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Today’s Paper: Query Optimization
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RELATIONAL DATA BASE SYSTEM
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ABSTRACT: In this paper we present a new algorithm for retrieving and updating
data from a distributed relational data base. Within such a data base, any
number of relations can be distributed over any number of sites. Moreover, a
- user supplied distribution criteria can optionally be used to specify what site
a tuple belongs to.

The algorithm is an efficient way to process any query by "breaking" the qual-
ification into separate "pieces" using a few simple heuristics. The cost eri-
teria considered are minimum response time and minimum communications traffic.
In addition, the algorithm can optimize separately for two models of a communi-
cation network representing respectively ARPANET and ETHERNET like networks.
This algorithm is being implemented as part of the INGRES data base system.
KEYWORDS AND PHRASES: Distributed databases, relational model, distributed
decomposition, communication networks, distribution criteria.

mechanism or can be integrated into our

I Introduction

In this paper we are concerned with
algorithms for processing data base com~

mands that involve data from multiple
machines in a distributed data base
environment. These algorithms are being

implemented as part of our work in extend-
ing INGRES [HELD75, STON76) to manage a
distributed data base. As such, we are
concerned with processing interactions in
the data sublanguage, QUEL. The specifiec
data model that we use is discussed in Sec-
tion II. Some of our initial thoughts on
these subjects have been presented else-
where [STON77, WONG77].

We are not concerned here with control
of concurrent updates or multiple coples
[THOMT7S, LAMPT6, ROTHTT, CHUT6]. Rather we
assume that these are handled by a separate
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algorithms.

This paper is organized as follows: In
section II we formalize the problem by
indicating our view of a distributed data
base and the interactions to be solved.
Then, in section III we discuss our model
for the computer network. In section IV a
detailed algorithm is presented for han-
dling the decomposition of queries in a
distributed environment. There are a few
complications concerning updates and aggre-
gates in a distributed data base which are
covered in sections V and VI. Lastly, in
section VII we draw some conclusions.
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Agenda

Distributed database architecture
Data partitioning
Parallel operators

Distributed query optimization



Distributed Database Architecture

Shared Memory

Example: Multicore shared-memory machine
Scale: Single machine



Distributed Database Architecture

RAM RAM RAM

Shared Memory Shared Disk

Example: Network attached storage (NAS) and storage area network
(SAN), some Oracle and IBM database systems

Scale: Cluster with tens of machines



Distributed Database Architecture

RAM RAM RAM RAM RAM RAM
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Shared Memory Shared Disk Shared Nothing

Example: Modern massively parallel databases including Google
Spanner, Redshift, CosmosDB, etc.

Scale: Any number of machines



Shared-Nothing Architecture

Advantages:
* High scalability

RAM RAM RAM » High availability

« Good data locality
— =

Challenges:

_ * Must partition data
Shared Nothing * Network overhead



Data Partitioning

Round robin

Map tuple i/ to disk (i mode n)
— Advantage: Simplicity, good load balancing
— Disadvantage: Hard to identify the partition of a particular record



Data Partitioning

Round robin Range Partitioning

Map contiguous attribute ranges to partitions
— Advantage: Good locality due to clustering
— Disadvantage: May suffer from skewness



Data Partitioning

Round robin Range Partitioning Hash Partitioning

Map based on the hash value of tuple attributes
— Advantage: Good load balance, low skewness
— Disadvantage: Bad locality

10



Data Partitioning

Generally, the partitioning function (distribution criteria) can be
any function that maps tuples to partition ID

project
supplier where supplier.city = "Berkeley"

For example: | tte 1<
1 1

supply
supplier where
supplier.city = "San Jose"

supplier where
supplier.city != "Berkeley"
and supplier.city != "San Jose"




Algorithm Flowchart

Perform all single-table operations

While (exists next piece of query) {
Select processing sites and transmit data

Run query on each site
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Algorithm Flowchart

Perform all single-table operations I,
While (exists next piece of query) { |
Select processing sites and transmit data ™
Run query on each site Key Challenge / \
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Join — Single-Site

Site 1

Query plan

D
/

Exchange
I
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Exchange
I
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Solution 1: send all the involved
tables to a single site

— Advantage: Single-site query
execution is a solved problem

— Disadvantage: (1) Single site
execution can be slow (2) Data
may not fit in single site’s
memory or disk
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Join — Broadcast

Site 1

| s | Query plan

Site 2 //// \\\\

Exchange

|
‘SE‘ S

Solution 2: Keep one relation
partitioned and broadcast the
other relation to all sites

— Advantage: One relation does
not need to move

— Disadvantage: Still need to
broadcast the other relation to all
sites
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Join — Co-partition

Site 1

Query plan

D
/

Exchange
I
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Solution 3: Partition both
relations using the join key

— Advantage: Each site has less
data to process

— Disadvantage: Both relations are
shuffled (if not already partitioned
based on join key)
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Distributed Join

Single-site

— Preferred when both relations are small
Broadcast

— Preferred when one relation is small
Co-partition

— Preferred when both relations are large
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Distributed Query Optimization
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Distributed Query Optimization

Extra design complexity

— Which exchange operator to use?
— Which nodes to use to run the

operator?

1V
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Example

Site 1 Join order
— (project > supply) ><i supplier
— project < (supply > supplier)

project (200 tuples)

‘ supplier (50 tuples) ‘

Site 2

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘




Example

Site 1 Join order
— (project > supply) ><i supplier
— project < (supply > supplier)

project (200 tuples)

‘ supplier (50 tuples) ‘

Plan 1: Send everything to Site 2
Site 2 — Network traffic 250 tuples

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘




Example

Site 1

project (200 tuples)

‘ supplier (50 tuples) ‘

Site 2

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘

Join order

X<
— (project > supply) ><i supplier / \

~ project 4 (supply > supplier) Exchange  Exchange

Plan 1: Send everything to Site 2 project

X
— Network traffic 250 tuples / \

Exchange Exchange

I |
Plan 2 supply  supplier
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Example

Site 1

project (200 tuples)

‘ supplier (50 tuples) ‘

Site 2

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘

Join order

X<
— (project > supply) ><i supplier / \

~ project 4 (supply > supplier) Exchange  Exchange

Plan 1: Send everything to Site 2 project

X
— Network traffic 250 tuples / \

Exchange Exchange

| |
Plan 2: supply  supplier

— 18t join: 50 tuples network traffic (on site 2)
— 2"d join: depends result of 15t join
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Specialized Parallel Operators

Semi-join
« Example:

SELECT *

FROM T1, T2
WHERE T1.A

T2.C

Site 1 Site 2
RI|A|B
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* Source: Sattler KU. (2009) Semijoin. Encyclopedia of Database Systems.
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Distributed Database Architecture

CPU

RAM

Stora =
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S &  a-Service —
Storage Disaggregation Shared Disk
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Shared Nothing

Storage-disaggregation architecture is popular in cloud-native databases

— Features: (1) in-storage computation, (2) high-availability, (3) shared access to storage
— More on this topic in last few lectures
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Q/A — Distributed Query Optimization

Details of reduction algorithm?
-How is the paper related to modern distributed databases?

How does master-slave failover work?

—ragments being a project of the relation?
Distribute data without distribution logic?

More on updates? (will cover in next few lectures)
Which is the bottleneck, network or compute?
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Before Next Lecture

Submit review for

Jim Gray, et al., Granularity of Locks and Degrees of
Consistency in a Shared Data Base. Modelling in Data Base

Management Systems, 1976
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/Granularity-of-Locks.pdf

