WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 2: Join

Xiangyao Yu
9/13/2021

Today’s Paper: Join

Join Processing in Database Systems
with Large Main Memories

LEONARD D. SHAPIRO
North Dakota State University

We study algorithms for computing the equijoin of two relations in a system with a standard
architecture but with large amounts of main memory. OQur algorithms are especially efficient when
the main memory available is a significant fraction of the size of one of the relations to be joined;
but they can be applied whenever there is memory equal to approximately the square root of the size
of one relation. We present a new algorithm which is a hybrid of two hash-based algorithms and
which dominates the other algorithms we present, including sort-merge. Even in a virtual memory
environment, the hybrid algorithm dominates all the others we study.

Finally, we describe how three popular tools to increase the efficiency of joins, namely filters, Babb
arrays, and semijoins, can be grafted onto any of our algorithms,

Categories and Subject Descriptors: H.2.0 [Database Management): General; H.2.4 [Database
Management): Systems—query processing; H.2.6 [Database Management): Database Machines

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Hash join, join processing, large main memory, sort-merge join

ACM Transactions on Database Systems, 1986

Agenda

System architecture and assumptions
Notations
Join algorithms
« Sort merge join
« Simple hash join
 GRACE hash join
» Hybrid hash join
Partition overflow and additional techniques

System Architecture and Assumptions

CPU: uniprocessor

CPU * Avoids sync complexity
« Could be built on systems of the day
Memory Memory
— Tens of Megabytes

~——— Block

Disk Focus only on equi-join

Notation

Relations: R, S (IRI<IS)
Join: S x R
Memory: M

| R I: number of blocks in relation R (similar for S and M)
F: hash table for R occupies | R | * F blocks

Join Algorithms

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S

Sort Merge Join

Phase 1: Produce sorted runs of S and R

Phase 2: Merge runs of S and R, output join result
R S

Unsorted R and S Sorted runs of Rand S

Sort Merge Join

Phase 1: Produce sorted runs of S and R
Phase 2: Merge runs of S and R, output join resuit

R S
5.8

Output
. if match — !

_,,

Unsorted R and S Sorted runs of Rand S Find matches in sorted runs °

Sort Merge Join — Phase 1

Phase 1: Produce sorted runs of S and R
« Each run of S will be 2 x | M | average length

Memory

Q: Where does 2 come from?
A: Replacement selection

Priority queue (heap)

iInput
buffer

output
buffer

Memory layout in Phase 1

10

Sort Merge Join — Replacement Selection

Min
output buffer Heap input buffer
Naive solution: Each run contains | M | blocks
 Load | M | blocks

« Sort
* Output | M | blocks

Sort Merge Join — Replacement Selection

Min

output buffer Heap input buffer

Replacement selection:
e load | M | blocks and sort

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output
save the tuple for next run (heap size reduces)
else
heap reorder

Sort Merge Join — Replacement Selection

Min
output buffer Heap input buffer
Replacement selection: Each run contains 2 x| M | blocks
° |Oad | M | bIOCkS and Sort https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

While heap is not empty
Output one tuple and load one tuple from input buffer
If the new tuple < any tuple in output
save the tuple for next run (heap size reduces)
else
heap reorder

13

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join — Replacement Selection

Min
output buffer Heap input buffer
Replacement selection: Each run contains 2 x| M | blocks
° IOad | M | bIOCkS and Sort https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html
While heap is not empty Total number of runs
Output one tuple and load one tuple from input buffer
| _ s | R | | S|
If the new tuple < any tuple in output = < —
save the tuple for next run (heap size reduces) 2X|M| 2X|M| | M |
else
heap reorder

14

https://opendsa-server.cs.vt.edu/ODSA/Books/Everything/html/ExternalSort.html

Sort Merge Join — Phase 2

Phase 2: Merge runs of S and R, output join result

* One input buffer required for each run

Memory
in-buf | in-buf in-buf
Ro R, R
in-buf | in-buf in-buf
S, S, 3

Memory layout in Phase 2

15

Sort Merge Join — Phase 2

Phase 2: Merge runs of S and R, output join result

* One input buffer required for each run

Requirement
| M | > total number runs

e | S|
Satisfied if M| = Tl
namely IM|=>|S|

Memory
in-buf | in-buf in-buf
Ro R, R
in-buf | in-buf in-buf
S, S, 3

Memory layout in Phase 2

16

Hash Join

Build a hash table on the smaller relation (R) and probe with larger (S)
Hash tables have overhead, call it F
When R doesn't fit fully in memory, partition hash space into ranges

Hash table on R
(size=IRI|xF)

17

Simple Hash Join

* Build a hash table on R

Hash table on R
(size=IRIxF)

Memory

18

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

—

e

write back
to disk

S

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory
* Read in S to join with the subset of R

—

e

write back
to disk

S

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 18t pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

