WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 27: Pushdown DBMS

Xiangyao Yu
12/8/2021

Announcements

DAWN workshop

— Reserve a presentation slot using the following google sheet

https://docs.google.com/spreadsheets/d/1 BKO3ZgxNXxHRKkI-
XTnHmMmvQ1z66sS4LUVVIJiIHS6HIJI/edit?usp=sharing

Project report (DDL: Dec. 18)
— Submit to the hotcrp website (like the proposal)

Submit course evaluation on aefis.wisc.edu

https://docs.google.com/spreadsheets/d/1BkO3ZqxNXxHRkI-XTnHmvQ1z66sS4LUVvIJiHS6HIJI/edit?usp=sharing
http://aefis.wisc.edu/

Today’s Papers

PushdownDB: Accelerating a DBMS
Using S3 Computation

Xiangyao Yu*, Matt Youill!, Matthew Woicik', Abdurrahman Ghanem®,
Marco Semﬁm'w Ashraf Aboulnaga§ Michael Stonebraker!

*University of Wi in-Madi

h Institute of Technol

*Burnian *Qatar Computing Research Institute "University of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem@hbku.edu.qa,

marco@cs.umass.edu,

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analytics queries into the Simple Storage Service (S3) of
Amazon Web Services (AWS), using a recently released capability
called S3 Select. We show that some DBMS primitives (filter,
projection, and aggregation) can always be cost-effectively moved
into 83. Other more complex operations (join, top-K, and group-

by) require reis ion to take age of S3 Select
and are often candi for p We these
ilities through il i mlng a new DBMS that we
PvuhdawnDB E i with a ion of

quenes including TPC-H queries shows that PushdownDB is on
average 30% cheaper and 6.7x faster than a baseline that does
not use S3 Select.

1. INTRODUCTION

Clouds offer cheaper and more flexible computing than
“on-prem”. Not only can one add resources on the fly, the
large cloud vendors have major economies of scale relative to
“on-prem” deployment. Modern clouds employ an architecture
where the computation and storage are disaggregated — the
wo p are independently d and d
using a network. Such an architecture allows for independent
scaling of computation and storage, which simplifies the
management of storage and reduces its cost. A number of data
warehousing systems have been built to analyze data on dis-

d cloud storage, including Presto [1], flake [2],
Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects
the computation and storage layers can be a major performance
bottleneck. Two intuitive solutions are caching and compu-
tation pushdown. With caching, a compute server loads data
from the remote storage and caches it in main memory or local
storage, amortizing the network transfer cost. Caching has
been implemented i m Snowﬂake [2] and R:dshxft Spectrum [3],
[4]. With a
system (DBMS) pushes ns functionality as close to storage
as possible. Previous research [5] and systems (e.g., Britton-
Lee IDM 500 [6], Oracle Exadata server [7], and IBM Netezza
machine [8]) have shown that this can significantly improve
performance.

Recently, Amazon Web Services (AWS) introduced a fea-
ture called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
S3 [9]. This provides an opportunity to revisit the question of

edu.ga braker @csail.mit.edu

how to divide query processing tasks between S3 storage nodes
and normal computation nodes. The question is nontrivial as
the limited computational interface of S3 Select allows only
certain simple query opera(ors to be pushed into the smrage
layer, namely sel i and simple

Other operators require new implementations to take advan-
tage of S3 Select. Moreover, S3 Select pricing can be more
expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance
of computation pushdown when running queries in a cloud
setting with di d storage. Sp Ily, we consider
filter (with and without indexing), join, group-by, and top-K
as candidates. We implement these operators to take advan-
tage of computation pushdown through S3 Select and study
theu' cost and performance. We show dramatic performancc

pi and cost reduction, even with the relatively high
cost of S3 Select. In addition, we analyze queries from the
TPC-H benchmark and show similar benefits of performance
and cost. We point out the limitations of the current 83 Select
service and provide several suggestions based on the lessons
we learned from this project. To the best of our knowledge,
!his is the first ive study of pushde ¢ ing for

in a disaggregated architecture. A more
detailed descnpuon of this work can be found in [10].

