
Xiangyao Yu
9/27/2021

CS 764: Topics in Database Management Systems
Lecture 6: Query Optimization

1

Announcement
Three sample projects uploaded
• Proposal
• Final report
• Presentation slides

2

Today’s Paper: Query Optimization

SIGMOD 1979 3

Agenda

4

System R
Query Optimization in R
• Cost estimation
• Plan enumeration

System R

5

1. Parsing
2. Optimization
3. Code generation
4. Execution

Query Optimization

6

SQL	query

optimized	plan

Query	Parser

Query	Optimizer
• Plan	generator
• Plan	cost	estimator

unoptimized	plan

System Catalog

Query Optimization in System R

System R Storage Architecture

8

Cost = IO cost + Computation cost
= #I/Os + W * RSICARD

RSICARD = #tuples through the RSI interface

#I/Os

RSICARD

Goal: enumerate execution plans and pick
the one with the lowest cost

Statistics

9

NCARD(T) # tuples in T

TCARD(T) # of pages containing tuples in T

P(T) Fraction of segment pages that hold tuples of T.
P(T) = TCARD(T) / # non-empty pages in the segment

ICARD(I) # distinct keys in the index I

NINDEX(I) # pages in index I

High key value and
low key value
Modern systems Keep histogram on table attributes.

Access Paths
Segment Scans
• A segment contains disk pages that can hold tuples from multiple relations
• Segment scan is a sequential scan of all the pages

10

Access Paths
Segment Scans
• A segment contains disk pages that can hold tuples from multiple relations
• Segment scan is a sequential scan of all the pages

Index Scan
• Clustered index scan
• Non-clustered scan
• Scan with starting and stopping key values

11

Predicates
Sargable predicates (Search ARGuments-able)
• Predicates that can be filtered by the RSS
• I.e., column comparison-operator value
• Where clause of query is put in Conjunctive Normal Form (CNF): term AND

term AND term
• Each term is called a boolean factor

12

Predicates
Sargable predicates (Search ARGuments-able)
• Predicates that can be filtered by the RSS
• I.e., column comparison-operator value
• Where clause of query is put in Conjunctive Normal Form (CNF): term AND

term AND term
• Each term is called a boolean factor

Examples of non-sargable
• function(column) = something
• column1 + column2 = something
• column + value = something
• column1 > column2

13

Predicates
Sargable predicates (Search ARGuments-able)
• Predicates that can be filtered by the RSS
• I.e., column comparison-operator value
• Where clause of query is put in Conjunctive Normal Form (CNF): term AND

term AND term
• Each term is called a boolean factor

A predicate matches an index if
1. Predicate is sargable
2. Columns referenced in the predicate match an initial subset of attributes of

the index key

14

Example: B-tree Index on (name, age)
predicate1: name=‘xxx’ and age=‘17’ match
predicate2: age=‘17’ not match

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

15

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

16

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

column1 = column2
• 1 / Max(ICARD(column1 index), ICARD(column2 index))

17

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

column1 = column2
• 1 / Max(ICARD(column1 index), ICARD(column2 index))

column > value
• F = (high key value - value) / (high key value – low key value)

18

Computation cost: RSICARD
Calculate the selectivity factor F for each boolean factor/predicate

column = value
• If index exists F = 1/ICARD(index) # distinct keys
• else 1/10

column1 = column2
• 1 / Max(ICARD(column1 index), ICARD(column2 index))

column > value
• F = (high key value - value) / (high key value – low key value)

pred1 and pred2
• F = F(pred1) * F(pred2)

pred1 or pred2
• F = F(pred1) + F(pred2) – F(pred1) * F(pred2)

Not pred
• F = 1– F(pred)

19

IO cost
Calculate the number of pages access through IO

20

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

21

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

22

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

clustered index matching
• IO = F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

23

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

clustered index matching
• IO = F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

non-clustered index matching
• IO = F(preds) * (NINDEX(I) + NCARD(T)) # index pages & # data page accesses

24

IO cost
Calculate the number of pages access through IO

segment scan
• IO = TCARD(T)/P # segment pages

unique index matching (e.g., EMP.ID = ‘123’)
• IO = 1 data page + 1-3 index page

clustered index matching
• IO = F(preds) * (NINDEX(I) + TCARD(T)) # index pages & # data pages

non-clustered index matching
• IO = F(preds) * (NINDEX(I) + NCARD(T)) # index pages & # data page accesses

clustered index no matching
• IO = NINDEX(I) + TCARD(T)

25

Access Path Selection for Joins
R ⋈ S
Method 1: nested loops

• Tuple order within a relation does not matter
Method 2: merging scans

• Both relations sorted on the join key

26

Access Path Selection for Joins
R ⋈ S
Method 1: nested loops

• Tuple order within a relation does not matter
Method 2: merging scans

• Both relations sorted on the join key

Tuple order is an interesting order if specified by
• Group by
• Order by
• Equi-join key

Search space too large!

27

Search Space – Join Order

28

R1 R2

⋈ R3

⋈ R4

⋈

left-deep tree

Convention: right child is the inner relation

Search Space – Join Order

29

R1 R2

⋈ R3

⋈ R4

⋈

left-deep tree

Convention: right child is the inner relation
For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

Search Space – Join Order

30

R1 R2

⋈ R3

⋈ R4

⋈

left-deep tree
R1R2

⋈R3

⋈R4

⋈

right-deep tree

Convention: right child is the inner relation
For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining

Search Space – Join Order

31

R1 R2

⋈ R3

⋈ R4

⋈

left-deep tree

R1 R2

⋈
R3

⋈

R4

⋈

bushy tree
R1R2

⋈R3

⋈R4

⋈

right-deep tree

Convention: right child is the inner relation
For nested-loop join or hash join, a left-deep tree allows tuples to be
passed through pipelining
Bushy tree may produce cheaper plans but are rarely considered
due to the explosion of search space

Search Space – Group By

32

Example:

E has 10000 tuples
D has 100 tuples

SELECT D.name, count(*)
FROM EMP as E, DEPT as D
WHERE E.DeptID = D.DeptID
GROUP BY D.name

Partial group by can also reduce cost

Search Space – Group By

33

Example:

E has 10000 tuples
D has 100 tuples

SELECT D.name, count(*)
FROM EMP as E, DEPT as D
WHERE E.DeptID = D.DeptID
GROUP BY D.name

Partial group by can also reduce cost

Q/A – Query Optimization

34

Are parameters fixed or dynamic based on current workload?
Tree pruning techniques?
How to decide weight factor W?
When does query optimization fail?
Modern query optimizers?

Group Discussion
It is challenging to accurately estimate the cardinality of intermediate
tables. What solutions can you think of to address this problem?

35

Before Next Lecture
Submit review for

Robert Epstein, et al., Distributed Query Processing in a
Relational Data Base System. SIGMOD, 1978

36

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/distributed.pdf

