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Announcements

DAWN workshop schedule

— Online workshop using the lecture zoom link

— Reserve a presentation slot using the following google sheet

https://docs.google.com/spreadsheets/d/1BkO3ZgxNXxHRKkI-
XTnHmMvQ1z66sS4LUVVIJiIHS6HIJl/edit?usp=sharing

— Each group has a 10 min slot: 8 min presentation + 2 min Q/A
— Live presentation preferred, but recording is also ok

Project report (DDL: Dec. 18)
— Sample reports available from the course website
— 57 pages sufficient. Content is more important than length.
— Submit to the hotcrp website (like the proposal)


https://docs.google.com/spreadsheets/d/1BkO3ZqxNXxHRkI-XTnHmvQ1z66sS4LUVvIJiHS6HIJI/edit?usp=sharing

Today’s Paper

The Snowflake Elastic Data Warehouse

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,
Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, Philipp Unterbrunner

Snowflake Computing

ABSTRACT

We live in the golden age of distributed computing. Pub-
lic cloud platforms now offer virtually unlimited compute
and storage resources on demand. At the same time, the
Software-as-a-Service (SaaS) model brings enterprise-class
systems to users who previously could not afford such sys-
tems due to their cost and complexity. Alas, traditional
data warehousing systems are struggling to fit into this new
environment. For one thing, they have been designed for
fixed resources and are thus unable to leverage the cloud’s

elasticity. For another thing, their ol
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1. INTRODUCTION

The advent of the cloud marks a move away from software
delivery and execution on local servers, and toward shared
data centers and software-as-a-service solutions hosted by
platform providers such as Amazon, Google, or Microsoft.
The shared infrastructure of the cloud promises increased

n
ETL pipelines and physical tuning is at odds with the flex-
ibility and freshness requirements of the cloud’s new types
of semi-structured data and rapidly evolving workloads.

We decided a fundamental redesign was in order. Our
mission was to build an enterprise-ready data warehousing
solution for the cloud. The result is the Snowflake Elastic
Data Warehouse, or “Snowflake” for short. Snowflake is a
multi-tenant, transactional, secure, highly scalable and elas-
tic system with full SQL support and built-in extensions for
semi-structured and schema-less data. The system is offered
as a pay-as-you-go service in the Amazon cloud. Users up-
load their data to the cloud and can immediately manage
and query it using familiar tools and interfaces. Implemen-
tation began in late 2012 and Snowflake has been generally
available since June 2015. Today, Snowflake is used in pro-
duction by a growing number of small and large organiza-
tions alike. The system runs several million queries per day
over multiple petabytes of data.

In this paper, we describe the design of Snowflake and
its novel multi-cluster, shared-data architecture. The paper
highlights some of the key features of Snowflake: extreme
elasticity and availability, semi-structured and schema-less
data, time travel, and end-to-end security. It concludes with
lessons learned and an outlook on ongoing work.

Categories and Subject Descriptors

Information systems [Data management systems|: Data-
base management system engines
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of scale, extreme scalability and availability, and
a pay-as-you-go cost model that adapts to unpredictable us-
age demands. But these advantages can only be captured
if the software itself is able to scale elastically over the pool
of commodity resources that is the cloud. Traditional data
warehousing solutions pre-date the cloud. They were de-
signed to run on small, static clusters of well-behaved ma-
chines, making them a poor architectural fit.

But not only the platform has changed. Data has changed
as well. It used to be the case that most of the data in a
data warehouse came from sources within the organization:
transactional systems, enterprise resource planning (ERP)
applications, customer relationship management (CRM) ap-
plications, and the like. The structure, volume, and rate of
the data were all fairly predictable and well known. But
with the cloud, a significant and rapidly growing share of
data comes from less controllable or external sources: ap-
plication logs, web applications, mobile devices, social me-
dia, sensor data (Internet of Things). In addition to the
growing volume, this data frequently arrives in schema-less,
semi-structured formats [3. Traditional data warehousing
solutions are struggling with this new data. These solu-
tions depend on deep ETL pipelines and physical tuning
that fundamentally assume predictable, slow-moving, and
easily categorized data from largely internal sources.

In response to these shortcomings, parts of the data ware-
housing community have turned to “Big Data” platforms
such as Hadoop or Spark [8] [I1). While these are indis-
pensable tools for data center-scale processing tasks, and the
open source community continues to make big improvements
such as the Stinger Initiative [48], they still lack much of the
efficiency and feature set of established data warehousing
technology. But most importantly, they require significant
engineering effort to roll out and use [16].

