WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 5: Buffer Management with NVM

Xiangyao Yu
9/22/2021

Research Data Management Track Paper

SIGMOD 21, June 20-25, 2021, Virtual Event, China

Spitfire: A Three-Tier Buffer Manager for Volatile and
Non-Volatile Memory

Xinjing Zhou Joy Arulraj
i »gmail.com arulraj@ h.edu
Tencent Inc. Georgia Institute of
Technology
Abstract
The design of the buffer manager in database management sys-
tems (DBMSS) is infl d by the p I istics of

volatile memory (i.e, DRAM) and non-volatile storage (e.g., SSD).
The key design assumptions have been that the data must be mi-
grated to DRAM for the DBMS to operate on it and that storage
is orders of magnitude slower than DRAM. But the arrival of new
non-volatile memory (NVM) technologies that are nearly as fast as
DRAM invalidates these previous assumptions.

Researchers have recently designed Hymes, a novel buffer man-
ager for a three-tier storage hierarchy comprising of DRAM, NVM,
and SSD. Hymem supports cache-line-grained loading and an NVM-
aware data migration policy. While these optimizations improve
its throughput, Hymem suffers from two limitations. First, it is a
single-threaded buffer manager. Second, it is evaluated on an NVM
emulation platform. These limitations constrain the utility of the
insights obtained using Hymem.

In this paper, we present SPITFIRE, a multi-threaded, three-tier
buffer manager that is evaluated on real NVM hardware. We intro-
duce a general k for ing about data migration in a
multi-tier storage hierarchy. We illustrate the limitations of the opti-
mizations used in HyMEM on Optane and then discuss how SPITFIRE

i them. We d that the data ion policy
has to be tailored based on the characteristics of the devices and

the workload. Given this, we present a machine learning technique
for automatically adapting the policy for an arbitrary workload and
storage hierarchy. Our experiments show that SprTFIRE works well
across different workloads and storage hierarchies.

ACM Reference Format:

Xinjing Zhou, Joy Arulraj, Andrew Pavlo, and David Cohen. 2021. Spitfire:
A Three-Tier Buffer Manager for Volatile and Non-Volatile Memory. In
Proceedings of the 2021 International Conference on Management of Data
(SIGMOD '21), June 20-25, 2021, Virtual Event, China. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3448016.3452819

1 Introduction

‘The techniques for buffer management in a canonical DRAM-SSD
hierarchy are predicated on the assumptions that: (1) the data must

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fiee. Request permissions from permissions@acm.org,

SIGMOD °21, June 20-25, 2021, Virtual Event, China

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8343-1/21/06....$15.00

hitps://do org/10.1145/3448016 3452819

Andrew Pavlo David Cohen
pavlo@cs.cmu.edu david.e.cohen@intel.com
Carnegie Mellon University Intel

2195

be copied from SSD to DRAM for the DBMS to operate on it, and that
(2) storage is orders of magnitude slower than DRAM [4, 16). But
emerging non-volatile memory (NVM) technologies upend these
design assumptions. They support low latency reads and writes
comparable to DRAM, but with persistent writes and large storage
capacity like an SSD. In a DRAM-SSD hierarchy, the buffer manager
decides what pages to move between disk and memory and when
to move them. However, with a DRAM-NVM-SSD hierarchy, in
addition to these decisions, it must also decide where to move them
(i.e., which storage tier).

Prior Work. Recently, researchers have designed Hymem, a novel
three-tier buffer manager for a DRAM-NVM-SSD hierarchy [37).
Hymem employs a set of optimizations tailored for NVM. It adopts a
data migration policy consisting of four decisions: DRAM admi
DRAM eviction, NVM admission, and NVM eviction. @ Initially, a
newly-allocated 16 KB page resides on SSD. When a transaction
requests that page, HymeM eagerly admits the entire page to DRAM.
@ DRAM eviction is the next decision that it takes to reclaim space.
It uses the CLOCK algorithm for picking the victim page [34]. ®
Next, it must decide whether that page must be admitted to the
NVM buffer (if it is not already present in that buffer). Hymem seeks
to identify warm pages. It maintains a queue of recently considered
pages to make the NVM admission decision. It admits pages that
were recently denied admission. Each time a page is considered for
admission, Hymem checks whether the page is in the admission
queue. If so, it is removed from the queue and admitted into the
NVM buffer. Otherwise, it is added to the queue and directly moved
to SSD, thereby bypassing the NVM buffer. @ Lastly, it uses the
CLOCK algorithm for evicting a page from the NVM buffer.

