WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 21: Replication

Xiangyao Yu
11/17/2021

Announcement

Each group meets with the instructor for 10 min to discuss the final
project
— Pick meeting time using the following google sheet:

https://docs.google.com/spreadsheets/d/1Hs-
1rXegGThZTyDOlytMi4SkPVVqJl-TOe5PP7bOel g/edit?usp=sharing

— Please email the instructor if need a different time

https://docs.google.com/spreadsheets/d/1Hs-1rXegGThZTyD0IytMi4SkPVVqJl-T0e5PP7bOeLg/edit?usp=sharing

Today’s Paper: Replication

The Dangers of Replication and a Solution
Jim Gray (Gray @Microsoft.com)
Pat Helland (PHelland @Microsoft.com)
Patrick O’Neil (POneil @cs.UMB.edu)
Dennis Shasha (Shasha@cs.NYU.edu)

Abstract: Update anywhere-anytime-anyway transactional
replication has unstable behavior as the workload scales up: a
ten-fold increase in nodes and traffic gives a thousand fold
increase in deadlocks or reconciliations. Master copy replica-
tion (primary copy) schemes reduce this problem. A simple
anal)uc model demonslrales these results. A new two-tier

is proposed that allows mobile
(dutamlzcled) appllcanons to propose tentative update trans-
actions that are later applied to a master copy. Commutative
update tr avoid the i ility of other replicaric
schemes.

1. Introduction

Eager replication delays or aborts an uncommitted trans-
action if committing it would violate serialization. Lazy
replication has a more difficult task because some replica
updates have already been committed when the serializa-
tion problem is first detected. There is usually no auto-
matic way to reverse the committed replica updates, rather
a program or person must reconcile conflicting transac-
tions.

To make this tangible, consider a joint checking account
you share with your spouse. Suppose it has $1,000 in it.
This account is replicated in three places: your check-
book, your spouse’s checkbook, and the bank’s ledger.

Eager ref assures that all three books have the

Data is replicated at multiple network nodes for
and availability. Eager replication keeps all replicas exactly
synchronized at all nodes by updating all the replicas as part of
one atomic transaction. Eager replication gives serializable
execution - there are no concurrency anomalies. But, eager
replication reduces update performance and increases transac-
tion response times because extra updates and messages are
added to the transaction.

same account balance. It prevents you and your spouse
from writing checks totaling more than $1,000. If you try
to overdraw your account, the transaction will fail.

Lazy replication allows both you and your spouse to write
checks totaling $1,000 for a total of $2,000 in withdraw-
als. When these checks arrived at the bank, or when you
commumczmd with your spouse, someone or something
the that used the virtual $1,000.

Eager replication is not an option for mobile app

where most nodes are normally disconnected. Mobile appli-
cations require lazy replicati i that asy

propagate replica updates to other nodes after the updaung
transaction commits. Some continuously connected systems
use lazy replication to improve response time.

Lazy replication also has shortcomings, the most serious being
stale data versions. When two transactions read and write data

It would be nice to automate this reconciliation. The bank
does that by rejecting updates that cause an overdraft.
This is a master replication scheme: the bank has the
master copy and only the bank’s updates really count.
Unfortunately, this works only for the bank. You, your
spouse, and your creditors are likely to spend considerable
time reccmcnlmg the “extra” thousand dollars worth of

concurrently, one transaction’s updates should be serialized
after the other’s. This avoids concurrency anomalies. Eager
replication typically uses a locking scheme to detect and regu-
late Lazy rep ion schemes typically
use a multi-version concurrency control scheme to detect non-
serializable behavior [Bernstein, Hadzilacos, Goodman],
[Berenson, et. al.]. Most multi-version isolation schemes pro-

In the your books will be incon-
sistent with the bank’s books. That makes it difficult for
you to perform further banking operations.

The database for a checking account is a single number,

and a log of updates to that number. It is the simplest

da(abase In reality, databases are more complex and the
lization issues are more subtle.

vide the transaction with the most recent d value.
Lazy replication may allow a ion to see a very old
committed value. Committed updates to a local value may be
“in transit” to this node if the update strategy is “lazy”.