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of
computing instances (i.e., EC2: Elastic Compute Cloud) and
storage services (ie., EBS: Elastic Block Store, EFS: Elastic
File System, and S3: Simple Storage Service). Compared to
other storage services, S3 is a highly available object store
that provides virtually infinite storage capacity for regular
users with relatively low cost, and is supported by many
popular cloud databases, including Presto [1], Hive [11], Spark
SQL [12], Redshift Spectrum [3], and Snowflake [2]. The
storage nodes in S3 are separate from compute nodes. Hence,
a DBMS uses S3 as a storage system and transfers needed
data over a network for query processing.

To reduce network traffic and the associated processing
on compute nodes, AWS released a new service called 53
Select [9] in 2018 to push limited computation to the storage
nodes. At the current time, S3 Select supports only selection,

ICDE 2020

FlexPushdownDB: Hybrid Pushdown and Caching
in a Cloud DBMS

Yifei Yangl, Matt Youill?, Matthew Woicik?®, Yizhou Liu®,
Xiangyao Yu', Marco Seraﬁni‘, Ash.raf Aboulnaga®, Michael Stonebraker®

lUm'vc:rsity of Wi in-Madi 2Burnian, *

1 ts Institute of Technology, *University of

Massachusetts-Amherst, ssza.r Computing Research Institute

Yyyang673@, liu773@, y@cs Jwisc.edu, “matt.y

umass. nln

5

"

com, *{ ik braker@csail Jmit.edu,

Inaga@hbku.edu.qa

ABSTRACT divides computation and storage into separate layers of servers con-
Modern cloud databases adopt a isaggregation architec- nected through the network, simplifying provisioning and enabling
ture that the of ion and storage. dependent scaling of However, d ion requires
A major bottleneck in such an architecture is the network con- ga principle of di DBMSs: “mave
necting the computation and storage layers. Two solutions have computation to data rather than data to computation”. Compared

to the traditional shared-nothing arck which embodies that

been explored to mitigate the bottleneck: caching and
pushdown. While both techniques can significantly reduce network

principle and stores data on local disks, the network in the disag-
ion architecture typically has lower bandwidth than local

traffic, existing DBMSs consider them as orth
and support only one or the other, leaving potential performance
benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud
DBMS prototype that supports fine-grained hybrid query execution
to combine the benefits of caching and computation pushdown in a
storage-disaggregation architecture. We build a hybrid query execu-
tor based on a new concept called separable operators to combine
the data from the cache and results from the pushdown processing.

disks, making it a potential performance bottleneck.

Two solutions have been explored to mitigate this network bot-
tleneck: caching and hdown. Both sol can
reduce the amount of data transfernad between the two layers.
Caching keeps the hot data in the computation layer. Examples in-
clude Snowflake [21, 48] and Presto with Alluxio cache service [14].
The Redshift [30] layer in Redshift Spectrum [8] can also be cnmld—

ered as a cache with user-controlled contents. With comp

We also propose a novel Weighted-LFU cache repl policy

that takes into account the cost of pushdown computation. Our
1

exp on the Star Schema hmark shows that
the hybrid i both the i caching-
only archi and pushd ly archi by 2.2x. In the

hybrid architecture, our experiments show that Weighted-LFU can
outperform the baseline LFU by 37%.

PVLDB Reference Format:

Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafini, Ashraf Aboulnaga, Michael Stonebraker. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11): 2101 -
2113, 2021.

doi:10.14778/3476249.3476265

PVLDB Artifact Availability:

‘The source code, data, and/or other artifacts have been made a
https:/github.com/cloud-olap/FlexPushdownDB.git.

