WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 18: Two-Phase Commit (2PC)

Xiangyao Yu
11/8/2021

Announcement

Midterm exam
* Nov. 15 (Monday) noon—Nov. 17 (Monday) noon
» Central time
* The exam questions will be emailed to you
- Email your answers to the instructor by the deadline

Today’s Paper: Distributed Transactions in R*

Transaction Management in the R*
Distributed Database Management System

C. MOHAN, B. LINDSAY, and R. OBERMARCK
IBM Almaden Research Center

This paper deals with the transaction management aspects of the R* distributed database system. It
concentrates primarily on the description of the R* commit protocols, Presumed Abort (PA) and
Presumed Commit (PC). PA and PC are extensions of the well-known, two-phase (2P) commit
protocol. PA is optimized for read-only transactions and a class of multisite update transactions, and
PC is optimized for other classes of multisite update transactions. The optimizations result in reduced
intersite message traffic and log writes, and, consequently, a better response time. The paper also
discusses R*’s approach toward distributed deadlock detection and resolution.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks): Distributed
Systems—distributed databases; D.4.1 [Operating Systems): Process Management—concurrency;
deadlocks; synchronization; D.4.7 [Operating Systems): Organization and Design—distributed sys-
tems; D.4.5 [Operating Systems): Reliability—fault tolerance; H.2.0 [Datab Manag t]:
General—concurrency control; H.2.2 [Database Management|: Physical Design—recovery and
restart; H.2.4 [Database Management|: Systems—distributed systems; transaction processing; H.2.7
[Database Management]: Database Administration—logging and recovery

General Terms: Algorithms, Design, Reliability
Additional Key Words and Phrases: Commit protocols, deadlock victim selection

1. INTRODUCTION

R* is an experimental, distributed database management system (DDBMS)
developed and operational at the IBM San Jose Research Laboratory (now
renamed the IBM Almaden Research Center) [18, 20]. In a distributed database
system, the actions of a transaction (an atomic unit of consistency and recovery
[13]) may occur at more than one site. Our model of a transaction, unlike that
of some other researchers’ [25, 28], permits multiple data manipulation and
definition statements to constitute a single transaction. When a transaction

ACM Trans. Database Syst. 1986.

Agenda

Two-phase commit
Presumed abort (PA)
Presumed Commit (PC)

Distributed Transactions

Architectures: shared-nothing vs. shared-disk
Data is partitioned and stored in each server

A distributed transaction accesses data across multiple partitions

CPU

CPU

CPU

CPU

CPU

CPU

Memory Memory Memory
> > >
HDD HDD HDD
Network

Shared Nothing

Memory Memory Memory
Network
- > >
HDD HDD HDD
Shared Disk

Distributed Transactions

Architectures: shared-nothing vs. shared-disk
Data is partitioned and stored in each server

A distributed transaction accesses data across multiple partitions

CPU

CPU

CPU

Memory Memory Memory
tuple A tuple B
> <> >
HDD HDD HDD
Network

Shared Nothing

Transaction T:
write(A)
write(B)

CPU

CPU

CPU

Memory Memory Memory
Network
- > >
HDD HDD HDD
Shared Disk

Atomic Commit Protocol (ACP)

Atomic commit protocol: applies a set of distinct changes as a
single operation

Transaction T:
— tuple A — tuple B write(A)
write(B)

The two updates must commit or abort atomically

Example:

The Challenge of Atomic Commit

Node 1 Node 2
Transaction T:
— tuple A — tuple B write(A)
write(B)
Commit
Log and r j Log and
commit commit
< <

back to caller

A naive approach: all nodes log and commit independently

The Challenge of Atomic Commit
Node 1 Node 2

Transaction T:
— tuple A — tuple B write(A)
write(B)

Commit

Log and x
commit

A naive approach: all nodes log and commit independently

Node 2 crashes before logging
 Transaction T commits in node 1 but not in node 2

Two-Phase Commit (2PC)

Coordinator

tuple A tuple B

Subordinate 1 Subordinate 2

Key idea: let the coordinator log the
final commit/abort decision

10

Two-Phase Commit (2PC)

Coordinator Subordinate 1

tuple A

—_— PREPARE
PREPARE j llog]

VOTE YES prepare

= VOTE YES

tuple B

Subordinate 2

[log]
prepare

Key idea: let the coordinator log the
final commit/abort decision

Phase 1: prepare phase

11

Two-Phase Commit (2PC)

