WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 7: Distribution Query Optimization

Xiangyao Yu
9/29/2021

Today’s Paper: Query Optimization

DISTRIBUTED QUERY PROCESSING IN A
RELATIONAL DATA BASE SYSTEM

Robert Epstein
Michael Stonebraker
Eugene Wong

Electronics Research Laboratory
College of Engineering
University of California, Berkeley 94720

ABSTRACT: In this paper we present a new algorithm for retrieving and updating
data from a distributed relational data base. Within such a data base, any
number of relations can be distributed over any number of sites. Moreover, a
- user supplied distribution criteria can optionally be used to specify what site
a tuple belongs to.

The algorithm is an efficient way to process any query by "breaking" the qual-
ification into separate "pieces" using a few simple heuristics. The cost eri-
teria considered are minimum response time and minimum communications traffic.
In addition, the algorithm can optimize separately for two models of a communi-
cation network representing respectively ARPANET and ETHERNET like networks.
This algorithm is being implemented as part of the INGRES data base system.
KEYWORDS AND PHRASES: Distributed databases, relational model, distributed
decomposition, communication networks, distribution criteria.

mechanism or can be integrated into our

I Introduction

In this paper we are concerned with
algorithms for processing data base com~

mands that involve data from multiple
machines in a distributed data base
environment. These algorithms are being

implemented as part of our work in extend-
ing INGRES [HELD75, STON76) to manage a
distributed data base. As such, we are
concerned with processing interactions in
the data sublanguage, QUEL. The specifiec
data model that we use is discussed in Sec-
tion II. Some of our initial thoughts on
these subjects have been presented else-
where [STON77, WONG77].

We are not concerned here with control
of concurrent updates or multiple coples
[THOMT7S, LAMPT6, ROTHTT, CHUT6]. Rather we
assume that these are handled by a separate

Research sponsored by the U.S.

Army Research Office Grant DAAG29-76-G-0245, and

algorithms.

This paper is organized as follows: In
section II we formalize the problem by
indicating our view of a distributed data
base and the interactions to be solved.
Then, in section III we discuss our model
for the computer network. In section IV a
detailed algorithm is presented for han-
dling the decomposition of queries in a
distributed environment. There are a few
complications concerning updates and aggre-
gates in a distributed data base which are
covered in sections V and VI. Lastly, in
section VII we draw some conclusions.

Joint Services Electronics Program Contract F44620-76-C-0100.

169

SIGMOD 1978

Agenda

Distributed database architecture
Data partitioning
Parallel operators

Distributed query optimization

Distributed Database Architecture

Shared Memory

Example: Multicore shared-memory machine
Scale: Single machine

Distributed Database Architecture

RAM RAM RAM

Shared Memory Shared Disk

Example: Network attached storage (NAS) and storage area network
(SAN), some Oracle and IBM database systems

Scale: Cluster with tens of machines

Distributed Database Architecture

RAM RAM RAM RAM RAM RAM

T T T

S &S =

S S

Shared Memory Shared Disk Shared Nothing

Example: Modern massively parallel databases including Google
Spanner, Redshift, CosmosDB, etc.

Scale: Any number of machines

Shared-Nothing Architecture

Advantages:
* High scalability

RAM RAM RAM » High availability

« Good data locality
— =

Challenges:

_ * Must partition data
Shared Nothing * Network overhead

Data Partitioning

Round robin

Map tuple i/ to disk (i mode n)
— Advantage: Simplicity, good load balancing
— Disadvantage: Hard to identify the partition of a particular record

Data Partitioning

Round robin Range Partitioning

Map contiguous attribute ranges to partitions
— Advantage: Good locality due to clustering
— Disadvantage: May suffer from skewness

Data Partitioning

Round robin Range Partitioning Hash Partitioning

Map based on the hash value of tuple attributes
— Advantage: Good load balance, low skewness
— Disadvantage: Bad locality

10

Data Partitioning

Generally, the partitioning function (distribution criteria) can be
any function that maps tuples to partition ID

project
supplier where supplier.city = "Berkeley"

For example: | tte 1<
1 1

supply
supplier where
supplier.city = "San Jose"

supplier where
supplier.city != "Berkeley"
and supplier.city != "San Jose"

Algorithm Flowchart

Perform all single-table operations

While (exists next piece of query) {
Select processing sites and transmit data

Run query on each site

Ty
/M
e \
| e
. \
\ T(C,D)
Oc-10
R(AB) S(B|C)

12

Algorithm Flowchart

Perform all single-table operations I,
While (exists next piece of query) { |
Select processing sites and transmit data ™
Run query on each site Key Challenge / \
) I, c
I e
~ \
\ T(C,D)
Oc-10
R(A,B) |
’ S(B,C)

