data manipulation and
definition statements to constitute a single transaction. When a transaction
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Agenda

Two-phase commit
Presumed abort (PA)
Presumed Commit (PC)



Distributed Transactions

Architectures: shared-nothing vs. shared-disk
Data is partitioned and stored in each server

A distributed transaction accesses data across multiple partitions
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Distributed Transactions

Architectures: shared-nothing vs. shared-disk
Data is partitioned and stored in each server

A distributed transaction accesses data across multiple partitions
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Transaction T:
write(A)
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Atomic Commit Protocol (ACP)

Atomic commit protocol: applies a set of distinct changes as a
single operation

Transaction T:
— tuple A — tuple B write(A)
write(B)

The two updates must commit or abort atomically

Example:




The Challenge of Atomic Commit

Node 1 Node 2
Transaction T:
— tuple A — tuple B write(A)
write(B)
Commit
Log and r j Log and
commit commit
< <

back to caller

A naive approach: all nodes log and commit independently



The Challenge of Atomic Commit
Node 1 Node 2

Transaction T:
— tuple A — tuple B write(A)
write(B)

Commit

Log and x
commit

A naive approach: all nodes log and commit independently

Node 2 crashes before logging
 Transaction T commits in node 1 but not in node 2



Two-Phase Commit (2PC)

Coordinator

tuple A tuple B

Subordinate 1  Subordinate 2

Key idea: let the coordinator log the
final commit/abort decision
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Two-Phase Commit (2PC)

Coordinator Subordinate 1

tuple A

—_— PREPARE
PREPARE j llog]

VOTE YES prepare

= VOTE YES

tuple B

Subordinate 2

[log]
prepare

Key idea: let the coordinator log the
final commit/abort decision

Phase 1: prepare phase
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Two-Phase Commit (2PC)

Key idea: let the coordinator log the
tuple A tuple B : . _
~ ~ ~ final commit/abort decision
Coordinator ~ Subordinate 1 Subordinate 2 Phase 1: prepare phase
R—— PREPARE | Phase 2: commit phase
j“og] A |[o?eg|gare* - Coordinator logs the decision
VOTE YES prepare

VOTE YES
[log] I
commit*

back to caller
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Two-Phase Commit (2PC)

tuple A tuple B Key idea: let the coordinator log the
~ ~ ~ final commit/abort decision
Coordinator ~ Subordinate 1 Subordinate 2 Phase 1: prepare phase
— PREPARE Phase 2: commit phase
PREPARE llog] [log] - o
br egpare* prepare* « Coordinator logs the decision
VOTE YES « Coordinator sends the decision to
llog] VOTE YES subordinates
commit* « Coordinator forgets the transaction

COMMIT

[log]
commit*

back to caller
[log]

after receiving ACKs
j commit*

ACK
< ACK

end I

forget the txn 13




2PC — Abort Example

Coord Subord1 Subord2

PREPARE

abort* prepare*

VOTE NO
VOTE YES

Subordinate returns VOTE NO if
the transaction is aborted

« Subordinate can release locks
and forget the transaction
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2PC — Abort Example

Coord Subord1 Subord2

PREPARE

abort* prepare*
VOTE NO
VOTE YES
abort*
< ABORT
back to caller
abort*
ACK

end

forget the txn

Subordinate returns VOTE NO if
the transaction is aborted

« Subordinate can release locks
and forget the transaction

Skip the commit phase for
aborted subordinates
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2PC — All Subordinates Abort

Coord Subord1  Subord2 Skip the second phase entirely if
SREPARE the transaction aborts at all the
subordinates

abort* abort*

VOTE NO
VOTE NO

abort* + end

<
back to caller

forget the txn

16



2PC — Failures

Coord Subord
PREPARE

Time out

prepare* / abort*
VOTE YES/NO

commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort
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2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

. Time out
commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

Coordinator timeout
» Waiting for vote: self abort
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2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort*
COMMIT/ABORT

Time out

<€
back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

« Waiting for decision: contact
coordinator or peer subordinates
(may block and wait indefinitely)

Coordinator timeout
» Waiting for vote: self abort
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2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end T Time out

forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

« Waiting for decision: contact
coordinator or peer subordinates
(may block and wait indefinitely)

Coordinator timeout
» Waiting for vote: self abort

« Waiting for ACK: contact
subordinates
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2PC — Alternative Designs?

Coord Subord
PREPARE

VOTE YES/NO
prepare

commit*

< COMMIT/ABORT

back to caller

commit*

end
forget the txn

Subordinate returns vote to

coordinator before logging
prepare?
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2PC — Alternative Designs?

Subord
PREPARE

Coord

VOTE YES/NO

commit*

<€
back to caller

end
forget the txn

prepare

COMMIT/ABORT

commit*

Subordinate returns vote to
coordinator before logging
prepare?

Problem: subordinate may
crash before the log record is
written to disk. The log record is
thus lost but the coordinator
already committed the
transaction

22



2PC — Alternative Designs?