Key idea: let the coordinator log the
tuple A tuple B : . _
~ ~ ~ final commit/abort decision
Coordinator ~ Subordinate 1 Subordinate 2 Phase 1: prepare phase
R—— PREPARE | Phase 2: commit phase
j“og] A |[o?eg|gare* - Coordinator logs the decision
VOTE YES prepare

VOTE YES
[log] I
commit*

back to caller

12

Two-Phase Commit (2PC)

tuple A tuple B Key idea: let the coordinator log the
~ ~ ~ final commit/abort decision
Coordinator ~ Subordinate 1 Subordinate 2 Phase 1: prepare phase
— PREPARE Phase 2: commit phase
PREPARE llog] [log] - o
br egpare* prepare* « Coordinator logs the decision
VOTE YES « Coordinator sends the decision to
llog] VOTE YES subordinates
commit* « Coordinator forgets the transaction

COMMIT

[log]
commit*

back to caller
[log]

after receiving ACKs
j commit*

ACK
< ACK

end I

forget the txn 13

2PC — Abort Example

Coord Subord1 Subord2

PREPARE

abort* prepare*

VOTE NO
VOTE YES

Subordinate returns VOTE NO if
the transaction is aborted

« Subordinate can release locks
and forget the transaction

14

2PC — Abort Example

Coord Subord1 Subord2

PREPARE

abort* prepare*
VOTE NO
VOTE YES
abort*
< ABORT
back to caller
abort*
ACK

end

forget the txn

Subordinate returns VOTE NO if
the transaction is aborted

« Subordinate can release locks
and forget the transaction

Skip the commit phase for
aborted subordinates

15

2PC — All Subordinates Abort

Coord Subord1 Subord2 Skip the second phase entirely if
SREPARE the transaction aborts at all the
subordinates

abort* abort*

VOTE NO
VOTE NO

abort* + end

<
back to caller

forget the txn

16

2PC — Failures

Coord Subord
PREPARE

Time out

prepare* / abort*
VOTE YES/NO

commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

17

2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

. Time out
commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

Coordinator timeout
» Waiting for vote: self abort

18

2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort*
COMMIT/ABORT

Time out

<€
back to caller

commit* / abort*

end
forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

« Waiting for decision: contact
coordinator or peer subordinates
(may block and wait indefinitely)

Coordinator timeout
» Waiting for vote: self abort

19

2PC — Failures

Coord Subord
PREPARE

prepare* / abort*
VOTE YES/NO

commit* / abort*

< COMMIT/ABORT

back to caller

commit* / abort*

end T Time out

forget the txn

Use timeout to detect failures

Subordinate timeout
» Waiting for PREPARE: self abort

« Waiting for decision: contact
coordinator or peer subordinates
(may block and wait indefinitely)

Coordinator timeout
» Waiting for vote: self abort

« Waiting for ACK: contact
subordinates

20

2PC — Alternative Designs?

Coord Subord
PREPARE

VOTE YES/NO
prepare

commit*

< COMMIT/ABORT

back to caller

commit*

end
forget the txn

Subordinate returns vote to

coordinator before logging
prepare?

21

2PC — Alternative Designs?

Subord
PREPARE

Coord

VOTE YES/NO

commit*

<€
back to caller

end
forget the txn

prepare

COMMIT/ABORT

commit*

Subordinate returns vote to
coordinator before logging
prepare?

Problem: subordinate may
crash before the log record is
written to disk. The log record is
thus lost but the coordinator
already committed the
transaction

22

2PC — Alternative Designs?

Coord Subord : .
SREPARE Coordinator sends decision to

OTE Ve subordinates before logging the
\I prepare* decision?

COMMIT/ABORT

commit
< commit*
back to caller

ACK
end

forget the txn

23

2PC — Alternative Designs?

Coord

PREPARE

VOTE YES/NO

COMMIT/ABORT

commit
<€

back to caller

end
forget the txn

ACK

Subord

prepare*

commit*

Coordinator sends decision to
subordinates before logging the
decision?

