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CS 764: Topics in Database Management Systems
Lecture 2: Join
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Today’s Paper: Join

ACM Transactions on Database Systems, 1986 2



Agenda
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System architecture and assumptions
Notations 
Join algorithms
• Sort merge join
• Simple hash join
• GRACE hash join 
• Hybrid hash join

Partition overflow and additional techniques



System Architecture and Assumptions 
CPU: uniprocessor
• Avoids sync complexity
• Could be built on systems of the day

Memory 
• Tens of Megabytes

Focus only on equi-join 

CPU

Disk

Memory

Block
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Notation
Relations: R, S (| R | < | S |)
Join: S ⋈ R
Memory: M 

| R |: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks
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Join Algorithms



Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S 7
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Sort Merge Join
Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join result

R S

Unsorted R and S Sorted runs of R and S 9

Output 
if match

Find matches in sorted runs



Sort Merge Join – Phase 1 
Phase 1: Produce sorted runs of S and R
• Each run of S will be 2 × | M | average length
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Memory

input 
buffer

output 
buffer

Priority queue (heap)

Q: Where does 2 come from? 
A: Replacement selection 

Memory layout in Phase 1



Sort Merge Join – Replacement Selection
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Min
Heap input bufferoutput buffer

Naïve solution: 
• Load | M | blocks
• Sort
• Output | M | blocks

Each run contains | M | blocks



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else 

heap reorder

Min
Heap input bufferoutput buffer



Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else 

heap reorder

Each run contains 2 × | M | blocks

Min
Heap input bufferoutput buffer

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Replacement Selection
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Replacement selection: 
• load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output

save the tuple for next run (heap size reduces)
else 

heap reorder

Each run contains 2 × | M | blocks
https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
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https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html


Sort Merge Join – Phase 2 
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run
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Memory layout in Phase 2



Sort Merge Join – Phase 2 
Phase 2: Merge runs of S and R, output join result
• One input buffer required for each run

Requirement 
| M | ≥ total number runs

Satisfied if
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Hash Join
Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn’t fit fully in memory, partition hash space into ranges
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Hash table on R
(size = | R | × F )

S



Simple Hash Join
• Build a hash table on R
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Hash table on R
(size = | R | × F )

Memory

S



Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
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Hash table on R
(size = | R | × F )

Memory
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Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
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Hash table on R
(size = | R | × F )

Memory

S
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Simple Hash Join – 1st pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )
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Simple Hash Join – 2nd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
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Simple Hash Join – 3rd pass
• Build a hash table on R
• If R does not fit in memory, find a subset of buckets that fit in memory
• Read in S to join with the subset of R
• The remaining tuples of S and R are written back to disk
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Hash table on R
(size = | R | × F )

Memory

S



GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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Memory layout in Phase 1



GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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GRACE Hash Join
Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions
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Memory
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Memory layout in Phase 2



GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition
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GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory
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GRACE Hash Join
Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

In phase 2, the hash table of each shard of R must fit in memory

The maximum size of R to perform Grace hash join: 
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GRACE vs. Simple Hash Join
When | R | × F < | M |
• Simple hash join incurs no IO traffic (better)
• GRACE hash join writes and reads each table once

When | M |2 ≥ | R | × F >> | M |  
• Simple hash join incurs significant IO traffic
• GRACE hash join writes and reads each table once (better)
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!
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Hybrid Hash Join
When you have two algorithms that are good in different settings, 
create a hybrid!
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Memory
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Hash table for R0

Memory layout in Phase 1 
of hybrid hash join

For example
• If | R | = 2 * | M |
• R needs to be partitioned into only 2 shards
• Only 2 out-bufs are required for partitioning
• Rest of memory can be used to build hash 

table for R to avoid writing some of R to disk



Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R
• Identical to simple hash join

35

Memory

Memory layout in Phase 1 
of hybrid hash join

Hash table for R0



Hybrid Hash Join

Case 1: | R | × F < | M |
• No need to partition R
• Identical to simple hash join

Case 2: | R | × F >> | M |
• Need 
• Similar to GRACE hash join
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Memory layout in Phase 1 
of hybrid hash join
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Evaluation

• Conclusion 1: Hash join 
is generally better than 
sort-merge join

• Conclusion 2: Hybrid 
hash join is strictly 
better than simple and 
GRACE hash joins
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Sort-merge

Simple hash

GRACE hash
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Partition Overflow
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So far we assume uniform random distribution for R and S
What if we guess wrong on size required for R hash table and a 
partition does not fit in memory? 

Solution: further divide into smaller partitions range



Additional Techniques
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Babb array (or bitmap filter)
• Set a bit for each R tuple
• Use to filter S during initial scan, discard tuple if missing in array

Semijoin
• Project join attributes from R, join to S, then join that result back to R
• Useful if full R tuples won’t fit into memory, but join will be selective and filter 

many S tuples
• Can be added to any join algorithm above



Join – Comments and Q/A
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• Lack of experiments
• Conclusions still hold for modern systems?
• With duplicate join keys, a partition may never be smaller than 

memory size
• Why is a run 2 × | M | long?
• Hash vs. Merge for already sorted data
• Join in a distributed system?
• Is the math/proof important?
• Multiple joins? non-equijoin?



Group Discussion
In a modern in-memory DBMS, the entire database fits in DRAM. In 
such a system, can similar optimizations be applied based on the 
performance gap between on-chip SRAM caches vs. DRAM? Please 
discuss the opportunities and challenges of this approach. 
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Before Next Lecture
Submit review for

Peter Boncz, et al., Database Architecture Optimized for the 
new Bottleneck: Memory Access. VLDB, 1999
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/radix-join.pdf