1 INTRODUCTION

Database management systems (DBMSs) are gradually moving from
on-premises to the cloud for higher elasticity and lower cost. Mod-
e cloud DBMSs adopt a storage-disaggregation architecture that

‘This work is licensed under the Creative Commans BY-NC-ND 4.0 International
License. Visit d/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476265

VLDB 2021

P , filtering and are performed close to the
storage with only the results returned. Examples include Oracle
Exadata [49], IBM Netezza [23], AWS Redshift Spectrum [8], AWS
Aqua [12], and PushdownDB [53). The fund I reasons that
caching and pushdown have performance benefits are that local
‘memory and storage have higher bandwidth than the network and
that the internal bandwidth within the storage layer is also higher
than that of the network.

Existing DBMSs consider caching and computation pushdown
as orthogonal. Most systems implement only one of them. Some
systems, such as Exadata [49], Netezza [23], Redshift Spectrum [8],
and Presto [14] consider the two techniques as independent: query
operators can either access cached data (i.e., full tables) or push
down computation on remote data, but not both.

In this paper, we argue that caching and computation pushdown
are not orthogonal techniques, and that the rigid dichotomy of
existing systems leaves potential performance benefits unexploited.
We propose FlexPushdownDB (FPDB in short), an OLAP cloud DBMS
prototype that combines the benefits of caching and pushdown.

FPDB introduces the concept of separable operators, which com-
bine local ion on cached and pushd on the
segments in the cloud storage. This hybrid execution can leverage
cached data at a fine larity. While not all relati
are separable, some of the must commonly-used ones are, including
filtering, proj We i a merge operator to
combine the outputs from caching and pushdown.

open up new possibilities for caching. Tra-
ditional cache replacement policies assume that each miss requires

Storage-Disaggregation Architecture

CPU

CPU

CPU

Mem

Mem

Mem

Network

o010
') (O (3 (=-
- -

Features of disaggregation architecture
« Computation and storage layers are

disaggregated
» Limited computation can happen in the

storage layer

Storage-Disaggregation Architecture

CPU

CPU

CPU

Mem

Mem

Mem

Network

Advantages

* Lower management cost

o010
') (O (3 (=-
- -

Features of disaggregation architecture
« Computation and storage layers are

disaggregated
» Limited computation can happen in the

storage layer

Disadvantages
e Network becomes a bottleneck

* Independent scaling of computation
and storage

How to Mitigate the Network Bottleneck?

CPU CPU CPU
Mem Mem Mem
Network

o010
') (O (3 (=-
- -

Solution 1: Move data to computation
« Cache storage data in the computation layer
« Example: Snowflake

Solution 2: Move computation to data
« Pushdown computation to the storage layer
« Example: PushdownDB

PushdownDB Architecture

CPU
Mem

| Network |

CPU CPU CPU CPU

Key guestions to address in this project:
* How to implement relational operators to leverage existing cloud services?
« What are the performance and cost tradeoffs?

PushdownDB — Building Blocks

= EC2 (r4.8xl
Vo (r4.8xlarge)
Network |— 10 Gbit Ethernet

|—> S3 Select

@ @ @ @ I_’ Simple Storage Service (S3)

PushdownDB implementation

— Single-node, multi-process Python-based database
— Ubuntu 16.04.5 LTS, Python version 2.7.12.

Source code: https://github.com/yxymit/s3filter.qit

https://github.com/yxymit/s3filter.git

Simple Cloud Storage (S3)

CPU
Mem

Network

CPU CPU CPU CPU
Ei Ei @ ‘ |—> Simple Storage Service (S3)

Virtually infinite storage capacity with relatively low cost

Partition inB_ut relations into multiple shards, each shard is stored as a
separate object in S3

S3 vs. elastic block store (EBS) vs. local store
— Virtually infinite capacity, shared across all nodes, lower cost, durable

S3 Select

CPU Before: D@
Mem

Amazon S3

Network

CPU CPU CPU CPU S3 Select C T

’\m_«

SO0 "
Amazon S3

Supports limited SQL queries on CSV and Parquet data format
— S8 Select recognizes database schema for both data formats
— Simple queries with predicates and aggregation (no join, no group-by, no sort, etc.)