Permission to make digitalhard copy of part or all ol this work for personal
or classroom use is granted without fee provided th: at copies are not made
or distributed for profit or commercial advar;l:ga the eupyngm notice, the
title of the publication and its date appear, tice is given that
capylng is by permission of ACM, Inc. To copy otherwise, to republish, to
po;;n l:wsrs or to redistribute 1o lists, requires priovtpoclﬁc Ppermission
an

SIGMOD '96 6/96 Montreal, Canada

© 1996 ACM 0-89791-794-4/96/0006...$3.50 173

SIGMOD 1996

The theme of this paper is that update-anywhere-anytime-

anyway replication is unstable.
If the number of checkbooks per account increases by
a factor of ten, the deadlock or reconciliation rates
rises by a factor of a thousand.

2. Disconnected operation and message delays mean
lazy replication has more frequent reconciliation.

Data Replication

Goal 1: High availability (HA)

— When a server fails, another replica can serve the requests (users do not
notice the failure)

— High availability vs. durability

Data Replication

Goal 1: High availability (HA)

— When a server fails, another replica can serve the requests (users do not
notice the failure)

— High availability vs. durability

Goal 2: Performance
— All replicas can serve (sometimes readonly) requests
— Can choose the geographically closest replica

Replication Methods — Lazy vs. Eager

Eager Figure 1: When (;eplicatcd, a simple single-node transaction
_ may apply its updates remotely either as part of the same
- Transactl_on updates records transaction (eager) or as separate transactions (lazy)., In either
in all replicas case, if data is replicated at N nodes, the transaction does N
times as much work
Asingle-node A three-node A three-node
Transaction Eager Transaction Lazy Transaction
Lazy : -
. (actually 3 Transactions)
. Writes A | PArite
— Transaction runs on one node o] 1R Wil
I Wit Write A i
and commits. | Coreni | [WikeB) ; v
— Replication happens in the B e B Wrie A
[Write C Write B
background as separate ® e b
transactions. Write © Commit
1Commit Vvtite A
Commit Write B
Cornmit Write C
Commit

Replication Methods — Group vs. Master

Master (Single-Master)

— Each record has a single
master node.

— The record can be updated
only in the master node.

Group (Multi-Master)

— Each record can be updated
in multiple nodes.

Figure 2: Updates may be controlled in two ways. Either
all updates emanate from a master copy of the object, or
updates may emanate from any. Group ownership has

many more chances for conflicting updates.
Object M aster Object Group
(no master)

Replication Methods

Table 1: A taxonomy of replication strategies confrast-
ing propagation strategy {eager or lazy) with the owner-
ship strateg

Propagation
VS,
Ownership

Lazy Eager

one transaction
N object owners

N transactions
N object owners
N transactions one transaction

one object owner | one object owner
N+1 transactions, one object owner
tentative local updates, eager base updates

Asingle-node A three-node
Transaction Eager Transaction
Wit A | [Wite A
Write B Write A |
Write C Write A
Comnit | [Write B
Wiite B
Write B
{Wiite C
Write C
Write C
Compmit
Commit
Commit

A three-node
Lazy Transaction
(actually 3 Transactions)

Wiite A
Wiite B
Write C
Commit
Write A
Write B
Write C
Commit
VWtite A
Write B
Wriite C
Commit

Object M aster

Object Group
(no master)

How do modern systems handle replication?

Table 1: A taxonomy of replication strategies contrast-
ing propagation strategy {eager or lazy) with the owner-
ship (master or
Propagation
VS,
Ownership

Group

N transactions one transaction
N object owners N object owners

N transactions one transaction

one object owner | one object owner
N+1 transactions, one object owner
tentative local updates, eager base updates

Master

Two Tier

Single-Master Replication

Modern single-master solutions
— Active-Passive
— Active-Active

10

Single-Master Replication — Active-Passive

Google Spanner ovagrs [“paropant | _ oo
— Transaction logic is processed in the leader e leader
leader replica . ‘manager
— Updates replicated to other replicas - lock table
through Paxos [_leader
— No locking performed in backup replica replica replica
repllcaS : Paxos = Paxos = Paxos :
tablet tablet tablet
E Colossus i E Colossus E E Colossus E
Data Center X Data Center Y Data Center Z

Source: Spanner: Google’s Globally-Distributed Database, OSDI 2012

11

Single-Master Replication — Active-Passive

Google Spanner

— Transaction logic is processed in the
leader replica

— Updates replicated to other replicas
through Paxos

— No locking performed in backup
replicas

— All replicas can serve readonly
transactions

— Only leaders serve read-write
transactions

— Transaction commits after replication
entirely done

other group's participant other group's
participant e=———= lead === participant
leader ‘ ea er_ leader
- transaction :
- manager -
. lock table
leader
replica replica replica
Paxos : &= Paxos = Paxos
tablet tablet tablet
| I I
' Colossus 1 ' Colossus 1 ' Colossus