13

Join — Single-Site

Site 1

Query plan

D
/

Exchange
I

R

N

Exchange
I

S

Solution 1: send all the involved
tables to a single site

— Advantage: Single-site query
execution is a solved problem

— Disadvantage: (1) Single site
execution can be slow (2) Data
may not fit in single site’s
memory or disk

14

Join — Broadcast

Site 1

| s | Query plan

Site 2 //// \\\\

Exchange

|
‘SE‘ S

Solution 2: Keep one relation
partitioned and broadcast the
other relation to all sites

— Advantage: One relation does
not need to move

— Disadvantage: Still need to
broadcast the other relation to all
sites

15

Join — Co-partition

Site 1

Query plan

D
/

Exchange
I

R

N

Exchange
I

S

Solution 3: Partition both
relations using the join key

— Advantage: Each site has less
data to process

— Disadvantage: Both relations are
shuffled (if not already partitioned
based on join key)

16

Distributed Join

Single-site

— Preferred when both relations are small
Broadcast

— Preferred when one relation is small
Co-partition

— Preferred when both relations are large

17

Distributed Query Optimization

T[

////// \\\\\
T(C,D)
/

R(A,B)

S(B C)

1V
Excqange

X
/
Exchange

| Exchange
N, c |
\ ne

g \
\
Exchange T(C,D)

Exchange |

| 0c|=1e
R(A,B)

A S(B,C)

18

Distributed Query Optimization

Extra design complexity

— Which exchange operator to use?
— Which nodes to use to run the

operator?

1V
Excqange

D
/
Exchange
| Exchange
Ma,c |
\ ne

g \
\
Exchange T(C,D)

Exchange |

| 0c|=1e
R(A,B)

A S(B,C)

19

Example

Site 1 Join order
— (project > supply) ><i supplier
— project < (supply > supplier)

project (200 tuples)

‘ supplier (50 tuples) ‘

Site 2

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘

Example

Site 1 Join order
— (project > supply) ><i supplier
— project < (supply > supplier)

project (200 tuples)

‘ supplier (50 tuples) ‘

Plan 1: Send everything to Site 2
Site 2 — Network traffic 250 tuples

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘

Example

Site 1

project (200 tuples)

‘ supplier (50 tuples) ‘

Site 2

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘

Join order

X<
— (project > supply) ><i supplier / \

~ project 4 (supply > supplier) Exchange Exchange

Plan 1: Send everything to Site 2 project

X
— Network traffic 250 tuples / \

Exchange Exchange

I |
Plan 2 supply supplier

22

Example

Site 1

project (200 tuples)

‘ supplier (50 tuples) ‘

Site 2

‘ supply (400 tuples) ‘

‘ supplier (50 tuples) ‘

Join order

X<
— (project > supply) ><i supplier / \

~ project 4 (supply > supplier) Exchange Exchange

Plan 1: Send everything to Site 2 project

X
— Network traffic 250 tuples / \

Exchange Exchange

| |
Plan 2: supply supplier

— 18t join: 50 tuples network traffic (on site 2)
— 2"d join: depends result of 15t join

23

Specialized Parallel Operators

Semi-join
« Example:

SELECT *

FROM T1, T2
WHERE T1.A

T2.C

Site 1 Site 2
RI|A|B

114 | h(ra(R))

2[5 [—— (0111000] _| S C;% (13 h(10) 2

316 _ S~

s |7 h(v) = vmod 7 ~ | 2|7 2] 2 J
4|8 4|l 4 | —
5|9 5| 5 -
8|1 g8l 1 v

S|C
, 1
s'[c]p .
16‘,,//8
217
8|1
O=RD<A=CS'
Ql|A|B|C|D
114|116
2152 |7

* Source: Sattler KU. (2009) Semijoin. Encyclopedia of Database Systems.

24

Distributed Database Architecture

CPU

RAM

Stora =
ge-as-

S & a-Service —
Storage Disaggregation Shared Disk

RAM

RAM

RAM

T
S

RAM

T
S

RAM

T
S

Shared Nothing

Storage-disaggregation architecture is popular in cloud-native databases

— Features: (1) in-storage computation, (2) high-availability, (3) shared access to storage
— More on this topic in last few lectures

25

Q/A — Distributed Query Optimization

Details of reduction algorithm?
-How is the paper related to modern distributed databases?

How does master-slave failover work?

—ragments being a project of the relation?
Distribute data without distribution logic?

More on updates? (will cover in next few lectures)
Which is the bottleneck, network or compute?

26

Before Next Lecture

Submit review for

Jim Gray, et al., Granularity of Locks and Degrees of
Consistency in a Shared Data Base. Modelling in Data Base

Management Systems, 1976

27

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/Granularity-of-Locks.pdf