10

PushdownDB — Supported Operators

S3 Select supports PushdownDB supports
— Filter — Filter
— Project — Project
— Aggregate without group-by _ Top-K
— Join

— Group-by

11

Filter

Server-side filtering
— Compute server loads entire table from S3 and filters locally

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

CPU

Mem

12

Filter

Server-side filtering

— Compute server loads entire table from S3 and filters locally

S3-side filtering

— Push down predicate evaluation using S3 Select

CPU
Mem

Example query:
SELECT col1, col2
FROM R
WHERE col1 <10

ExEe

13

Join

Baseline Join
— Server loads both tables from S3 and joins locally

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O _CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O ORDERDATE < upper o orderdate

14

Join

Baseline Join
— Server loads both tables from S3 and joins locally

Filtered Join
— Server pushes filtering predicates to S3 to load both tables

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O _CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O _ORDERDATE < upper o_orderdate

15

Join

Bloom Join
— Step 1: Server loads the smaller table, builds a bloom filter using join key
— Step 2: Server sends the filter via S3 Select to load the bigger table
— Bloom filter is pushed down as a predicate

SELECT ...
FROM S30bject
WHERE SUBSTRING(’'1000011...111101101°',
((69 * CAST(attr as INT) + 92) % 97) $ 68 + 1, 1) = "1’

SELECT SUM(O TOTALPRICE)

FROM CUSTOMER, ORDER

WHERE
O CUSTKEY = C_CUSTKEY
AND C_ACCTBAL <= upper c_acctbal
AND O ORDERDATE < upper o orderdate

Evaluation — Join

Runtime
[Baseline Join [Filtered Join [Bloom Join
16 1 I) I U U
VA el
’g 12 B
D10k B
)
g S
§ 6 I O s RS RS
& Al
oL R b
O L L
N Q.Q Q Q Q Q

Bloom Filter False Positive Rate

SELECT SUM(O_ TOTALPRICE)
FROM CUSTOMER, ORDER
WHERE

O CUSTKEY =
AND C_ACCTBAL <= upper c_acctbal

C_CUSTKEY

Cost ($)

AND O ORDERDATE < upper o _orderdate

0.020

0.015

0.010

0.005

0.000

Cost Breakdown

[Baseline Join

[Filtered Join [Bloom Join

KN] Scan Cost
¥ /71 Transfer Cost| |

[Compute Cost
KX Request Cost

Bloom Filter False Positive Rate

17

Evaluation — All Operators and TPC-H

80 T T T T T T T T T T
o 70 SRR B PushdownDB (Baseline) [EEE PushdownDB (Optimized) |-
Q0 (5 () | ..o T |
% 5
A0 - B
-g 30k B e R R R
S 20t mmm] BB R R R R R
BTN DU S B R s BRI B DU DU DU R DA B

0
Filter Group-by Top-K Join TPCH Q1 TPCH Q3 TPCHQ6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
(a) Runtime

0-12 U T L . T U 1 1 1 1 T

010k [ComputeCost| =~ mm I PushdownDB (Baseline) [EZ@ PushdownDB (Optimized) | |
. LA Request Cost

@ 0.08 g KX ScanCost | pbA
% 0.06F R E [ZZ Transfer COSt |)

Filter Group-by Top-K Join TPCHQ1l TPCHQ3 TPCHQ6 TPCH Q14 TPCH Q17 TPCH Q19 Geo-Mean
(b) Cost

Overall, PushdownDB reduces runtime by 6.7x and reduces cost by 30%

18

Today’s Papers

PushdownDB: Accelerating a DBMS
Using S3 Computation

Xiangyao Yu*, Matt Youill!, Matthew Woicik', Abdurrahman Ghanem®,
Marco Semﬁm'w Ashraf Aboulnaga§ Michael Stonebraker!

