
Xiangyao Yu
9/13/2021

CS 764: Topics in Database Management Systems
Lecture 2: Join

1

Today’s Paper: Join

ACM Transactions on Database Systems, 1986 2

Agenda

3

System architecture and assumptions
Notations
Join algorithms
• Sort merge join
• Simple hash join
• GRACE hash join
• Hybrid hash join

Partition overflow and additional techniques

System Architecture and Assumptions
CPU: uniprocessor
• Avoids sync complexity
• Could be built on systems of the day

Memory
• Tens of Megabytes

Focus only on equi-join

CPU

Disk

Memory

Block

4

Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M

| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

5

Join Algorithms

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S 7

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 8

Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 9

Output
if match

Find matches in sorted runs

Sort Merge Join – Phase 1
Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length

10

Memory

input
buffer

output
buffer

Priority queue (heap)

Q: Where does 2 come from?
A: Replacement selection

Memory layout in Phase 1

Sort Merge Join – Replacement Selection

11

Min
Heap input bufferoutput buffer

Naïve solution:
• Load | M | blocks
• Sort
• Output | M | blocks

Each run contains | M | blocks

Sort Merge Join – Replacement Selection

12

Replacement selection:
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else

heap reorder

Min
Heap input bufferoutput buffer

Sort Merge Join – Replacement Selection

13

Replacement selection:
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else

heap reorder

Each run contains 2 × | M | blocks

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Replacement Selection

14

Replacement selection:
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else

heap reorder

Each run contains 2 × | M | blocks
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

= | " |
× | % | + | & |

× | % | ≤
| " |
%

Total number of runs

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join – Phase 2
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

15

Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…

Memory layout in Phase 2

Sort Merge Join – Phase 2
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

Requirement
| M | ≥ total number runs

Satisfied if

16

Memory
in-buf

R0

in-buf
R1

in-buf
Rn

…

in-buf
S0

in-buf
S1

in-buf
Sm

…
" ≥ | $ |

"
" ≥ | $ |namely Memory layout in Phase 2

Hash Join
Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn’t fit fully in memory, partition hash space into ranges

17

Hash table on R
(size = | R | × F)

S

Simple Hash Join
• Build a hash table on R

18

Hash table on R
(size = | R | × F)

Memory

S

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory

19

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R

20

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

21

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

write back
to disk

Simple Hash Join – 2nd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

22

Hash table on R
(size = | R | × F)

Memory

S

write back
to disk

write back
to disk

Simple Hash Join – 3rd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk

23

Hash table on R
(size = | R | × F)

Memory

S

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

24

R S

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

25

R S

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

26

R S

Memory
out-buf

S0

out-buf
S1

out-buf
Sk

…

Memory layout in Phase 1

GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

27

R S

Memory

Hash table
for Ri

Memory layout in Phase 2

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

28

! ≤ #

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

29

! ≤ #

$
! ×& ≤ #

GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join:

30

! ≤ #

$
! ×& ≤ #

$ ≤ #
& ! ≤ # '

& # ≥ $ × &

GRACE vs. Simple Hash Join
When | R | × F < | M |
• Simple hash join incurs no IO traffic (better)
• GRACE hash join writes and reads each table once

When | M |2 ≥ | R | × F >> | M |
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table once (better)

31

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

32

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

33

Memory
out-buf

R0

out-buf
R1

out-buf
Rk

…

Memory layout in Phase 1
of GRACE hash join

Hybrid Hash Join
When you have two algorithms that are good in different settings,
create a hybrid!

34

Memory
out-buf

R1

out-buf
R2

out-buf
Rk

…

Hash table for R0

Memory layout in Phase 1
of hybrid hash join

For example
• If | R | = 2 * | M |
• R needs to be partitioned into only 2 shards
• Only 2 out-bufs are required for partitioning
• Rest of memory can be used to build hash

table for R to avoid writing some of R to disk

Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R
• Identical to simple hash join

35

Memory

Memory layout in Phase 1
of hybrid hash join

Hash table for R0

Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R
• Identical to simple hash join

Case 2: | R | × F >> | M |
• Need
• Similar to GRACE hash join

36

Memory

Memory layout in Phase 1
of hybrid hash join

out-buf
R1

out-buf
R2

out-buf
R5

…

Hash table for R0

out-buf
R3

out-buf
R4

out-buf
Rk

Evaluation

• Conclusion 1: Hash join
is generally better than
sort-merge join

• Conclusion 2: Hybrid
hash join is strictly
better than simple and
GRACE hash joins

37

Sort-merge

Simple hash

GRACE hash
Hybrid hash

Partition Overflow

38

So far we assume uniform random distribution for R and S
What if we guess wrong on size required for R hash table and a
partition does not fit in memory?

Solution: further divide into smaller partitions range

Additional Techniques

39

Babb array (or bitmap filter)
• Set a bit for each R tuple
• Use to filter S during initial scan, discard tuple if missing in array

Semijoin
• Project join attributes from R, join to S, then join that result back to R
• Useful if full R tuples won’t fit into memory, but join will be selective and filter

many S tuples
• Can be added to any join algorithm above

Join – Comments and Q/A

40

• Lack of experiments
• Conclusions still hold for modern systems?
• With duplicate join keys, a partition may never be smaller than

memory size
• Why is a run 2 × | M | long?
• Hash vs. Merge for already sorted data
• Join in a distributed system?
• Is the math/proof important?
• Multiple joins? non-equijoin?

Group Discussion
In a modern in-memory DBMS, the entire database fits in DRAM. In
such a system, can similar optimizations be applied based on the
performance gap between on-chip SRAM caches vs. DRAM? Please
discuss the opportunities and challenges of this approach.

41

Before Next Lecture
Submit review for

Peter Boncz, et al., Database Architecture Optimized for the
new Bottleneck: Memory Access. VLDB, 1999

42

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/radix-join.pdf