HyMEM supports cache-line-grained loading to improve the uti-
lization of NVM bandwidth. Unlike SSD, NVM supports low-latency
access to 256 B blocks. Hyme uses cache line-grained loading to
extract only the hot data objects from an otherwise cold 16 KB page.
By only loading those cache lines that are needed, Hysmem lowers
its bandwidth consumption.

HyMEM supports a mini page layout for reducing the DRAM
footprint of cache-line-grained pages. This layout allows it to effi-
ciently keep track of which cachelines are loaded. When the mini
page overflows (ie. all sixteen cache lines are loaded), Hysem
transparently promotes it to a full page.

Limitations. These optimizations enable Hymem to work well
across different workloads on a DRAM-NVM-SSD storage hierarchy.
However, it suffers from two limitations. First, it is a single-threaded
buffer manager. Second, it is evaluated on an NVM emulation plat-
form. These limitations constrain the utility of the insights obtained
using Hyme (§6.5). In particular, the data migration policy em-
ployed in HymEeM is not the optimal one for certain workloads. We

SIGMOD 2021

Today’s Paper: Buffer Management with NVM

Managing Non-Volatile Memory in Database Systems

Alexander van Renen Viktor Leis Alfons Kemper
Technische Universitit Miinchen Technische Universitit Miinchen Technische Universitat Miinchen
renen@in.tum.de leis@in.tum.de kemper@in.tum.de
Thomas Neumann Takushi Hashida Kazuichi Oe

Technische Universitit Miinchen
neumann@in.tum.de

Fujitsu Laboratories
hashida.takushi@jp.fujitsu.com

Fujitsu Laboratories
ooekazuichi@jp fujitsu.com

Yoshiyasu Doi Lilian Harada Mitsuru Sato

Fujitsu Laboratories

yosh-d@jp.fujitsu.com
ABSTRACT
Non-volatile memory (NVM) is a new storage technology that
bines the and byte ad bility of DRAM with

the persistence of traditional storage devices like flash (SSD). While
these properties make NVM highly promising, it is not yet clear how
to best integrate NVM into the storage layer of modern database
systems. Two system designs have been proposed. The first is to
use NVM exclusively, i.e, to store all data and index structures on
it. However, because NVM has a higher latency than DRAM, this
design can be less efficient than main-memory database systems.
For this reason, the second approach uses a page-based DRAM
cache in front of NVM. This approach, however, does not utilize the
byte addressability of NVM and, as a result, accessing an uncached
tuple on NVM requires retrieving an entire page.

In this work, we evaluate these two approaches and compare
them with in-memory databases as well as more traditional buffer
‘managers that use main memory as a cache in front of SSDs. This al-
lows us to determine how much performance gain can be expected
from NVM. We also propose a lightweight storage manager that si-
multaneously supports DRAM, NVM, and flash. Our design utilizes
the byte addressability of NVM and uses it as an additional caching
layer that improves performance without losing the benefits from
the even faster DRAM and the large capacities of SSDs.

ACM Reference Format:

Alexander van Renen, Viktor Leis, Alfons Kemper, Thomas Neumann,
Takushi Hashida, Kazuichi Oe, Yoshiyasu Doi, Lilian Harada, and Mitsuru
Sato. 2018. Managing Non-Volatile Memory in Database Systems. In SIG-
MOD'18: 2018 International Conference on Management of Data, June 10
15, 2018, Houston, TX, USA. ACM, New York, NY, USA, 15 pages. hitps:
//doi.org/10.1145/3183713.3196897

SIGMOD'18, June 10-15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

This is the author’s version of the work It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in SIGMOD'18: 2018
International Conference on Management of Data, June 10-15, 2018, Houston, TX, USA,
hitps:/doi org/10.1145/3183713.3196897.