] write back

—
—

write back to disk

e

to disk s

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 2" pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

—

write back
to disk

write back N
ISk
to dis S

Hash table on R
(size=IRIxF)

Memory

Simple Hash Join — 3" pass

* Build a hash table on R
* If R does not fit in memory, find a subset of buckets that fit in memory

* Read in S to join with the subset of R
* The remaining tuples of S and R are written back to disk

Hash table on R
(size=IRIxF)

Memory

23

GRACE Hash Join

Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

GRACE Hash Join

Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

Memory
out-buf | out-buf out-buf
Ro R; Ry

Memory layout in Phase 1

25

GRACE Hash Join

Phase 1: Partition both R and S into pairs of shards
Phase 2: Separately join each pairs of partitions

Memory
out-buf | out-buf out-buf
Sy S, S,

Memory layout in Phase 1

26

GRACE Hash Join

Phase 1: Partition both R and S into pairs of shards

Phase 2: Separately join each pairs of partitions

Memory

Hash table
for R,

Memory layout in Phase 2

27

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|]

28

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|]

In phase 2, the hash table of each shard of R must fit in memory

ﬂ><F<|M|
p <

29

GRACE Hash Join

Assume k partitions for R and S
In phase 1, needs one output buffer (i.e., block) for each partition

k<|M|]

In phase 2, the hash table of each shard of R must fit in memory

ﬂ><F <|M|
p <
The maximum size of R to perform Grace hash join:
M M |?
|R|£uk£| | M| >.|R|XF

F F

30

GRACE vs. Simple Hash Join

Whenl RIxF<IMI

« Simple hash join incurs no 10 traffic (better)
« GRACE hash join writes and reads each table once

When I MI2=zIRIxF>>IMI

« Simple hash join incurs significant 10 traffic
 GRACE hash join writes and reads each table once (better)

31

Hybrid Hash Join

When you have two algorithms that are good in different settings,
create a hybrid!

32

Hybrid Hash Join

When you have two algorithms that are good in different settings,

create a hybrid!

Memory
out-buf | out-buf out-buf
R, R, R,

Memory layout in Phase 1
of GRACE hash join

33

Hybrid Hash Join

When you have two algorithms that are good in different settings,

create a hybrid!

For example
e If IRI=2*IM]I
* R needs to be partitioned into only 2 shards
« Only 2 out-bufs are required for partitioning
* Rest of memory can be used to build hash

table for R to avoid writing some of R to disk

Memory
out-buf | out-buf out-buf
R, R, R,

Hash table for R,

Memory layout in Phase 1

of hybrid hash join

34

Hybrid Hash Join

Case1:IRIxF<IMI

* No need to partition R
* |dentical to simple hash join

Memory

Hash table for R,

Memory layout in Phase 1
of hybrid hash join

35

Hybrid Hash Join

Case1:IRIxF<IMI

* No need to partition R
* |dentical to simple hash join

Case2:IRIxF>1MI

* Need
« Similar to GRACE hash join

Memory
out-buf | out-buf out-buf
R, R, Rs
out-buf | out-buf SUt-buf
RS R4 R

Hash table for R, K

Memory layout in Phase 1
of hybrid hash join

36

Evaluation

Seconds A

N Sort Conclusion 1: Hash join
" ol Sormerge is generally better than
500 |- ®) Simple hash sort-merge join

200 L

_ Conclusion 2: Hybrid
(@) «© GRACE hash hash join is strictly
Hybrid hash better than simple and
GRACE hash joins

100 L

50

20 | Megabytes of

] 2 5 0 20 ;0 ? real memory

37

Partition Overflow

So far we assume uniform random distribution for R and S

What if we guess wrong on size required for R hash table and a
partition does not fit in memory?

Solution: further divide into smaller partitions range

38

Additional Techniques

Babb array (or bitmap filter)
« Set a bit for each R tuple
« Use to filter S during initial scan, discard tuple if missing in array

Semijoin
 Project join attributes from R, join to S, then join that result back to R

« Useful if full R tuples won't fit into memory, but join will be selective and filter
many S tuples

« Can be added to any join algorithm above

39

Join — Comments and Q/A

 Lack of experiments
 Conclusions still hold for modern systems?

« With duplicate join keys, a partition may never be smaller than
memory size

* Whyisarun2 x| M| long?

» Hash vs. Merge for already sorted data
* Join in a distributed system?

* |s the math/proof important?

* Multiple joins? non-equijoin?

40

Group Discussion

In a modern in-memory DBMS, the entire database fits in DRAM. In
such a system, can similar optimizations be applied based on the
performance gap between on-chip SRAM caches vs. DRAM? Please
discuss the opportunities and challenges of this approach.

41

Before Next Lecture

Submit review for
Peter Boncz, et al., Database Architecture Optimized for the

new Bottleneck: Memory Access. VLDB, 1999

42

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/radix-join.pdf