*University of Wi in-Madi

h Institute of Technol

*Burnian *Qatar Computing Research Institute "University of Massachusetts Amherst
Email: yxy@cs.wisc.edu, matt.youill@burnian.com, mwoicik@mit.edu, abghanem@hbku.edu.qa,

marco@cs.umass.edu,

Abstract—This paper studies the effectiveness of pushing parts
of DBMS analytics queries into the Simple Storage Service (S3) of
Amazon Web Services (AWS), using a recently released capability
called S3 Select. We show that some DBMS primitives (filter,
projection, and aggregation) can always be cost-effectively moved
into 83. Other more complex operations (join, top-K, and group-

by) require reis ion to take age of S3 Select
and are often candi for p We these
ilities through il i mlng a new DBMS that we
PvuhdawnDB E i with a ion of

quenes including TPC-H queries shows that PushdownDB is on
average 30% cheaper and 6.7x faster than a baseline that does
not use S3 Select.

1. INTRODUCTION

Clouds offer cheaper and more flexible computing than
“on-prem”. Not only can one add resources on the fly, the
large cloud vendors have major economies of scale relative to
“on-prem” deployment. Modern clouds employ an architecture
where the computation and storage are disaggregated — the
wo p are independently d and d
using a network. Such an architecture allows for independent
scaling of computation and storage, which simplifies the
management of storage and reduces its cost. A number of data
warehousing systems have been built to analyze data on dis-

d cloud storage, including Presto [1], flake [2],
Redshift Spectrum [3], among others.

In a disaggregated architecture, the network that connects
the computation and storage layers can be a major performance
bottleneck. Two intuitive solutions are caching and compu-
tation pushdown. With caching, a compute server loads data
from the remote storage and caches it in main memory or local
storage, amortizing the network transfer cost. Caching has
been implemented i m Snowﬂake [2] and R:dshxft Spectrum [3],
[4]. With a
system (DBMS) pushes ns functionality as close to storage
as possible. Previous research [5] and systems (e.g., Britton-
Lee IDM 500 [6], Oracle Exadata server [7], and IBM Netezza
machine [8]) have shown that this can significantly improve
performance.

Recently, Amazon Web Services (AWS) introduced a fea-
ture called “S3 Select”, through which limited computation
can be pushed onto their shared cloud storage service called
S3 [9]. This provides an opportunity to revisit the question of

ICDE 2020

edu.ga braker @csail.mit.edu

how to divide query processing tasks between S3 storage nodes
and normal computation nodes. The question is nontrivial as
the limited computational interface of S3 Select allows only
certain simple query opera(ors to be pushed into the smrage
layer, namely sel i and simple

Other operators require new implementations to take advan-
tage of S3 Select. Moreover, S3 Select pricing can be more
expensive than computing on normal EC2 nodes.

In this paper, we set our goal to understand the performance
of computation pushdown when running queries in a cloud
setting with di d storage. Sp Ily, we consider
filter (with and without indexing), join, group-by, and top-K
as candidates. We implement these operators to take advan-
tage of computation pushdown through S3 Select and study
theu' cost and performance. We show dramatic performancc

pi and cost reduction, even with the relatively high
cost of S3 Select. In addition, we analyze queries from the
TPC-H benchmark and show similar benefits of performance
and cost. We point out the limitations of the current 83 Select
service and provide several suggestions based on the lessons
we learned from this project. To the best of our knowledge,
!his is the first ive study of pushde ¢ ing for

in a disaggregated architecture. A more
detailed descnpuon of this work can be found in [10].

II. DATA MANAGEMENT IN THE CLOUD

Cloud providers such as AWS offer a wide variety of
computing instances (i.e., EC2: Elastic Compute Cloud) and
storage services (ie., EBS: Elastic Block Store, EFS: Elastic
File System, and S3: Simple Storage Service). Compared to
other storage services, S3 is a highly available object store
that provides virtually infinite storage capacity for regular
users with relatively low cost, and is supported by many
popular cloud databases, including Presto [1], Hive [11], Spark
SQL [12], Redshift Spectrum [3], and Snowflake [2]. The
storage nodes in S3 are separate from compute nodes. Hence,
a DBMS uses S3 as a storage system and transfers needed
data over a network for query processing.