We believe that there is a large class of use cases and
workloads which can benefit from the economics, elasticity,
and service aspects of the cloud, but which are not well
served by either traditional data warehousing technology or

SIGMOD 2016



On-Premises vs. Cloud

CPU CPU CPU CPU CPU CPU
Mem Mem Mem
Mem Mem Mem Network
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On-premises Cloud
* Fixed and limited hardware  Virtually infinite computation & storage,
resources Pay-as-you-go price model
- Shared-nothing architecture * Disaggregation architecture



Shared Nothing — Advantages

Fact Table
Partition 1 Partition 2  Partition 3  Partition 4
CPU CPU CPU CPU Partition 1
Mem Mem Mem Mem | Partition 2
= - = = = -
o _ _ Partition 4
Scalability: horizontal scaling

« Scales well for star-schema queries

Dimension Table



Shared Nothing — Disadvantages

CPU

CPU

CPU

CPU

Mem Mem Mem Mem
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Heterogeneous workload
Static resource provisioning cannot adjust to
heterogeneous workloads

Workload A Workload B

CPU

Mem

Disk

More CPU intensive Less CPU intensive



Shared Nothing — Disadvantages
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Heterogeneous workload
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Add a node: data redistribution



Shared Nothing — Disadvantages

CPU CPU CPU CPU

Mem Mem Mem Mem
3 3 3 3
Heterogeneous workload

Membership changes
* Add a node: data redistribution
* Delete a node: similar to the fault tolerance problem



Shared Nothing — Disadvantages

CPU CPU CPU CPU

Mem Mem Mem Mem
3 3 3 3
Heterogeneous workload

Membership changes

Online upgrade
Similar to membership change but affect all nodes



Multi-Cluster Shared-Data Architecture
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Architecture — Storage

Data format: PAX

L Header
6482 2547 3249 8349
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Data horizontally partitioned into immutable files (~16MB)
— An update = remove and add an entire file
— Queries download file headers and columns they are interested in

Intermediate data spilling to S3



Architecture — Virtual Warehouse

T-Shirt sizes: XS to 4XL

Elasticity and Isolation
— Created, destroyed, or resized at any point (may shutdown all VWs)
— User may create multiple VWs for multiple queries

Workload A Workload B

Large VW Small VW

More CPU intensive Less CPU intensive 13



Architecture — Virtual Warehouse

Local caching
— S3 data can be cached in local memory or disk
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Architecture — Virtual Warehouse

Local caching

— S3 data can be cached in local memory or disk

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped
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Architecture — Virtual Warehouse

Local caching
— S3 data can be cached in local memory or disk

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU CPU CPU CPU
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Architecture — Virtual Warehouse

Local caching
— S3 data can be cached in local memory or disk

Consistent hashing

* When the hash table (n keys and o ) N B :
m slots) is resized, only n/m keys - 1

CPU CPU CPU CPU

need to be remapped
> > A 3
o]
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Architecture — Virtual Warehouse

Local caching
— S3 data can be cached in local memory or disk

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU CPU CPU CPU
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Architecture — Virtual Warehouse

Local caching ,
— S3 data can be cached in local memory or disk .

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

CPU CPU CPU CPU

* When a VW is resized, no data

shuffle required; rely on LRU to @ E E E 5
replace cache content
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Architecture — Virtual Warehouse

Local caching

— S3 data can be cached in local memory or disk

Consistent hashing

* When the hash table (n keys and
m slots) is resized, only n/m keys
need to be remapped

« When a VW is resized, no data
shuffle required; rely on LRU to
replace cache content

File stealing to tolerate skew

CPU CPU CPU CPU
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Architecture — Virtual Warehouse

Execution engine
— Columnar: SIMD, compression

— Vectorized: process a group of elements at a time
— Push-based

21



Architecture — Cloud Services

Multi-tenant layer shared across multiple users

Query optimization

Concurrency control

— Isolation: snapshot isolation (Sl)
— S3 data is immutable, update entire files with MVCC
— Versioned snapshots used for time traveling

Pruning
— Snowflake has no index (same as some other data warehousing systems)
— Min-max based pruning: store min and max values for a data block

22



High Availability and Fault Tolerance

Snowflake Web Ul, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer
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High Availability and Fault Tolerance

Snowflake Web Ul, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer
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High Availability and Fault Tolerance

Snowflake Web UI, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer
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: One node failure in VW

— Re-execute with failed node
immediately replaced

— Re-execute with reduced
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Hot-standby nodes
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High Availability and Fault Tolerance

Snowflake Web UI, BI Tools, ETL Tools, ODBC, JDBC, Python ...