Fujitsu Laboratories
harada lilian@jp.fujitsu.com

Fujitsu Laboratories
msato@jp.fujitsu.com

Main Memory H

3 Tier BM i

NVM Direct

Basic NVM BM

Estimated Throughput

SSD BM

DRAM NVM
Data size

Figure 1: System designs under varying data sizes.

1 INTRODUCTION

Non-volatile memory (NVM), also known as Storage Class Memory
(SCM) and NVRAM, is a radically new and highly promising stor-
age device. Technologies like PCM, STT-RAM, and ReRAM have
slightly different features [35], but generally combine the byte ad-
dressability of DRAM with the persistence of storage technologies
like SSD (flash). Because commercial products are not yet available,
the precise characteristics, price, and capacity features of NVM
have not been publicly disclosed (and like all prior NVM research,
we have to resort to simulation for experiments). What is known,
however, is that for the foreseeable future, NVM will be slower (and
larger) than DRAM and, at the same time, much faster (but smaller)
than SSD [13]. Furth, NVM has an ic read/write
latency—making writes much more expensive than reads. Given
these characteristics, we consider it unlikely that NVM can replace
DRAM or SSD outright.

While the novel properties of NVM make it particularly relevant
for database systems, they also present new architectural challenges.
Neither the traditional disk-based architecture nor modern main-
memory systems can fully utilize NVM without major changes
to their designs. The two components most affected by NVM are
logging/recovery and storage. Much of the recent research on NVM
has optimized logging and recovery (5, 16, 22, 36, 45). In this work,
we instead focus on the storage/caching aspect, i.e., on dynamically
deciding where data should reside (DRAM, NVM, or SSD).

SIGMOD 2018

Agenda

NVM Basics
HYMEM Design (SIGMOD’18)
Spitfire Design (SIGMOD’20)

NVM Basics

Storage Hierarchy

P
gist

On-chip
cache
(SRAM)

Main memory
(DRAM)

Non-volatile memory
(NVM)

Solid-state drive (SSD)

Hard disk drive (HDD)

Lower latency
Higher bandwidth
Smaller capacity
Higher cost

More energy

DRAM vs. NVM vs. SSD

Access Byte Byte Block storage
granularity addressable addressable
Durability Volatile Non-volatile Non-volatile

Intel® Optane™ Memory

NVM Performance — Read Latency

300 -

100 A

Idle Latency (ns)

O_

Sequential Random

DN PM-LDRAM [N PM-RDRAM EEE PM-Optane |

Random read latency is 305 ns which is 3x slower than local DRAM
Sequential read latency is 2x better than random read latency

* Figure from Basic Performance Measurements of the Intel Optane DC Persistent Memory Module

NVM Performance — Bandwidth

Read Write
_ AAAAAAAAAAAAAA 80 - AAAAAAA
¥ 100 A A o
m
o
L
)
O
=
©
(-
O
m
O T | 1 1 | 0 1 1 1 1 1
1 6 11 16 21 1 6 11 16 21
Threads # Threads

&~ PM-LDRAM —v— PM-RDRAM —o— PM-Optane

Per-DIMM max read bandwidth: 6.6 GB/s, max write bandwidth: 2.3 GB/s
Read/write bandwidth gap is 2.9x for NVM (1.3x for DRAM)

* Figure from Basic Performance Measurements of the Intel Optane DC Persistent Memory Module

NVM Performance — Cost

Type Density Price $/GB
DRAM 32GB $374.71 $11.71
DRAM 64GB $708.25 $11.07
DRAM 128GB $1,913.21 $14.95
DRAM 256GB $5,952.00 $23.25

Optane 128GB $577.00 $4.51
Optane 256GB $2,125.00 $8.30

Optane 512GB $6,751.00 $13.19

Data from https://thememoryguy.com/intels-optane-dimm-price-model/

https://thememoryguy.com/intels-optane-dimm-price-model/

Operation Modes

App direct mode

Application

DRAM

Optane NVM

DRAM and NVM in different
address space

10

Operation Modes

App direct mode Memory Mode
Application . Application
Cache
DRAM miss , DRAM
Optane NVM
Optane NVM
DRAM and NVM in different DRAM as a cache managed by

address space hardware

Buffer Management in Disk vs. NVM

Buffer management in SSD/HDD

— Block storage
— Load a full page at a time (e.g., 16 KB)