Coord Subord : .
SREPARE Coordinator sends decision to

OTE Ve subordinates before logging the
\I prepare* decision?

COMMIT/ABORT

commit
< commit*
back to caller

ACK
end

forget the txn
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2PC — Alternative Designs?

Coord

PREPARE

VOTE YES/NO

COMMIT/ABORT

commit
<€

back to caller

end
forget the txn

ACK

Subord

prepare*

commit*

Coordinator sends decision to
subordinates before logging the
decision?

Problem: coordinator crashes
before logging the decision and
decides to abort after restart

24



Optimization 1: Presumed Abort (PA)

Observation: It is safe for a coordinator to “forget” a transaction
immediately after it makes the decision to abort it and to write an
abort record

25



PA: Aborted Transaction

Coord Subord1 Subord2 Coord Subord1 Subord2
PREPARE back to PREPARE
fl j caller ;
VOTE NO abort prepare* abort prepare
VOTE YES
Presumed Abort
 The abort record is not forced in subordinate
Standard 2PC
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PA: Aborted Transaction

Coord Subordi Subord?2 Coord Subordi Subord?2
PREPARE backt0 — PREPARE
j <caller ﬁ
VOTE NO I abort prepare forget prepare
f VOTE YES the txn VOTE YES
< 2bort ABORT abort
back to caller
j abort*
ACK Presumed Abort
end I  The abort record is not forced in subordinate
forget the txn « The abort record is not forced in coordinator
Standard 2PC » Coordinator forgets the transaction early

* No ACK for aborts
- Behavior of committed transactions unchanged

27



PA: Partially Readonly Transactions

Coord Subordi Subord? Coord Subordi Subord?
——— PREPARE PREPARE
prepare*j prepare* j prepare*
VOTE
VOTE YES VOTE YES
commit* commit* E
< COMMIT < OMMIT

back to caller back to caller

commit* commit* commit*

ACK

end end

forget the txn forget the txn

Readonly subordinate does not log in prepare phase and skips commit phase
28



PA: Completely Readonly Transactions

Coord Subord1 Subord2 Coord Subord1 Subord2
—— PREPARE

PREPARE
\ s
prepare*j prepare* VOTEW
VOTE < VOTE READ

VOTE YES back to caller

commit* forget the txn
< COMMIT

back to caller

commit* commit*

ACK

end

forget the txn

Completely readonly transactions skip the commit phase entirely
29



Optimization 2: Presumed Commit (PC)

Since most transactions are expected to commit, can we make
commits cheaper by eliminating the ACKs for COMMITS?

30



PC: Committed Transaction

Coord Subord1 Subord?2 Coord Subord1 Subord?2
—— PREPARE
prepare*j prepare* — PREPARE
VOTE
VOTE YES prepare* prepare*
- VOTE YES
commit VOTE YES
< COMMIT
commit*

back to caller

OMMIT

. €
commit® pack to caller

-

Need to force log collecting due to potential abort of coordinator
No need to send ACK for COMMITS

commit*

ACK . .
commit commit

end

forget the txn
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PC: Aborted Transaction

Coord Subordi Subord?2 Coord Subordi Subord?
PREPARE —
collecting
abort* j repare* PREPARE
VOTE NO prep j
abort* repare*
- E: VOTE YES VOTE prep
abor ABORT VOTE YES
abort*
back to caller j o < COMM IT
ACK back to caller
abort*
ACK

end I
forget the txn end I

forget the txn

Abort behavior is similar to standard 2PC but requires logging collecting
32



Summary

Process

Type Coordinator Subordinate

Protocol U U R

Type Yes US No US US
Standard

_RP 2,1,-~,2 - - 2,2,2
Presumed
Abort 2,1,1,211,1,1}0,0,1 | 2,2,2]0,0,1
Presumed
Commit 2,2,1,2 2,2,112,1,1 2,1,1 0,0,1

RS
Us

m,n,o,p

Update Transaction

Read-0Only Transaction

Read-0Only Subordinate

Update Subordinate

m Records HWritten, n of Them Forced

o For a Coordinator: % of Messages Sent to Each RS
For a Subordinate: # of Messages Sent to

Coordinator

p % of Messages Sent to Each US

Presumed Abort (PA) is better than standard 2PC (widely used in practice)
Presumed Commit (PC) is worse than PA in most cases
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Conclusions

Distributed transaction requires an atomic commit protocol

Two-phase commit (2PC) is the most widely used atomic commit

protocol

« Standard 2PC
« Optimization 1: presumed abort (PA) — most commonly used in practice

« Optimization 2: presumed commit (PC)
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Q/A — Two Phase Commit

Separating 2PC logs and UNDO/REDQO logs?

Any overhead of PA or PC?

Commit the transaction when seeing the first YES VOTE?
2PC vs. consensus?

Is the coordinator a central point of failure?

Membership change?

Newer variants of 2PC?

Are there any retries of messages?

Proof of correctness?
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Before Next Lecture

Review previous year exam questions
— Will go through F20 exam next lecture
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