
Xiangyao Yu
11/17/2021

CS 764: Topics in Database Management Systems
Lecture 21: Replication

1



Announcement
Each group meets with the instructor for 10 min to discuss the final 
project

– Pick meeting time using the following google sheet: 
https://docs.google.com/spreadsheets/d/1Hs-
1rXegGThZTyD0IytMi4SkPVVqJl-T0e5PP7bOeLg/edit?usp=sharing

– Please email the instructor if need a different time

2

https://docs.google.com/spreadsheets/d/1Hs-1rXegGThZTyD0IytMi4SkPVVqJl-T0e5PP7bOeLg/edit?usp=sharing


Today’s Paper: Replication

SIGMOD 1996
3



Data Replication
Goal 1: High availability (HA)

– When a server fails, another replica can serve the requests (users do not 
notice the failure)

– High availability vs. durability 

4



Data Replication
Goal 1: High availability (HA)

– When a server fails, another replica can serve the requests (users do not 
notice the failure)

– High availability vs. durability 

Goal 2: Performance 
– All replicas can serve (sometimes readonly) requests 
– Can choose the geographically closest replica

5



Replication Methods — Lazy vs. Eager

6

Eager 
– Transaction updates records 

in all replicas 

Lazy
– Transaction runs on one node 

and commits. 
– Replication happens in the 

background as separate 
transactions.



Replication Methods — Group vs. Master

7

Master (Single-Master)
– Each record has a single 

master node. 
– The record can be updated 

only in the master node. 

Group (Multi-Master)
– Each record can be updated 

in multiple nodes.



Replication Methods

8



How do modern systems handle replication?

9



Single-Master Replication
Modern single-master solutions

– Active-Passive
– Active-Active

10



Single-Master Replication — Active-Passive
Google Spanner

– Transaction logic is processed in the 
leader replica 

– Updates replicated to other replicas 
through Paxos

– No locking performed in backup 
replicas

11

Source: Spanner: Google’s Globally-Distributed Database, OSDI 2012



Single-Master Replication — Active-Passive
Google Spanner

– Transaction logic is processed in the 
leader replica 

– Updates replicated to other replicas 
through Paxos

– No locking performed in backup 
replicas

– All replicas can serve readonly
transactions

– Only leaders serve read-write 
transactions 

– Transaction commits after replication 
entirely done

12

Source: Spanner: Google’s Globally-Distributed Database, OSDI 2012



Single-Master Replication — Active-Passive
Amazon Aurora

– Single primary instance, multiple 
replica instances

13

Source: Amazon Aurora: Design Considerations for High Throughput 
Cloud-Native Relational Databases, SIGMOD 2017



Single-Master Replication — Active-Passive
Amazon Aurora

– Single primary instance, multiple 
replica instances

– Only primary instance serves read-
write transactions 

– Replica instances service readonly
transactions

14

Source: Amazon Aurora: Design Considerations for High Throughput 
Cloud-Native Relational Databases, SIGMOD 2017



Single-Master Replication — Active-Passive
Amazon Aurora

– Single primary instance, multiple 
replica instances

– Only primary instance serves read-
write transactions 

– Replica instances service readonly
transactions

– Updates replicated to replicas 
through log shipping

– No locking performed in backup 
replicas

15

Source: Amazon Aurora: Design Considerations for High Throughput 
Cloud-Native Relational Databases, SIGMOD 2017



Single-Master Replication — Active-Active

16

VoltDB
– All replicas are symmetric
– Each replica executes transaction 

sequentially. I.e., no concurrency 
control.



Single-Master Replication — Active-Active

17

VoltDB
– All replicas are symmetric
– Each replica executes transaction 

sequentially. I.e., no concurrency 
control.

– Key idea: determinism. Each 
replica executes an identical 
sequence of transactions and 
produces identical updates



Single-Master Replication — Active-Active

18

VoltDB
– All replicas are symmetric
– Each replica executes transaction 

sequentially. I.e., no concurrency 
control.

– Key idea: determinism. Each 
replica executes an identical 
sequence of transactions and 
produces identical updates

– Only the transaction inputs (i.e., 
commands) need to be persistent 
and replicated, which happens 
before the transaction is executed 

Q: How is this different from Multi-Master?



Multi-Master Replication

19

Hyder
– Can access all records in each 

server

Source: Hyder – A Transactional Record Manager for Shared Flash, CIDR 2011



Multi-Master Replication

20

Hyder
– Can access all records in each 

server
– When local transaction finishes, 

write intention to a shared log

Source: Hyder – A Transactional Record Manager for Shared Flash, CIDR 2011



Multi-Master Replication

21

Hyder
– Can access all records in each 

server
– When local transaction finishes, 

write intention to a shared log
– Each server replays the shared 

log to detect conflicts and commit 
transactions

Source: Hyder – A Transactional Record Manager for Shared Flash, CIDR 2011



Revisit “The Danger of Replication” 

22

Q: How do modern systems fit in 
this taxonomy? 

Source: Hyder – A Transactional Record Manager for Shared Flash, CIDR 2011



Lazy vs. Eager
Lazy: commit the transaction before replication completes 

– Typically sacrifice ACID 
– Widely used in NoSQL systems

23



Lazy vs. Eager
Lazy: commit the transaction before replication completes 

– Typically sacrifice ACID 
– Widely used in NoSQL systems

Eager: must finish replication before transaction commits
– Can still use optimizations to reduce lock holding time 
– E.g., Silo and Coco 

24



Coco*
Problem: 2PC and replication hurts throughput 

– Because transactions hold locks during these long-latency operations

25* Epoch-based Commit and Replication in Distributed OLTP Databases, VLDB 2021



Coco*
Problem: 2PC and replication hurts throughput 

– Because transactions hold locks during these long-latency operations

Key idea: Epoch-based commit and replication
– Commit a batch of transactions at a time (similar to Silo)
– Within an epoch, can release locks without waiting for logging or replication

26* Epoch-based Commit and Replication in Distributed OLTP Databases, VLDB 2021



Coco*
Problem: 2PC and replication hurts throughput 

– Because transactions hold locks during these long-latency operations

Key idea: Epoch-based commit and replication
– Commit a batch of transactions at a time (similar to Silo)
– Within an epoch, can release locks without waiting for logging or replication

27* Epoch-based Commit and Replication in Distributed OLTP Databases, VLDB 2021



Ideal Replication Scheme
Availability and scalability: Provide high availability and scalability 
through replication, while avoiding instability

Mobility: Allow mobile nodes to read and update the database while 
disconnected from the network

– Modern distributed databases typically give up this property

Serializability: Provide single-copy serializable transaction execution

Convergence: Provide convergence to avoid system delusion

28



Two-Tier Replication
Mobile nodes are disconnected much of the time. They store a 
replica of the database and may originate tentative transactions. A 
mobile node may be the master of some data items. 

– Submit tentative transactions to base nodes when connected 

Base nodes are always connected. They store a replica of the 
database. Most items are mastered at base nodes 

– Use lazy master replication 

Modern systems implement two-tier replication in the application layer 
rather than the database layer

29



Q/A – Replication

30

How is replication related to 2PC? Use different commit protocol to 
update all replicas (same as eager?)

Relevance in modern systems?

What if the master fails?

Perform updates on replicas only when requesting data items?



Before Next Lecture
Submit review for

– Yi Lu, et al., Aria: A Fast and Practical Deterministic OLTP Database. VLDB, 
2020

31

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/aria.pdf