Load Balancer

Services
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S3 is highly available and
durable
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Online Upgrade
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Semi-Structured Data

Extensible Markup Language (XML) JavaScript Object Notation(JSON)

<?xml version="1.0" encoding="UTF-8"2> {
<customers> "orders™: [
<customer> {
<customer id>1</customer id> "orderno™: "T48745375",
<first name>John</first name> "date": "June 30, 2088 1:54:23 LM",
<last_name>Doe</last_name> "trackingno™: "INO0O3%2391",
<email>john.doefexample.com</email> "custid™: "11045",
</customer> "customer™: [
<customer> {
<customer id>2</customer id> "custid": "11045",
<first name>Sam</first name> "fname": "3Sue",
<last name>Smith</last name> "lname": "Hatfield",
<email>sam.smith@example.com</email> "address": "140% Silver Street”,
</customer> "city"™: "Ashland",
<customer> “atatess THES.
"zip": "&3003"

<customer_id>3</customer_id>
<first name>Jane</first name>
<last_name>Doe</last name>
<email>jane.doefexample.com</email>
</customer> }
</customers>

28



Extract-Transform-Load (ETL)

4 )
<
-i- — Qﬁ = DATA
E Q WAREHOUSE

Export \ Transform ) Load

or BD

Transform (e.g., converting to column format) adds latency to the
system

29



ETLvs. ELT

P EEE— p—
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(MPP database)
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Extract [> Transform [> Load Extract & Load [> Transform
E->T->L E->L->T

Picture from https://aws.amazon.com/blogs/big-data/etl-and-elt-design-patterns-for-lake-
house-architecture-using-amazon-redshift-part-1/ 30



https://aws.amazon.com/blogs/big-data/etl-and-elt-design-patterns-for-lake-house-architecture-using-amazon-redshift-part-1/

Optimization for Semi-Structured Data

Automatic type inference

Hybrid columnar format

— Frequently paths are detected, projected out, and stored in separate
columns in table file (typed and compressed)

— Collect metadata on these columns for optimization (e.g., pruning)
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Q: What are the limitations of Snowflake’s design?
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A Follow-up Paper
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Building An Elastic Query Engine
on Disaggregated Storage

Midhul Vuppalapati, Justin Miron, and Rachit Agarwal, Cornell University;
Dan Truong, Ashish Motivala, and Thierry Cruanes, Snowflake Computing

https://www.usenix.org/conference/nsdi20/presentation/vuppalapati

This paper is included in the Proceedings of the
17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI '20)

February 25-27, 2020 « Santa Clara, CA, USA
978-1-939133-13-7

Open access to the Proceedings of the

17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI "20) is sponsored by

. I NetApp

Limitations of current Snowflake design
and potential research directions

— Decoupling of compute and ephemeral
storage

— Deep storage hierarchy
— Pricing at sub-second timescales

33



Distributed Ephemeral Storage

Intermediate data is short-lived

— Need low-latency and high
throughput

— Strong durability not needed

— Caching of intermediate data
VS. persistent data

— Query scheduling: locality-
aware task + work stealing

Snowflake Cloud Services

Runtime Runtime Runtime Run time Runtime
OS 0OS 0OS OS 0OS
: Distributed Ephemeral Storage
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Persistent Storage
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Lakehouse Architecture

Lakehouse: A New Generation of Open Platforms that Unify
Data Warehousing and Advanced Analytics

Michael Armbrust’, Ali Ghodsi'?, Reynold Xin!, Matei Zaharia'*
!Databricks, *UC Berkeley, *Stanford University

Abstract

This paper argues that the data warehouse architecture as we know
it today will wither in the coming years and be replaced by a new
architectural pattern, the Lakehouse, which will (i) be based on open
direct-access data formats, such as Apache Parquet, (ii) have first-
class support for machine learning and data science, and (iii) offer
state-of-the-art perfc . Lakeh can help address several
major chall with data h including data stal

reliability, total cost of ownership, data lock-in, and limited use-case
support. We discuss how the industry is already moving toward
Lakehouses and how this shift may affect work in data g

quality and governance downstream. In this architecture, a small
subset of data in the lake would later be ETLed to a downstream
data warehouse (such as Teradata) for the most important decision
support and BI applications. The use of open formats also made
data lake data directly accessible to a wide range of other analytics
engines, such as machine learning systems [30, 37, 42].

