WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 25: Amazon Aurora

Xiangyao Yu
12/1/2021

Today’s Paper

Amazon Aurora: Design Considerations for High
Throughput Cloud-Native Relational Databases

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, Xiaofeng Bao

Amazon Web Services

ABSTRACT .
Amazon Aurora is a relational database service for Amazon Aurora development team wins the 2019 ACM

workloads offered as part of Amazon Web Services (AW SlGMOD Systems Award*

this paper, we describe the architecture of Aurora and the d
considerations leading to that architecture. We believe the ce] BY Werner Vogels on 04 July 2019 10:00 AM | Permalink | Comments (2)

constraint in high throughput data processing has moved
compute and storage to the network. Aurora brings a
architecture to the relational database to address this cons

most notably by pushing redo processing to a multi-tenant s s I G M XD /

out storage service, purpose-built for Aurora. We describe

doing so not only reduces network traffic, but also allows fo A M S
crash recovery, failovers to replicas without loss of data,

fault-tolerant, self-healing storage. We then describe how A T E R

achieves consensus on durable state across numerous s D A M 2 x 19

SIGMOD 2017

Cloud Database Architecture

CPU CPU CPU CcPU cPU o
Mem Mem Mem
Mem Mem Mem Network

O 101010
- FEEE-
HDD HDD HDD HDD

On-premises Cloud
* Fixed and limited hardware Virtually infinite computation & storage,
resources Pay-as-you-go price model
« Shared-nothing architecture » Disaggregation architecture

Storage-Disaggregation Architecture

CPU CPU CPU
Mem Mem Mem
Network

o010
') (O (3 (=-
- -

Feature 1: Computation and storage layers are disaggregated
« Autoscaling computation and storage nodes

Feature 2: Limited computation can happen in the storage layer
REDO processing

Disadvantage: Network bottleneck
« Lower bandwidth and higher latency

Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?
« Concurrency control
Indexing
Buffer manager

Logging

Computation Pushdown in Cloud OLTP

What functions to push to the storage layer?

« Concurrency control
* Indexing
« Buffer manager

* Logging

Amazon
Aurora

Push redo processing into the

storage service

Data Plane

S

SQL

Transactions

-

——

Caching

N

Oo080no
Logging + Storage

l

Amazon S3

Control Plane

Amazon
DynamoDB

E]Il

Amazon SWF
Li 1

6

Aurora — Single Master

Amazon Aurora DB Cluster

Availability Zone a Availability Zone b
- Primary - Aurora

M Instance Replica

7
a5

BB [1

Data Copies Data Copies

Cluster Volume
o

Availability Zone c

- Aurora -

Replicas

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

Copy 1 Copy2 Copy3

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies
A read must acquire votes from V, copes

V,+V,>V = V,>V/2 For three copies
V.+V,>V Vy 22
V, =2

Copy 1 Copy2 Copy3

Quorum-Based Voting Protocol

Data replicated into V copies

A write must acquire votes from V,, copies

A read must acquire votes from V, copes
Vo +V,>V =YV, ,>V/2
V,+V,>V

For three copies
VvV, =2
V, =2

For six copies
vV, =4
V, =3
10

3-Way Replication

AZ A AZ B AZ C
Copy 2 Copy 3

AZ: Availability zone
« AZs fail independently

Data is una_vailable _if one AZ is unavailable and one
other copy Is unavailable

6-Way Replication

AZ A AZ B AZ C
Copies 3, 4 Copies 5, 6

Can read if one AZ fails and one more node fails (AZ+1)
« Allow to rebuild a write quorum by adding additional replica

Can write if one AZ fails

Segmented Storage

Availability is determined by
« MTTF: Mean time to failure
« MTTR: Mean time to repair

Maximize availability
=> Minimize MTTR (MTTF is hard to reduce)

Segment: 10 GB block. Basic unit of failure and repair
Protection Group (PG): Six replication copies of a segment

13

Network 10 in MySQL

AZ 1 @ AZ 2
Primary 5—5 Replica
Instance : . : Instance

Amazon Elastic
Block Store (EBS)

Amazon S3
TYPE OF WRITE

LOG BINLOG ‘ DATA
- DOUBLE-WRITE » FRMFILES

1O traffic
« REDO Log
* Binary log
 Data

 Double-write
 metadata (FRM)

Latency
« Steps 1, 3, and 5 are
sequential and synchronous

14

Binary Log vs. REDO Log in MySQL

Primary

ol

Amazon Elastic
Block Store (EBS)

o|

! EBS miror

Amazon S3
TYPE OF WRITE

Instance : ‘ :

Replica
Instance

LOG BINLOG

FRMFILES

‘ DOUBLE-WRITE

DATA

1.

