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CS 764: Topics in Database Management Systems
Lecture 22: Deterministic DBMS
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Announcement
Each group meets with the instructor for 10 min to discuss the final 
project

– Pick meeting time using the following google sheet: 
https://docs.google.com/spreadsheets/d/1Hs-
1rXegGThZTyD0IytMi4SkPVVqJl-T0e5PP7bOeLg/edit?usp=sharing

– Please email the instructor if need a different time
– Use the office hour zoom link (different from the lecture zoom link)
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Today’s Paper: Deterministic DBMS
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Distributed DBMS Overhead: Replication
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Two-phase commit (2PC)
incurs extra network traffic 
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2PC and replication 
degrade performance
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Deterministic Concurrency Control
Determine a batch of transactions and their order

– Each replica (i.e., site) executes the batch deterministically 
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Deterministic Concurrency Control
Step 1: Determine the 
order for a batch of 
transactions

Step 2: Replicate and 
persist the inputs of these 
transactions  

– input size < data log size

Step 3: Each replica 
executes transactions 
deterministically without 
2PC or replication
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Calvin [1]

Goal: Deterministically execute a batch of transactions using parallel 
hardware

11[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012
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Calvin [1]

Goal: Deterministically execute a batch of transactions using parallel 
hardware

Assumption: read and write sets are known before execution starts
=> Limitation 1: read/write sets not always available

Execution process: 
– A single thread acquires all locks following the deterministic order
– Worker threads execute transactions when their locks are acquired 
=> Limitation 2: the single locking thread can be a performance bottleneck

13[1] Thomson, Alexander, et al. "Calvin: fast distributed transactions for partitioned database systems." SIGMOD 2012



Calvin Example

The locking thread performs the following:
– Lock y (SH) and x (EX) and dispatch T1 for execution
– Lock z (SH) and add T2’s EX lock request into y’s waiting queue
– Add T3’s EX lock requests into z’s and y’s waiting queues

13/32

T1: read(y), write(x)       

T2: read(z), write(y)           
T3: write(z), write(x)



No requirement of knowing read/write sets
– All transactions in a batch read from the same snapshot and write to local 

write sets, in parallel
– Deterministically decide what transactions can commit based on the access 

set. 
– If abort, deterministically move to next batch

No global locking thread

Aria Deterministic Concurrency Control

Committed Aborted Unprocessed

!" !# !$ !%

!# !& !' !(

Batch )

Batch ) + 1

11/32



Key Technique: Deterministic Reservation [2]

[2] Blelloch, Guy E., et al. "Internally deterministic parallel algorithms can be fast." PPoPP 2012.

For each write(tuple x) by T
reservation[ h(x) ] = min(T.ID, reservation[ h(x) ])
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Write reservation table

Hash h()
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For each write(tuple x) by T
reservation[ h(x) ] = min(T.ID, reservation[ h(x) ])

After the entire batch is executed, T can commit if
– For every write w, T.ID = reservation[ h(w) ]
– For every read r, T.ID ≤ writes[ h(r) ]

0 1 … n
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Write reservation table

Hash h()

tuple x

T1 T2 T3

write-after-read write-after-readIntuition: Write-after-read (WAR) 
dependencies must point from right to left 
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T1: read(y), write(x)       

T2: read(z), write(y) 
T3: write(z), write(x)

Commit
Commit

Abort

For every write w, T.ID = reservation[ h(w) ]
For every read r, T.ID ≤ writes[ h(r) ] T1 T2 T3

write-after-write

write-after-read write-after-read



Limitation of Basic Aria

Observation: sometimes cannot commit in T1, T2, T3 order, 
but can commit in T3, T2, T1 order
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Write reservation table

T1 T2 T3

write-after-read write-after-read

Basic Aria requires all WAR dependencies 
to point left, which is too restrictive!



Optimization: Deterministic Reordering
Goal: Deterministically change the transaction order 

Key Idea: The execution is serializable as long as the dependency 
graph has no cycle

24/27



Optimization: Deterministic Reordering

T

Node allowed in basic Aria
Only left-pointing arrows permitted

T T

Nodes allowed in optimized Aria
Disallow left-in and left-out turns

For each write(tuple x) write-res[ h(x) ] = min(T.ID, write-res[ h(x) ])
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Optimization: Deterministic Reordering

T

Node allowed in basic Aria
Only left-pointing arrows permitted

T T

Nodes allowed in optimized Aria
Disallow left-in and left-out turns

For each write(tuple x) write-res[ h(x) ] = min(T.ID, write-res[ h(x) ])
For each read(tuple x)  read-res[ h(x) ] = min(T.ID, read-res[ h(x) ])
After the entire batch is executed, T can commit if

– For every write w, T.ID = write-res [ h(w) ]
– For every read r, T.ID ≤ write-res[ h(r) ] or for every write w, T.ID ≤ read-res[ h(w) ]

The algorithm is deterministic with no central bottleneck
24/27



Evaluation – Overall (YCSB)

A YCSB workload: 480k keys , 80/20 read/write, 10 keys per transaction, uniform distribution, 12 threads
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Evaluation – Deterministic Reordering

A YCSB workload: we vary the skew factor from 0 to 1
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Conclusions

Aria supports deterministic transaction execution with no prior 
knowledge of the read/write sets

Aria does not use a single thread to lock tuples sequentially 

Deterministic reordering further improves the performance of Aria
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Q/A – Deterministic DBMS

35

Reordering idea applied to OCC to reduce abort rate?
Starvation due to moving aborted transaction to next batch?
System crash before forwarding inputs to all replicas?
Sequencing layer becomes the bottleneck?
Large batch => large abort rate? 
TPC-C & YCSB   vs.   TPC-H & TPC-DS?
Reordering hurts fairness among transactions?
Commit phase of Aria similar to validation phase of OCC
How is Aria related to Snapshot Isolation?



Before Next Monday
Project meeting with instructor

Submit review for
– Donald Kossmann, et al., An Evaluation of Alternative Architectures for 

Transaction Processing in the Cloud. SIGMOD, 2010
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/cloud-oltp.pdf

