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ABSTRACT .
Amazon Aurora is a relational database service for Amazon Aurora development team wins the 2019 ACM

workloads offered as part of Amazon Web Services (AW SlGMOD Systems Award*

this paper, we describe the architecture of Aurora and the d
considerations leading to that architecture. We believe the ce] BY Werner Vogels on 04 July 2019 10:00 AM | Permalink | Comments (2)

constraint in high throughput data processing has moved
compute and storage to the network. Aurora brings a
architecture to the relational database to address this cons

most notably by pushing redo processing to a multi-tenant s s I G M XD /

out storage service, purpose-built for Aurora. We describe

doing so not only reduces network traffic, but also allows fo A M S
crash recovery, failovers to replicas without loss of data,

fault-tolerant, self-healing storage. We then describe how A T E R

achieves consensus on durable state across numerous s D A M 2 x 19

SIGMOD 2017




Cloud Database Architecture
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On-premises Cloud
* Fixed and limited hardware  Virtually infinite computation & storage,
resources Pay-as-you-go price model
« Shared-nothing architecture » Disaggregation architecture



Storage-Disaggregation Architecture

CPU CPU CPU
Mem Mem Mem
Network

o010
' ) (O (3 (=-
- -

Feature 1: Computation and storage layers are disaggregated
« Autoscaling computation and storage nodes

Feature 2: Limited computation can happen in the storage layer
REDO processing

Disadvantage: Network bottleneck
« Lower bandwidth and higher latency



Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?
« Concurrency control
Indexing
Buffer manager

Logging



Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?

« Concurrency control
* Indexing
« Buffer manager

* Logging
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Aurora — Single Master

Amazon Aurora DB Cluster

Availability Zone a Availability Zone b
- Primary - Aurora
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Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

Copy 1 Copy2 Copy3
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Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

For three copies
VvV, =2
V, =2

For six copies
vV, =4
V, =3
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3-Way Replication

AZ A AZ B AZ C
Copy 2 Copy 3

AZ: Availability zone
« AZs fail independently

Data is una_vailable _if one AZ is unavailable and one
other copy Is unavailable



6-Way Replication

AZ A AZ B AZ C
Copies 3, 4 Copies 5, 6

Can read if one AZ fails and one more node fails (AZ+1)
« Allow to rebuild a write quorum by adding additional replica

Can write if one AZ fails



Segmented Storage

Availability is determined by
« MTTF: Mean time to failure
« MTTR: Mean time to repair

Maximize availability
=> Minimize MTTR (MTTF is hard to reduce)

Segment: 10 GB block. Basic unit of failure and repair
Protection Group (PG): Six replication copies of a segment
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Network 10 in MySQL

AZ 1 @ AZ 2
Primary 5—5 Replica
Instance : . : Instance

Amazon Elastic
Block Store (EBS)

Amazon S3
TYPE OF WRITE

LOG BINLOG ‘ DATA
- DOUBLE-WRITE » FRMFILES

1O traffic
« REDO Log
* Binary log
 Data

 Double-write
 metadata (FRM)

Latency
« Steps 1, 3, and 5 are
sequential and synchronous
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Binary Log vs. REDO Log in MySQL

Primary

ol

Amazon Elastic
Block Store (EBS)
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! EBS miror

Amazon S3
TYPE OF WRITE

Instance : ‘ :

Replica
Instance

LOG BINLOG

FRMFILES

‘ DOUBLE-WRITE

DATA

1.

REDO log generated by InnoDB;
Binlog generated by MySQL and
supports other storage engines
REDO log is physical, Binlog can be
either physical or logical

A transaction writes a single Binlog
record but potentially multiple REDO
records
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MySQL vs. Aurora
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MySQL: DB writes both log and data pages to storage
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Aurora: DB writes only REDO log to storage
 The storage layer replays the log into data pages

Replica
Instance
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MySQL vs. Aurora — Network 10

Table 1: Network 10s for Aurora vs MySQL

Configuration Transactions IOs/Transaction

Mirrored MySQL 780,000 7.4
Aurora with Replicas | 27,378,000 0.95
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Storage Node
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Only Steps 1 & 2 are
in the foreground path
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Storage Node

STORAGE NODE
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Storage Node

STORAGE NODE
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Gossip with peers to

fill gaps
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Storage Node
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Storage Node

STORAGE NODE
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Storage Node

---------------------------------------

LOG RECORDS | COMING QUELE
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Periodically garbage
collect old versions
and periodically
validate CRC code on
pages

* Cyclic redundancy check (CRC) is
an error-detecting code
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Forward Processing — Write and Commit

DB

REDO
Log
AN

N— B

Storage

SN— -

Write: flush REDO log to storage
Commit: after all the log records are properly flushed



Forward Processing — Read

~ N
N ~— I
Storage
N — I

Buffer hit: read from main memory of the DB server
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Forward Processing — Read

DB

Storage}

Buffer hit: read from main memory of the DB server
Buffer miss: read page from storage
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Forward Processing — Eviction

i
Aurora: MySQL.:
discard dirty evict dirty page
— page — = to storage
Storage Storage

Buffer hit: read from main memory of the DB server
Buffer miss: read page from storage

Dirty eviction: discard dirty page (no write back to storage)
* The page in storage will be updated through replaying the REDO log 27



Read from One Quorum

AZA AZB AZC
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Q J “
* .
Q
- o o
D * -
* *
Q S .
- . **
Q R4 .
Q - o
R \d *
. o o*
0 ° -
o
*

\d
.
.
.
*
.
.
03
o
.

Three votes to read data

The DB server knows which node contains the latest value
=> A single read from the update-to-date node



Replication

REDO Log Read

Primary

replica

REDO
Log

A

-

Storage Layer

\_

If page is in replica’s local bufter, update the page
Otherwise, discard the log record



Evaluation — Aurora vs. MySQL
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Evaluation — Varying Data Sizes

Table 2: SysBench Write-Only (writes/sec)

DB Size Amazon Aurora MySQL
1 GB 107,000 8,400
10 GB 107,000 2,400
100 GB 101,000 1,500
1TB [ 41,000 ] 1,200

Performance drops when data does not fit in main memory

31



Evaluation — Real Customer Workloads

f firnes 11 | 14:14
\ i J Al 14

Web transactions response time ~  Aurora 3X faster on r3.4xlarge

| Before : 15ms

MYSGLY | Web ext Aurora Migration

32



Evaluation — Real Customer Workloads
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Aurora Multi-Master

Database REPLICATION (redo records) Database

que : : Node
(Writer) (Writer)

AZ - Availability Zone
SN - Storage Node

Any DB instance can access any data

The storage nodes detect conflicts at page granularity
« Pushing down concurrency control to the storage layer

* https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html
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Aurora Serverless

Applications

2

&

B
.

&

a

DB DB DB
storage storage storage

-

Aurora Database Storage
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Warm pool of
DB capacity

» https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html
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https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html

How does it work . ...

Get server from warm pool

Transfer buffer pool
Look for safe scale point

AWS
e I nvent © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

adWws

N

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018
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IN practice

.

How does it work
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© 2018, Amazon Web Services, Inc. or its affiliates. All rights recerved.

re: Invent
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* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018



Amazon Aurora — Q/A

» What if the redo log record is not available to all replicas?

* What if the storage node crashes after writing data but before data
replicated to other replicas?

* Why aren't undo logs be written?
* Is network a bigger bottleneck than compute and storage?
« Competitors of Aurora?

38



Before Next Lecture

Submit review for

« Benoit Dageville, et al., The Snowflake Elastic Data Warehouse. SIGMOD,
2016
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/snowflake.pdf