To reduce network traffic and the associated processing
on compute nodes, AWS released a new service called 53
Select [9] in 2018 to push limited computation to the storage
nodes. At the current time, S3 Select supports only selection,

FlexPushdownDB: Hybrid Pushdown and Caching
in a Cloud DBMS

Yifei Yangl, Matt Youill?, Matthew Woicik?®, Yizhou Liu®,
Xiangyao Yu', Marco Seraﬁni‘, Ash.raf Aboulnaga®, Michael Stonebraker®

lUm'vc:rsity of Wi in-Madi 2Burnian, *

1 ts Institute of Technology, *University of

Massachusetts-Amherst, ssza.r Computing Research Institute

Yyyang673@, liu773@, y@cs Jwisc.edu, “matt.y

umass. nln

com, *{ ik braker@csail Jmit.edu,

bonl ahbku.edu.qa

ABSTRACT divides computation and storage into separate layers of servers con-
Modern cloud databases adopt a isaggregation architec- nected through the network, simplifying provisioning and enabling
ture that the of ion and storage. dependent scaling of However, d ion requires
A major bottleneck in such an architecture is the network con- ga principle of di DBMSs: “mave
necting the computation and storage layers. Two solutions have computation to data rather than data to computation”. Compared

to the traditional shared-nothing arck which embodies that

been explored to mitigate the bottleneck: caching and
pushdown. While both techniques can significantly reduce network

principle and stores data on local disks, the network in the disag-
ion architecture typically has lower bandwidth than local

traffic, existing DBMSs consider them as orth
and support only one or the other, leaving potential performance
benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud
DBMS prototype that supports fine-grained hybrid query execution
to combine the benefits of caching and computation pushdown in a
storage-disaggregation architecture. We build a hybrid query execu-
tor based on a new concept called separable operators to combine
the data from the cache and results from the pushdown processing.

disks, making it a potential performance bottleneck.

Two solutions have been explored to mitigate this network bot-
tleneck: caching and hdown. Both sol can
reduce the amount of data transfernad between the two layers.
Caching keeps the hot data in the computation layer. Examples in-
clude Snowflake [21, 48] and Presto with Alluxio cache service [14].
The Redshift [30] layer in Redshift Spectrum [8] can also be cnmld—

ered as a cache with user-controlled contents. With comp

We also propose a novel Weighted-LFU cache repl policy

that takes into account the cost of pushdown computation. Our
1

exp on the Star Schema hmark shows that
the hybrid i both the i caching-
only archi and pushd ly archi by 2.2x. In the

hybrid architecture, our experiments show that Weighted-LFU can
outperform the baseline LFU by 37%.

PVLDB Reference Format:

Yifei Yang, Matt Youill, Matthew Woicik, Yizhou Liu, Xiangyao Yu, Marco
Serafini, Ashraf Aboulnaga, Michael Stonebraker. FlexPushdownDB:
Hybrid Pushdown and Caching in a Cloud DBMS. PVLDB, 14(11): 2101 -
2113, 2021.

doi:10.14778/3476249.3476265

PVLDB Artifact Availability:

‘The source code, data, and/or other artifacts have been made a
https:/github.com/cloud-olap/FlexPushdownDB.git.

1 INTRODUCTION

Database management systems (DBMSs) are gradually moving from
on-premises to the cloud for higher elasticity and lower cost. Mod-
e cloud DBMSs adopt a storage-disaggregation architecture that

‘This work is licensed under the Creative Commans BY-NC-ND 4.0 International
License. Visit d/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476265

P , filtering and ion are performed close to the
storage with only the results returned. Examples include Oracle
Exadata [49], IBM Netezza [23], AWS Redshift Spectrum [8], AWS
Aqua [12], and PushdownDB [53). The fund I reasons that
caching and pushdown have performance benefits are that local
‘memory and storage have higher bandwidth than the network and
that the internal bandwidth within the storage layer is also higher
than that of the network.