Data Center X Data Center Y Data Center Z

Source: Spanner: Google’s Globally-Distributed Database, OSDI 2012

12

Single-Master Replication — Active-Passive

Amazon Aurora AZ 1 | AZ 2 | AZ 3
_ _ _ . TR POSPPTIY S SPPPPPIY : O et PP
— Single primary instance, multiple ; o o |
: . ;| Primary | ool :| Replica | ===t Replica
repllca Instances Instance : Instance ; Instance
B SR s— S SR
ASYNC | I
4/6 QUORUM I I
| |
........................... I.............................I..........................
1 C o m B [T em T
........................... :..-.-.\?JE;I}F-ESUTE.D-:--.-..‘
I |
| |
| !
o 1a |
: Amazon S3 :

Source: Amazon Aurora: Design Considerations for High Throughput
Cloud-Native Relational Databases, SIGMOD 2017

13

Single-Master Replication — Active-Passive

Amazon Aurora AZ 1 | AZ 2 | AZ 3
| | | | A2 O A O S
— Single primary instance, multiple ; o o |
: . | Primary | k—: Replica | —: Replica
replica instances | Instance [imwleii| instance [i==li| Instance |
— Only primary instance serves read- — e R e 5
write transactions 45 QUORUM | l
— Replica instances service readonly : :
transactions -- :.. :- -.
e e h e mreae e : \?Vl gm;lSUTED:
I |
| |
| |
ST | |
: Amazon S3 :

Source: Amazon Aurora: Design Considerations for High Throughput
Cloud-Native Relational Databases, SIGMOD 2017

14

Single-Master Replication — Active-Passive

Amazon Aurora AZ 1 : AZ 2 : AZ 3
_ _ _ _ AL S oo RN L hEs
— Single primary instance, multiple ; o N |
: . ;| Primary | ool :| Replica | ===t Replica
repllca Instances ;| Instance |: : ;| Instance |: ; | Instance |
— Only primary instance serves read- e S) = :
write transactions 45 QUORUM | l
— Replica instances service readonly : :
transactions -- :.-- :- -.
_ Updates replicated to replicas ' e e emasensssesessuesnecsass : DlSTR|BUTED:
through log shipping | B
— No locking performed in backup E * E
repllcas : Amazon S3 :

Source: Amazon Aurora: Design Considerations for High Throughput
Cloud-Native Relational Databases, SIGMOD 2017

15

Single-Master Replication — Active-Active

VOItDB Table
. . B Database Schema
— All replicas are symmetric Tt Tae
— Each replica executes transaction Tale
sequentially. l.e., no concurrency
control. f
A|B|C A" |B"|C" A" |B"|C" Run-Time
Partitioning &
D D D Replication

16

Single-Master Replication — Active-Active

VoltDB

— All replicas are symmetric

— Each replica executes transaction
sequentially. l.e., no concurrency
control.

— Key idea: determinism. Each
replica executes an identical
sequence of transactions and
produces identical updates

Database Schema

Run-Time
Partitioning &
Replication

17

Single-Master Replication — Active-Active

VoltDB

— All replicas are symmetric

— Each replica executes transaction
sequentially. l.e., no concurrency
control.

— Key idea: determinism. Each
replica executes an identical
sequence of transactions and
produces identical updates

— Only the transaction inputs (i.e.,
commands) need to be persistent
and replicated, which happens

before the transaction is executed

Q: How is this different from Multi-Master?

Database Schema

Run-Time
Partitioning &
Replication

18

Multi-Master Replication

Hyder

— Can access all records in each
server Network

f%—- a % - ~
. Transaction’s @ Committed state cache |
| input snapshot | 5 ' '

:'Transactionintention'] Cached log tail |

Scalable, Reliable Distributed Log a <

Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash

Flash |_Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash
Flash | Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash Flash

Source: Hyder — A Transactional Record Manager for Shared Flash, CIDR 2011 19

Multi-Master Replication

Hyder

— Can access all records in each
server

— When local transaction finishes,
write intention to a shared log

Internet

N

Transaction’s | (:) - Committed state cache |
| input snapshot | '
‘Transaction intention | | Cached log tail |
- J e
O

Scalable, Reliable Distributed Log <

~\

ash ash Flash ash
| Flash | Flash Flash Flash
[Flash [Fiash Flash ash

s (B)
EIE[Efl(&

Source: Hyder — A Transactional Record Manager for Shared Flash, CIDR 2011 20

Multi-Master Replication

Hyder
— Can access all records in each
server Network
— When local transaction finishes, Log g

write intention to a shared log
— Each server replays the shared | i N

log to de_tect conflicts and commit ‘i;;';;a;;;g;';t'ﬁ@ "~ Committed state cache |
transactions | * |

Transaction intention | . Cached log tail |

\. J \.