From 2015 onwards, cloud data lakes, such as §3, ADLS and GCS,
started replacing HDFS. They have superior durability (often =10
nines), geo-replication, and most importantly, extremely low cost
with the possibility of automatic, even cheaper, archival storage,
e.g., AWS Glacier. The rest of the architecture is largely the same in
the cloud as in the second generation systems, with a downstream

We also report results from a Lakehouse system using Parquet that
is competitive with popular cloud data warehouses on TPC-DS.

1 Introduction

This paper argues that the data warehouse architecture as we know
it today will wane in the coming years and be replaced by a new
architectural pattern, which we refer to as the Lakehouse, char-
acterized by (i) open direct-access data formats, such as Apache
Parquet and ORC, (ii) first-class support for machine learning and
data science workloads, and (iii) state-of-the-art performance.

The history of data warehousing started with helping business
leaders get analytical insights by collecting data from operational
databases into centralized warehouses, which then could be used
for decision support and business intelligence (BI). Data in these
warehouses would be written with schema-on-write, which ensured
that the data model was optimized for do BI on.
We refer to this as the first generation data analytics platforms.

A decade ago, the first generation systems started to face several
challenges. First, they typically coupled compute and storage into an
on-premises appliance. This forced enterprises to provision and pay
for the peak of user load and data under management, which became
very costly as datasets grew. Second, not only were datasets growing
rapidly, but more and more datasets were completely unstructured,
e.g., video, audio, and text documents, which data warehouses could
not store and query at all.

To solve these problems, the second generation data analytics
platforms started offloading all the raw data into data lakes: low-cost
storage systems with a file API that hold data in generic and usually
open file formats, such as Apache Parquet and ORC [8, 9]. This
approach started with the Apache Hadoop movement [5], using the
Hadoop File System (HDFS) for cheap storage. The data lake was a
schema-on-read architecture that enabled the agility of storing any
data at low cost, but on the other hand, punted the problem of data

This article is published under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/). 11th Annual Conference on Innovative
Data Systems Research (CIDR '21), January 11-15, 2021, Online.

CIDR 2021

data h such as Redshift or Snowflake. This two-tier data
lake + wareh archi e is now domi in the industry in
our experience (used at virtually all Fortune 500 enterprises).

This brings us to the challenges with current data architectures.
While the cloud data lake and warehouse architecture is ostensibly
cheap due to separate storage (e.g., 53) and compute (e.g., Redshift),
a two-tier architecture is highly complex for users. In the first gener-
ation platforms, all data was ETLed from operational data systems
directly into a warehouse. In today’s architectures, data is first
ETLed into lakes, and then again ELTed into warehouses, creating
complexity, delays, and new failure modes. Moreover, enterprise
use cases now include advanced analytics such as machine learning,
for which neither data lakes nor warehouses are ideal. Specifically,
today's data architectures commonly suffer from four problems:

Reliability. Keeping the data lake and warehouse consistent is
difficult and costly. Continuous engineering is required to ETL data
between the two systems and make it available to high-performance
decision support and BL. Each ETL step also risks incurring failures
or introducing bugs that reduce data quality, e.g., due to subtle
differences between the data lake and warehouse engines.

Data staleness. The data in the warehouse is stale compared to
that of the data lake, with new data frequently taking days to load.
This is a step back compared to the first generation of analytics
systems, where new operational data was immediately available for
queries. According to a survey by Dimensional Research and Five-
tran, 86% of analysts use out-of-date data and 62% report waiting
on engineering resources numerous times per month [47].

Limited support for advanced analytics. Businesses want to
ask predictive questions using their warehousing data, e.g., “which
customers should I offer discounts to?” Despite much research on
the confluence of ML and data management, none of the leading ma-
chine learning systems, such as TensorFlow, PyTorch and XGBoost,
work well on top of warehouses. Unlike BI queries, which extract a
small amount of data, these systems need to process large datasets
using complex non-SQL code. Reading this data via ODBC/JDBC
is inefficient, and there is no way to directly access the internal

35



Data Warehouse vs. Data Lake
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(a) First-generation platforms. (b) Current two-tier architectures. (c) Lakehouse platforms.

Lakehouse = Data warehouse + data lake 36



Snowflake — Q/A

How does Snowflake support ACID transactions?

Snowflake vs. Databricks, which is more promising?
Performance of Snowflake vs. AWS, Azure, and Cloudera?
How to guarantee security? Previous papers didn’t discuss it.
S metadata management a bottleneck?

What is the future trend? Shared-nothing?

Snowflake on storage service other than S37?
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Before Next Lecture

Submit review for
— Yifei Yang, et al., FlexPushdownDB: Hybrid Pushdown and Caching in a

Cloud DBMS. VLDB, 2021
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/fpdb.pdf