REDO log generated by InnoDB;
Binlog generated by MySQL and
supports other storage engines
REDO log is physical, Binlog can be
either physical or logical

A transaction writes a single Binlog
record but potentially multiple REDO
records

15

MySQL vs. Aurora

: Primary : Repl
: Instance : . : Instance :
Am Elastic
Block Store (EBS) EBS

TTTTTTTTTTT

MySQL: DB writes both log and data pages to storage

DISTRIBUTED

I
AZ 1 | AZ 2
.................. _ :
: I :
Primary |:sslee:| Replica
Instance |- : ‘| Instance

I

.................. :
ASYNC I
4/SQUORUM|
1
I
I

[B | : [| H N
........................... |

I

| WRITES
I
I
I
I
I

I Amazon S3

Aurora: DB writes only REDO log to storage
 The storage layer replays the log into data pages

Replica
Instance

16

MySQL vs. Aurora — Network 10

Table 1: Network 10s for Aurora vs MySQL

Configuration Transactions IOs/Transaction

Mirrored MySQL 780,000 7.4
Aurora with Replicas | 27,378,000 0.95

17

Storage Node

Primary

LOG RECORDS

>

ACK

Instance ¢
Peer
Storage <
Nodes

S ORT
GROUP

PEER TO PEER GOSSIP

STORAGE NODE

INCOMING QUEU

. B

UPDATE
QUEUE

HOT

P

POINT IN TIME
SNAPSHOT

................ .
.
.
.
.
.
.
.

GC

COALESCE DATA
o } e 8 SCRUB o

S3 BACKUP

Only Steps 1 & 2 are
in the foreground path

18

Storage Node

STORAGE NODE

' INCOMING QUEUE :
LOG RECORDS “ o o .
COALESCE

ey —> »p.:I HGC - ldentify gaps in the log
Instance ¢ ‘ :
§ QUEUE 1

DATA

e } e 8 SCRUB

Peer PEER TO PEER GOSSIP. [T | :
Storage 4 ; d LoG '
Nodes o : a POINT IN TIME
1 SNAPSHOT
 c JI
l S3 BACKUP

19

Storage Node

STORAGE NODE

LOG RECORDS INCOMING QUEUE

> -
Primary 4 ACK GC :
Instance :
UPDATE
QUEUE COALESCE DATA
: u > B scrus o
: SORT
GROUP
e PEER TO PEER GOSSIP HOT
Storage ¢ : > B
— @ E POINT IN TIME
i SNAPSHOT
a h 4
[S3 BACKUP

Gossip with peers to

fill gaps

20

Storage Node

STORAGE NODE

: INCOMING QUEUE ‘5
LOG RECORDS o :
—p >l :
privary | o GC 5 Qoalesce log records
Instance : INnto data pageS
DATA
o
SORT :
GROUP | f
Peer PEER TO PEER GOSSIP. TS,
Storage (4 : LOG {
Nodes o : mmsP POINT IN TIME f
1 l SNAPSHOT
O |
[S3 BACKUP]

21

Storage Node

STORAGE NODE

: INCOMING QUEUE ‘5
LOG RECORDS o . . .
Primary [sor GC ~ Periodically stage log
Instance < z and pages to S3
UPDATE
QUEUE COALESCE DATA
N P Y scrus o
SORT
GROUPl
Peer PEER TO PEER GOSSIP HOT E
Storage |4 ; d LOG f
Nodes o : mmsP POINT IN TIME f
1 l SNAPSHOT
v
[S3 BACKUP]

22

Storage Node

LOG RECORDS | COMING QUELE

> -0
Primary ¢ ACK :
Instance : o
: UPDATE —_—
. QUEUE COALESCE, HNR)
: u P IR scrus
SORT e
GROUP
Peer PEER TO PEER GOSSIP
Storage |4 ;
Nodes o POINT IN TIME
SNAPSHOT
[S3 BACKUP

Periodically garbage
collect old versions
and periodically
validate CRC code on
pages

* Cyclic redundancy check (CRC) is
an error-detecting code

23

Forward Processing — Write and Commit

DB

REDO
Log
AN

N— B

Storage

SN— -

Write: flush REDO log to storage
Commit: after all the log records are properly flushed

Forward Processing — Read

~ N
N ~— I
Storage
N — I

Buffer hit: read from main memory of the DB server

25

Forward Processing — Read

DB

Storage}

Buffer hit: read from main memory of the DB server
Buffer miss: read page from storage

26

Forward Processing — Eviction

i
Aurora: MySQL.:
discard dirty evict dirty page
— page — = to storage
Storage Storage

Buffer hit: read from main memory of the DB server
Buffer miss: read page from storage

Dirty eviction: discard dirty page (no write back to storage)
* The page in storage will be updated through replaying the REDO log 27

Read from One Quorum

AZA AZB AZC

Copies 1, 2 Copies 3, 4 Copies 5, 6

Q J “
* .
Q
- o o
D * -
* *
Q S .
- . **
Q R4 .
Q - o
R \d *
. o o*
0 ° -
o
*

\d
.
.
.
*
.
.
03
o
.

