WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

CS 764: Topics in Database Management Systems
Lecture 8: Granularity of Locks

Xiangyao Yu
10/4/2020

Announcement

List of project topics updated on course website
— Please contract the instructor if you want to discuss project topics

Proposal due on Oct. 25

Today’s Paper: Granularity of Locks

Modelling in Data Base Management Systems, G.M, Nijssen, (ed.)
North Holland Publishing Company, 1976

Granularity of Locks and Degrees of Consistency
in a Shared Data Base

J.N. Gray, R.A. Lorie, G.R. Putzolu, I.L. Traiger

IBM Research Laboratory
San Jose, California

The problem of choosing the appropriate granularity (size)
of lockable objects is introduced and the tradeoff between
concurrency and overhead is discussei. A locking protocol
which allows simultaneous locking at various granularities
by different transactions is presentad. It is based on
the introduction of additional 1lock modes besides the
conventional share mods and exclusiva mode. A proof is
given of the equivalence of this protocol to a
conventional one.

N2xt the issue of consistency in a shared environment is
analyzed. This discussion is motivated by the realization
that some existing data base systems use automatic lock
protocols which insure protection only from certain types
of inconsistencies (for instance those arising from
transaction backup), thereby automatically providing a
limited degree of consistency. Four degrees of
consistency are introduced. They can be roughly
characterized as follows: degree 0 protects others from
your updates, degree 1 additionally provides protection
from losing updates, degree 2 additionally provides
protection from reading incorrect data iteas, and degree 3
additionally provides protection from reading incorrect
relationships among data items (i.e. total protection). A
discussion follows on the relationships of the four
degrees to locking protocols, concurrency, overhead,
recovery and transaction structure.

lastly, these ideas are compared with existing data
management systems.

I. GRANULRRITY OF LOCKS:

An important issue which arises in the design of a data base
management system is the choice of lockable units, i.e. the data
aggregates which are atomically locked to insure consistency.
Examples of lockable units are areas, files, individual records,
field values, and intervals of fiela values.

The choice of lockable units presents a tradeoff between concurrency
and overhead, wvhich is related to the size or granularity of the
units themselves. On.the one hand, concurrency is increased if a
fine lockable unit (for example a record or field) is chosen. Such
unit is appropriate for a "simple" transaction which accesses few
records. On the other hand a fine unit of locking would be costly
for a “"complex"™ transaction which accesses a large number of
records. Such a transaction would have to set and reset a large

365

Modelling in Data Base Management Systems 1976

Agenda

Transaction basics
Locking granularity
Two-phase locking
Degree of consistency

ACID Properties in Transactions

A sequence of many actions considered to be one atomic unit of work

Atomicity: Either all operations occur, or nothing occurs (all or nothing)
Consistency: Integrity constraints are satisfied
Isolation: How operations of transactions interleave

Durability: A transaction’s updates persist when system fails

This lecture touches A, C, and |

Locking Granularity

Use locks to prevent conflicts

Locking Granularity

Use locks to prevent conflicts

Choosing a locking granularity
— Entire database
— Relation
— Records ...

Locking Granularity

Use locks to prevent conflicts

Choosing a locking granularity

— Entire database
— Relation
— Records ...

Vv

Increasing concurrency
Increasing overhead when many records are accessed

Goal: high concurrency and low cost

Locking Granularity

Use locks to prevent conflicts

Choosing a locking granularity

— Entire database
— Relation
— Records ...

Vv

Increasing concurrency
Increasing overhead when many records are accessed

Goal: high concurrency and low cost

Solution: Hierarchical locks

Hierarchical Locks

DB DB
I I
Areas Areas
I / \
Files Files Indices
I \ /
Records Records

Lock a high-level node if a large number of records are accessed
 All descendants are implicitly locked in the same mode

10

Hierarchical Locks

DB DB
I I
Areas Areas
I / \
Files Files Indices
I \ /
Records Records

Lock a high-level node if a large number of records are accessed

 All descendants are implicitly locked in the same mode
* Intention lock to avoid conflict with implicit locks

11

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

12

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:
— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy
— SIX: Read large portions and update a few parts

13

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:
— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy
— SIX: Read large portions and update a few parts

Example: read record

DB IS

I
Areas IS

I
Files IS
Reclords S

14

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:
— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy
— SIX: Read large portions and update a few parts

Example: read record update record
DB IS IX
Arclaas IS IX
Filles IS IX
Reclords S X

15

Locking Modes

Basic locking modes
— S: Shared lock
— X: Exclusive lock

Intention modes:
— IS: Intention to share
— IX: Intention to acquire X lock below the lock hierarchy
— SIX: Read large portions and update a few parts

Example: read record update record scan + occasional updates
DB IS IX IX
Anlaas 1S IX IX
FilleS IS IX SIX
Reclords S X lock specific records in X mode

16

Example

a) [10 points] Consider the following locking hierarchy where there is a single database that contains a single
table and the table contains two tuples: A and B. If a transaction T1 reads tuple A and writes tuple B, what lock
modes (e.g., NL, S, X, IS, IX, SIX) will T1 hold on the tuples, the table, and the database, respectively?