Buffer management in NVM
— Byte addressable

— Waste of bandwidth if full pages are loaded
— Loading a cacheline at a time (64 B)

12

HYMEM Design

Cache-Line-Grained Pages

NVM |, DRAM
m\@ pld:3 [r:0(d: 0

: resident:1010..1, | dirty:0010..0,
Tokyo ' Tokyo
San Jose L
Redwood City _+» | Munich
Mountain View -~
I 251 more cache lines : i 251 more cache lines
San Francisco —+ | San Francisco

1

Page initially empty, cachelines loaded as they are accessed

Cache-Line-Grained Pages

NVM , DRAM
1
1

| [P TpiE 5 [0
A= | resident:1010..1, dirty:0010..0,

Tokyo E . | Tokyo
San Jose L
Redwood City : Munich

Mountain View

I 251 more cache lines

San Francisco

I 251 more cache lines
San Francisco

-<===1-r

Page initially empty, cachelines loaded as they are accessed
Overhead: each access checks/updates resident/dirty bits

Mini Pages

Page layout consumes more DRAM space than necessary

16

Mini Pages

Page layout consumes more DRAM space than necessary

ﬁb slots: [0, 2, 255]
eader=1c count: 3 dirty. 0100--02

pld: 3

fullO |

Tokyo Tokyo

San Jose Munich

Redwood City San Francisco

Mountain View

I 251 more cache lines I 11 more cache lines

San Francisco

Mini page: a sparse representation of a page
« Cachelines are sorted
* Promote to full page when a mini-page is full

17

Three-Tier Buffer Management

Vs

N

J

Cache-line-grained Entire page
page (NVM-backed) (not NVM-backed)
\ /N /N
O
@ DRAM
eviction
4
(NVM page w< @ (P
J ; NVM
ot admission @
NVM 5)
eviction @

1. DRAM & NVM miss
— Directly load to DRAM

2. NVM hit

— Load cache-line-granted
page to DRAM

3. DRAM eviction

— Clock (second-chance)

4&5. NVM admission

— Admission set (second-
chance)

6. NVM eviction
— Clock

18

Spitfire Design

Data Migration

° @[4O o
DRAM oT lo —o> T l
Buffer Pool <6- Buffer Pool
N, Oj l@ Ny, OT io

SSD

Database

Write-Ahead Log

Bypass DRAM during reads
— Access NVM directly without
admitting the page into DRAM
Bypass DRAM during writes
— Log and checkpoint not cached
in DRAM
Bypass NVM during reads
— HYMEM does this by default

Bypass NVM during writes

— DRAM evictions go to NVM
with a probability

— Simpler than HYMEM design

NVM

20

Novelty

CPU can directly read from NVM, bypassing DRAM
Probabilistic admission and replacement

Dynamically tuning of the probabilities

Policy Dy Dw N; Niy
HymEem [37] 1 1 0 AdmQueue
SPITFIRE-Eager 1 1 1 1
SpiTriReE-Lazy 0.01 0.01 0.2 1

Table 3: Migration Policies: List of policies used in the ablation study.

21

Evaluation

7 NONE o o +FINE-GRAINED PAGE "o o +MINIPAGE
3 2_5500
g g
= = 3700 1
= 3
o o
) S 1900
3 3
- o
= = 0
Hymem Spf-Eager Spf-Lazy Hymem Spf-Eager Spf-Lazy

YCSB-RO TPC-C

Q/A — Buffer Management with NVM

Need generalized algorithm for growing storage hierarchy?
— 2-tier -> 3-tier -> N-tier?

Disadvantage of probabilistic approach?
Disadvantage of self adapting/tuning?

Can we entirely replace SSD by NVM?

Do modern DBMS run on 3-tier buffer memories?
More baselines?

What is NUMA effect?

23

Group Discussion

Non-volatile memory (NVM) have (1) bandwidth and latency close to
DRAM and (2) byte-addressability. How do NVM devices change buffer
management in a DBMS?

— Inclusive caching?
— Is page the right management granularity?
— What if we treat NVM as a different tier of memory?

24

Before Next Lecture

Submit review for
Patricia G. Selinger, et al., Access Path Selection in a

Relational Database Management System. SIGMOD, 1979

25

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/selinger.pdf