3)-

Source: Hyder — A Transactional Record Manager for Shared Flash, CIDR 2011 21

Revisit “The Danger of Replication”

Table 1: A taxonomy of replication strategies confrast- %;:;il;gﬁde EA th;ee-nod;i: A [}}ree-no(i?
ing propagation strategy {eager or lazy) with the owner- o SRS (actl[;:;; ﬁ?msagac?ons)
ship strategy (master or Write A ;Writeﬂ Wiite A
Write B Write A ' Wiite B
Write C Write A Write C
Cormit | [Wiite B Commit
Wiite B -
. Write B Write A
N transactions one transaction {Wiite C mg g
N object owners N object o Wiite C Comemi
N A .] wpers Wite & :
transactions one transaction Compmit Vtite A
one object owner | one object owner Commit Wiite B
Two Tier N+1 transactions, one object owner Commi m
tentative local updates, cager base updates
Object M aster Object Group
(no master)
Q: How do modern systems fit in
this taxonomy?

Source: Hyder — A Transactional Record Manager for Shared Flash, CIDR 2011 22

Lazy vs. Eager

Lazy: commit the transaction before replication completes

— Typically sacrifice ACID
— Widely used in NoSQL systems

23

Lazy vs. Eager

Lazy: commit the transaction before replication completes

— Typically sacrifice ACID
— Widely used in NoSQL systems

Eager: must finish replication before transaction commits
— Can still use optimizations to reduce lock holding time
— E.g., Silo and Coco

24

Coco”

Problem: 2PC and replication hurts throughput
— Because transactions hold locks during these long-latency operations

* Epoch-based Commit and Replication in Distributed OLTP Databases, VLDB 2021

25

Coco”

Problem: 2PC and replication hurts throughput
— Because transactions hold locks during these long-latency operations

Key idea: Epoch-based commit and replication
— Commit a batch of transactions at a time (similar to Silo)
— Within an epoch, can release locks without waiting for logging or replication

* Epoch-based Commit and Replication in Distributed OLTP Databases, VLDB 2021

26

Coco”

Problem: 2PC and replication hurts throughput
— Because transactions hold locks during these long-latency operations

Key idea: Epoch-based commit and replication
— Commit a batch of transactions at a time (similar to Silo)
— Within an epoch, can release locks without waiting for logging or replication

| 2PC w/o Replication | 2PC(Sync) I Epoch(Async)

~4x improvement
[]

l B | i
ol | - | I

S2PL PT-OCC LT-OCCS2PL PT-OCC LT-OCC PT-OCC LT-OCC

Throughput
(txns/sec)

Figure 6: Throughput on TPC-C

* Epoch-based Commit and Replication in Distributed OLTP Databases, VLDB 2021

ldeal Replication Scheme

Availability and scalability: Provide high availability and scalability
through replication, while avoiding instability

Mobility: Allow mobile nodes to read and update the database while
disconnected from the network
— Modern distributed databases typically give up this property

Serializability: Provide single-copy serializable transaction execution

Convergence: Provide convergence to avoid system delusion

28

Two-Tier Replication

Mobile nodes are disconnected much of the time. They store a
replica of the database and may originate tentative transactions. A
mobile node may be the master of some data items.

— Submit tentative transactions to base nodes when connected

Base nodes are always connected. They store a replica of the
database. Most items are mastered at base nodes

— Use lazy master replication

Modern systems implement two-tier replication in the application layer
rather than the database layer

29

Q/A — Replication

How is replication related to 2PC? Use different commit protocol to
update all replicas (same as eager?)

Relevance in modern systems?
What if the master fails?

Perform updates on replicas only when requesting data items?

30

Before Next Lecture

Submit review for

—Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database. VLDB,
2020

31

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aria.pdf