Problem: coordinator crashes
before logging the decision and
decides to abort after restart

24

Optimization 1: Presumed Abort (PA)

Observation: It is safe for a coordinator to “forget” a transaction
immediately after it makes the decision to abort it and to write an
abort record

25

PA: Aborted Transaction

Coord Subord1 Subord2 Coord Subord1 Subord2
PREPARE back to PREPARE
fl j caller ;
VOTE NO abort prepare* abort prepare
VOTE YES
Presumed Abort
 The abort record is not forced in subordinate
Standard 2PC

26

PA: Aborted Transaction

Coord Subordi Subord?2 Coord Subordi Subord?2
PREPARE backt0 — PREPARE
j <caller ﬁ
VOTE NO I abort prepare forget prepare
f VOTE YES the txn VOTE YES
< 2bort ABORT abort
back to caller
j abort*
ACK Presumed Abort
end I The abort record is not forced in subordinate
forget the txn « The abort record is not forced in coordinator
Standard 2PC » Coordinator forgets the transaction early

* No ACK for aborts
- Behavior of committed transactions unchanged

27

PA: Partially Readonly Transactions

Coord Subordi Subord? Coord Subordi Subord?
——— PREPARE PREPARE
prepare*j prepare* j prepare*
VOTE
VOTE YES VOTE YES
commit* commit* E
< COMMIT < OMMIT

back to caller back to caller

commit* commit* commit*

ACK

end end

forget the txn forget the txn

Readonly subordinate does not log in prepare phase and skips commit phase
28

PA: Completely Readonly Transactions

Coord Subord1 Subord2 Coord Subord1 Subord2
—— PREPARE

PREPARE
\ s
prepare*j prepare* VOTEW
VOTE < VOTE READ

VOTE YES back to caller

commit* forget the txn
< COMMIT

back to caller

commit* commit*

ACK

end

forget the txn

Completely readonly transactions skip the commit phase entirely
29

Optimization 2: Presumed Commit (PC)

Since most transactions are expected to commit, can we make
commits cheaper by eliminating the ACKs for COMMITS?

30

PC: Committed Transaction

Coord Subord1 Subord?2 Coord Subord1 Subord?2
—— PREPARE
prepare*j prepare* — PREPARE
VOTE
VOTE YES prepare* prepare*
- VOTE YES
commit VOTE YES
< COMMIT
commit*

back to caller

OMMIT

. €
commit® pack to caller

-

Need to force log collecting due to potential abort of coordinator
No need to send ACK for COMMITS

commit*

ACK . .
commit commit

end

forget the txn

31

PC: Aborted Transaction

Coord Subordi Subord?2 Coord Subordi Subord?
PREPARE —
collecting
abort* j repare* PREPARE
VOTE NO prep j
abort* repare*
- E: VOTE YES VOTE prep
abor ABORT VOTE YES
abort*
back to caller j o < COMM IT
ACK back to caller
abort*
ACK

end I
forget the txn end I

forget the txn

Abort behavior is similar to standard 2PC but requires logging collecting
32

Summary

Process

Type Coordinator Subordinate

Protocol U U R

Type Yes US No US US
Standard

_RP 2,1,-~,2 - - 2,2,2
Presumed
Abort 2,1,1,211,1,1}0,0,1 | 2,2,2]0,0,1
Presumed
Commit 2,2,1,2 2,2,112,1,1 2,1,1 0,0,1

RS
Us

m,n,o,p

Update Transaction

Read-0Only Transaction

Read-0Only Subordinate

Update Subordinate

m Records HWritten, n of Them Forced

o For a Coordinator: % of Messages Sent to Each RS
For a Subordinate: # of Messages Sent to

Coordinator

p % of Messages Sent to Each US

Presumed Abort (PA) is better than standard 2PC (widely used in practice)
Presumed Commit (PC) is worse than PA in most cases

33

Conclusions

Distributed transaction requires an atomic commit protocol

Two-phase commit (2PC) is the most widely used atomic commit

protocol

« Standard 2PC
« Optimization 1: presumed abort (PA) — most commonly used in practice

« Optimization 2: presumed commit (PC)

34

Q/A — Two Phase Commit

Separating 2PC logs and UNDO/REDQO logs?

Any overhead of PA or PC?

Commit the transaction when seeing the first YES VOTE?
2PC vs. consensus?

Is the coordinator a central point of failure?

Membership change?

Newer variants of 2PC?

Are there any retries of messages?

Proof of correctness?

35

Before Next Lecture

Review previous year exam questions
— Will go through F20 exam next lecture

36