Existing DBMSs consider caching and computation pushdown
as orthogonal. Most systems implement only one of them. Some
systems, such as Exadata [49], Netezza [23], Redshift Spectrum [8],
and Presto [14] consider the two techniques as independent: query
operators can either access cached data (i.e., full tables) or push
down computation on remote data, but not both.

In this paper, we argue that caching and computation pushdown
are not orthogonal techniques, and that the rigid dichotomy of
existing systems leaves potential performance benefits unexploited.
We propose FlexPushdownDB (FPDB in short), an OLAP cloud DBMS
prototype that combines the benefits of caching and pushdown.

FPDB introduces the concept of separable operators, which com-
bine local ion on cached and pushd on the
segments in the cloud storage. This hybrid execution can leverage
cached data at a fine larity. While not all relati
are separable, some of the must commonly-used ones are, including
filtering, proj We introduce a merge operator to
combine the outputs from caching and pushdown.

open up new possibilities for caching. Tra-
ditional cache replacement policies assume that each miss requires

VLDB 2021

19

Mitigate Network Bottleneck

Baseline: always load data from cloud storage (e.g., S3)
— Examples: default presto, hive, SparkSQL, etc.

20

Mitigate Network Bottleneck

Local H i W f H
Cache I
Caching

table data

Baseline: always load data from cloud storage (e.g., S3)

Caching: cache hot table data in the compute node
— Examples: Snowflake, redshift spectrum (static), Alluxio, etc.

21

Mitigate Network Bottleneck

LOC&] m i m f m m i m i m
Cache P 5 @
Caching Pushdown results
table data

Baseline: always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage
— Examples: Redshift spectrum, Aqua, PushdownDB, etc.

22

Caching vs. Pushdown

Caching performance
Caching-only iIncreases with a bigger cache

Pushdown-only _Pushdown performance is
iIndependent of cache size

Runtime

Cache size

23

Caching vs. Pushdown

Runtime

Caching-only

Hybrid

Pushdown-only

Cache size

Caching performance
iIncreases with a bigger cache

Pushdown performance is
iIndependent of cache size

A hybrid design may achieve
the best of both worlds

24

Mitigate Network Bottleneck

o, IR o, o,
0=0 0=0 0=0
333 e [0)883 333
?i 0020 02020
Caching Pushdown results

table data
loee . soee

Baseline (Pullup): always load data from cloud storage (e.g., S3)
Caching: cache hot table data in the compute node

Pushdown: push down selection, projection, aggregation to storage
Hybrid: hybrid caching and pushdown at fine granularity

FlexPushdownDB (FPDB) Overview

Design choices
— Cache table data rather than query results for simplicity

Source code: https://github.com/cloud-olap/FlexPushdownDB

26

https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Design choices
— Cache table data rather than query results for simplicity
— Segment as the caching granularity

Employee

m_ Partition 1

Source code: https://github.com/cloud-olap/FlexPushdownDB

27

https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Design choices
— Cache table data rather than query results for simplicity
— Segment as the caching granularity

Employee

Partition 2

Partition 1

Segment

Source code: https://github.com/cloud-olap/FlexPushdownDB

28

https://github.com/cloud-olap/FlexPushdownDB

FlexPushdownDB (FPDB) Overview

Main modules

Query plan
—_—

[

Hybrid executor

ﬁ °

Cache manager

Admission
. Eviction

Caching

Local Cache

i request

02020

| R

v

]

]

29

FlexPushdownDB (FPDB)

Separable operators

— Can execute separately using
cached segments and cloud
storage

— Example: projection, selection,
aggregation, hash join (partially)

Il
-

1

Local Cache

<

(a) Original Query Plan

11

[

Local Cache

r Merge
Scan

|

Scan

OOe
<<~

(b) Separable Query Plan

30

FlexPushdownDB (FPDB)

Separable operators

— Can execute separately using
cached segments and cloud
storage

— Example: projection, selection,
aggregation, hash join (partially)