Three votes to read data

The DB server knows which node contains the latest value
=> A single read from the update-to-date node

Replication

REDO Log Read

Primary

replica

REDO
Log

A

-

Storage Layer

_

If page is in replica’s local bufter, update the page
Otherwise, discard the log record

Evaluation — Aurora vs. MySQL

Writes per second

140000

120000

100000

80000

60000

40000

20000

SysBench Write Only
BMySQL 5.6 MySQL 5.7 [E Amazon Aurora

\

5l

R3.8xlarge

=]z D%D E%H =7l

R3.4xlarge

R3.2xlarge
Instance Type

R3.large R3.xlarge

Reads per second

700000

600000

500000

400000

300000

200000

100000

SysBench Read Only

BMySQL5.6

ol ﬁ%ﬂ

R3.xlarge

=z]

R3.2xlarge

Instance Type

R3.large

MySQL 5.7 [Amazon Aurora

DO

7
I

R3.4xlarge

DO

El B

R3.8xlarge

30

Evaluation — Varying Data Sizes

Table 2: SysBench Write-Only (writes/sec)

DB Size Amazon Aurora MySQL
1 GB 107,000 8,400
10 GB 107,000 2,400
100 GB 101,000 1,500
1TB [41,000] 1,200

Performance drops when data does not fit in main memory

31

Evaluation — Real Customer Workloads

f firnes 11 | 14:14
\ i J Al 14

Web transactions response time ~ Aurora 3X faster on r3.4xlarge

| Before : 15ms

MYSGLY | Web ext Aurora Migration

32

Evaluation — Real Customer Workloads

Kamchatka Auth Latency ms X0s B
90
80
70
| A
5(| \ A
A / I N\ I‘ \'\
5 / | J
& A I.'. "I I 2 i \\ \ V| ‘). \/ \[/ | |
A A An LIV “v‘A Al VY N f e v / | \
0N SNV VY \/ 1 VNVA B PY A L 1A A ¥ |
¥ Wy ATA vV
3C V) \
‘\
20 \
. |
10
0 - e —— N . - —
15:00 1800 21:00 Wed 29 03:00 06:00 09:00 12:00 15:00 18:00 21:00 0-00 § 03:00
. 0.68 Avg: 0.93 kamchatka.auth.latency_ms.med an kinesis_streamiluigi_history)
. 14 Avg: 25.82 kamchatka.auth.latency_ms.95percentile [kinesis_streamluigi_kstory]
Fi 9: SELECT 1 P50 vs P95
igure 9: atency (Vs)
l HfFJF‘\{'\’\‘ PP[recora ms ' 4 {}
10
80
pr kamchatka.root_record_processor.batch.record.latency_ms.95percentile
20
1 - i . - = — = T —_— =
06:00 12:00 180(Wed 29 06:00 120 18:00 Thu 3()60 0 0 1640
- 013 Avg 0.07 kamchatka. root_record_processor. batch.record . [kinesis_stream-luig_history}
. 188 Avg: 31.9 kamchatka.root_record_processor.batch.record... [kinesis_stream:luigi_history}

Figure 10: INSERT per-record latency (PS50 vs P95) 33

Aurora Multi-Master

Database REPLICATION (redo records) Database

que : : Node
(Writer) (Writer)

AZ - Availability Zone
SN - Storage Node

Any DB instance can access any data

The storage nodes detect conflicts at page granularity
« Pushing down concurrency control to the storage layer

* https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-multi-master.html

34

Aurora Serverless

Applications

2

&

B
.

&

a

DB DB DB
storage storage storage

-

Aurora Database Storage

~

o5 e— @00

Router fleet

aes .- -8

Warm pool of
DB capacity

» https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html

35

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.how-it-works.html

How does it work

Get server from warm pool

Transfer buffer pool
Look for safe scale point

AWS
e I nvent © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

adWws

N

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018

36

?

IN practice

.

How does it work

tps
3000

ACU

128

64

=
=
(o]
O
v
s
]
()
v

32

i
©
=
O
m
-
(&)
@
=
o)
=

16

2500

\\m 0LeL
09LL
0s0L
ove9
0£89
0ZL9
0L99
00sS
06%9
0829
0LL9
0909
0565
0¥8S
02LS
0¢9s
0LSS
0ors
0625
08LS
0405
096y
0S8y
ovLy
0g9v
0zsy
oLvy
oogvy
o6LYy
080¥
0L6%
098t
0SLE
ovog

2000

©
m
oo
o
S >
al
"4
wv Y
-
o

v
L
0
o
[
-
v
c

1500

1000

500

0gsg
(074 47
oLes
00Z%
060%
0862
0482
09LZ
0592
ovse
ogve
(V474
oLee
ooLz
0661
088l
0LLL
0991
0sstL
ovvL
ogeglL
ozl
oLLL
000L
068
08L
049
095
osv
ore
0g£Z
ozl

oL

adWs

© 2018, Amazon Web Services, Inc. or its affiliates. All rights recerved.

re: Invent

37

* Aurora Serverless: Scalable, Cost-Effective Application Deployment (DAT336) - AWS re:Invent 2018

Amazon Aurora — Q/A

» What if the redo log record is not available to all replicas?

* What if the storage node crashes after writing data but before data
replicated to other replicas?

* Why aren't undo logs be written?
* Is network a bigger bottleneck than compute and storage?
« Competitors of Aurora?

38

Before Next Lecture

Submit review for

« Benoit Dageville, et al., The Snowflake Elastic Data Warehouse. SIGMOD,
2016

39

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/snowflake.pdf