Database

Relation

N

Tuple A Tuple B

17

Example

a) [10 points] Consider the following locking hierarchy where there is a single database that contains a single
table and the table contains two tuples: A and B. If a transaction T1 reads tuple A and writes tuple B, what lock
modes (e.g., NL, S, X, IS, IX, SIX) will T1 hold on the tuples, the table, and the database, respectively?

Database | X
Relation | X
S Tuple A Tuple B X

18

Example

a) [10 points] Consider the following locking hierarchy where there is a single database that contains a single
table and the table contains two tuples: A and B. If a transaction T1 reads tuple A and writes tuple B, what lock
modes (e.g., NL, S, X, IS, IX, SIX) will T1 hold on the tuples, the table, and the database, respectively?

Database | X
Relation | X
S Tuple A Tuple B

NL

Database

Relation

PN

IX

SIX

Tuple A Tuple B X

19

Lock Compatibility

Increasing lock strength —>

1S IX S SIX | X
1S Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX |Y N N N N
X N N N N N

Most privileged

least privileged

20

Lock Compatibility

Increasing lock strength —>

1S IX S SIX | X
1S Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX |Y N N N N
X N N N N N

Most privileged

least privileged

21

Rules for Lock Requests

 Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

22

Rules for Lock Requests

 Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

» Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

23

Rules for Lock Requests

 Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

 Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

 Locks requested root to leaf

 Locks released leaf to root or any order at the end of the
transaction (as an atomic operation)

24

Extension — Semantic Locking

A system can introduce new
lock types based on the
operation semantics

25

Extension — Semantic Locking

Example: increment lock

S INC | X
S N N
INC |N N
X N N N

A system can introduce new
lock types based on the
operation semantics

Example:

— Increment and decrement
values

26

Extension — Semantic Locking

Example: increment lock A system can introduce new
s TING TX lock types based on the
operation semantics
S N N
INC |N N
TN N N Example:
— Increment and decrement
values
Example: compare with constant — Test value is greater than X
S |COMP X
S N
COMP depends
X N |depends N

Schedule and Granting Requests

Queue of requests
IS—IX—IS—IS—IS—-S —IS— X — 1S —IX

granted group waiting requests

To avoid starvation (where a transaction is delayed indefinitely), each
request waits its turn in the queue

28

Deadlock

tuple A
T1.S — T2.X

tuple B
T2.S — T1.X

T2 waits for T1

T1 waits for T2

29

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

30

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

No-Wait: A transaction self-aborts when encountering a conflict

31

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

No-Wait: A transaction self-aborts when encountering a conflict

Wait-Die: On a conflict, the requesting transaction waits if it has
higher priority than transactions in the queue, otherwise the
requesting transaction self-aborts

32

Deadlocks Solutions

Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

No-Wait: A transaction self-aborts when encountering a conflict

Wait-Die: On a conflict, the requesting transaction waits if it has
higher priority than transactions in the queue, otherwise the
requesting transaction self-aborts

Wound-Wait: On a conflict, the requesting transaction preemptively
aborts current owners if it has higher priority, otherwise the

requesting transaction waits

33

Serializability

Concurrent execution of transactions produces the same results as
some serial execution

— Intuitive and easy to reason about

34

Two-Phase Locking (2PL)

Two-phase locking (2PL) ensures serializability
— Growing phase: acquiring locks (no release)
— Shrinking phase: releasing locks (no acquire)

35

Two-Phase Locking (2PL)

Two-phase locking (2PL) ensures serializability
— Growing phase: acquiring locks (no release)
— Shrinking phase: releasing locks (no acquire)
— Serialization point: after all locks are acquired but before any release
— The equivalent serial order = order of transactions’ serialization points

36

Two-Phase Locking (2PL)

Two-phase locking (2PL) ensures serializability
— Growing phase: acquiring locks (no release)
— Shrinking phase: releasing locks (no acquire)
— Serialization point: after all locks are acquired but before any release
— The equivalent serial order = order of transactions’ serialization points

Strict 2PL: 2PL + all exclusive locks released after transaction
commits
— Widely used scheme in practice

37

Degree of Consistency (Isolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

38

Degree of Consistency (Isolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

39

Degree of Consistency (Isolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1: Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

40

Degree of Consistency (Isolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes

Degree 2: Read Committed
— Two-phase with respect to writes
— Short read locks

Degree 1: Read Uncommitted
— Two-phase with respect to writes
— No read locks (may observe dirty data)

Degree O:
— Short write locks
— No read locks

41

Degree of Consistency (Isolation)

Degree 3: Serializability (assuming no phantom effect)
— Two-phase with respective to both reads and writes []

Degree 2: Read Committed
— Two-phase with respect to writes

— Short read locks Increasing concurrency
Degree 1: Read Uncommitted

— Two-phase with respect to writes Weaker guarantees

— No read locks (may observe dirty data)
Degree O:

— Short write locks
— No read locks

Q/A — Granularity of Locks

Optimal schedule based on knowledge of the workload?
ntention locks used today?
Phantom effect?

Paper hard to follow...

43

Before Next Lecture

Submit review for

— Hal Berenson, et al., A Critigue of ANSI SQL Isolation Levels. SIGMOD
Record, 1995

44

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/isolation.pdf