Query execution

— Heuristic: exploit caching when
possible, otherwise pushdown as
much as possible

Il
-

1

Local Cache

<

(a) Original Query Plan

11

Merge

Scan

[

Local Cache

Scan

OOe

<

(b) Separable Query Plan

31

Separable Query Plan — Example

1

Group-by

I

Hash Join

T

(Relation R)

Filtering Scan

Merge | (Relation S)

SELECT R.B,
FROM R, S
WHERE R.A =
GROUP BY R.B

sum(S.D)

S.C AND R.B > 10 AND S.D > 20

Filtering Scan || Filtering Scan

Local Cache

©

A, (|| B;

Relation R

Filtering Scan

Filtering Scan

A

B,

Ay

B,

==

®

02

Ci ||| D

G

D,

Relation S

G

D,

G

D,

5

Cloud Storage

32

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

33

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost,
and should be considered for cached with higher priority

34

Cache Manager

Traditional caching assumption: Equal-size cache misses incur
the same cost

In FPDB, misses that cannot exploit pushdown have higher cost,
and should be considered for cached with higher priority

Weighted-LFU cache replacement policy
— Increment the frequency counter with the estimate miss cost
— Estimated miss cost = network cost + scan cost + compute cost

35

Performance Evaluation

Conclusion:

—eo— Pullup Pushdown-only @ —— Caching-only ¥ —&— Hybrid
500

Runtime (sec)
N W
S o o
(o] (o] o

f—
o
o

-

o) 10 15 20 25
Cache Size (GB)

FPDB outperforms baselines by 2.2x

36

Evaluation — Weighted-LFU

mmm Hybrid (LFU) msm Hybrid (WLFU)

)]
-

Runtime (sec)
N
)

(N
-

0.6 0.9 1.2
Skew Factor (6)

Weighted-LFU outperforms the baseline LFU by 37%

37

Evaluation — Resource Usage

Table 2: Network Usage (GB) of different architectures.

Architecture Pullup PD-only CA-only Hybrid

Usage 460.9 371 112.6

38

Evaluation — Resource Usage

Table 2: Network Usage (GB) of different architectures.

Architecture Pullup PD-only CA-only Hybrid
Usage 460.9 371 112.6 7.9

Table 3: CPU Usage (with dedicated compute servers) — CPU time

(in minutes) of different architectures (normalized to the time of 1
vCPU).

Architecture Pullup PD-only CA-only Hybrid

Compute 249.6 48.5 70.3 23.2
Storage 0.0 31.1 0.0 7.4

Total 249.6 79.6 70.3

39

Pushdown DBMS — Q/A

Caching query results better than caching input tables?

When it is able to pushdown, is it always better to pushdown?

ML-based model to replace benefit-based caching?

More accurate way to estimate the weights in WLFU?

W
W
W

ny caching and pushdown were orthogonal in other systems?
nat is the most significant difficulty in this work?

Ny use exiting storage services instead of inventing new ones?

Pre-known the R/W set for WLFU?
Compute layer’s disk used for anything by FPDB?

40

Pushdown DBMS — Q/A

Collaborative caching across multiple compute nodes?
Limitations of FPDB?

Can support other storage services? Why S37

Hybrid caching and pushdown for OLTP workload?
Row-store vs. column-store database?

41

Next Week

DAWN Workshop

— Online workshop using the lecture zoom link

— Reserve a presentation slot using the following google sheet

https://docs.google.com/spreadsheets/d/1BkO3ZgxNXxHRKkI-
XTnHmMvQ1z66sS4LUVVIJiHS6HIJI/edit?usp=sharing

— Each group has a 10 min slot: 8 min presentation + 2 min Q/A
— Live presentation preferred, but recording is also ok

Submit course evaluation on aefis.wisc.edu

42

https://docs.google.com/spreadsheets/d/1BkO3ZqxNXxHRkI-XTnHmvQ1z66sS4LUVvIJiHS6HIJI/edit?usp=sharing
http://aefis.wisc.edu/

