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CS 764: Topics in Database Management Systems
Lecture 8: Granularity of Locks
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Announcement
List of project topics updated on course website

– Please contract the instructor if you want to discuss project topics

Proposal due on Oct. 25
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Today’s Paper: Granularity of Locks

Modelling in Data Base Management Systems 1976 3



Agenda
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Transaction basics
Locking granularity
Two-phase locking
Degree of consistency 



ACID Properties in Transactions 
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A sequence of many actions considered to be one atomic unit of work

Atomicity: Either all operations occur, or nothing occurs (all or nothing) 
Consistency: Integrity constraints are satisfied
Isolation: How operations of transactions interleave
Durability: A transaction’s updates persist when system fails

This lecture touches A, C, and I



Locking Granularity
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Use locks to prevent conflicts 
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Use locks to prevent conflicts 
Choosing a locking granularity

– Entire database
– Relation
– Records … 
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Use locks to prevent conflicts 
Choosing a locking granularity

– Entire database
– Relation
– Records … 

Goal: high concurrency and low cost

Increasing concurrency 
Increasing overhead when many records are accessed



Locking Granularity
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Use locks to prevent conflicts 
Choosing a locking granularity

– Entire database
– Relation
– Records … 

Goal: high concurrency and low cost
Solution: Hierarchical locks

Increasing concurrency 
Increasing overhead when many records are accessed



Hierarchical Locks

10

DB
|

Areas
|

Files
|

Records

DB
|

Areas
/       \

Files     Indices
\ /

Records

Lock a high-level node if a large number of records are accessed
• All descendants are implicitly locked in the same mode



Hierarchical Locks
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Lock a high-level node if a large number of records are accessed
• All descendants are implicitly locked in the same mode
• Intention lock to avoid conflict with implicit locks



Locking Modes
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Basic locking modes
– S: Shared lock
– X: Exclusive lock
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Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts



Locking Modes
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Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Example: read record 
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Locking Modes
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Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Example: read record update record 
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Locking Modes
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Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Example: read record update record scan + occasional updates
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lock specific records in X mode



Example

17



Example
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Example
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Lock Compatibility

IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N
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Increasing lock strength 
X
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Increasing lock strength 
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Rules for Lock Requests
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• Before requesting S or IS on a node, all ancestor nodes of the 
requested node must be held in IS or IX



Rules for Lock Requests
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• Before requesting S or IS on a node, all ancestor nodes of the 
requested node must be held in IS or IX

• Before requesting X, SIX, or IX on a node, all ancestor nodes of the 
requesting node must be held in SIX or IX



Rules for Lock Requests
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• Before requesting S or IS on a node, all ancestor nodes of the 
requested node must be held in IS or IX

• Before requesting X, SIX, or IX on a node, all ancestor nodes of the 
requesting node must be held in SIX or IX

• Locks requested root to leaf 
• Locks released leaf to root or any order at the end of the 

transaction (as an atomic operation)



Extension – Semantic Locking
A system can introduce new 
lock types based on the 
operation semantics
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Extension – Semantic Locking
A system can introduce new 
lock types based on the 
operation semantics

Example: 
– Increment and decrement 

values
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S INC X

S Y N N

INC N Y N

X N N N

Example: increment lock



Extension – Semantic Locking
A system can introduce new 
lock types based on the 
operation semantics

Example: 
– Increment and decrement 

values
– Test value is greater than X
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S INC X
S Y N N

INC N Y N

X N N N

Example: increment lock

S COMP X
S Y Y N

COMP Y Y depends

X N depends N

Example: compare with constant



Schedule and Granting Requests
Queue of requests
IS — IX — IS — IS — IS —S — IS— X — IS —IX

To avoid starvation (where a transaction is delayed indefinitely), each 
request waits its turn in the queue
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granted group waiting requests



Deadlock
tuple A
T1.S — T2.X # T2 waits for T1

tuple B
T2.S — T1.X # T1 waits for T2
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Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in 
the cycle
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Deadlock detection: Once a cycle is detected, abort a transaction in 
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No-Wait: A transaction self-aborts when encountering a conflict
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Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in 
the cycle
No-Wait: A transaction self-aborts when encountering a conflict
Wait-Die: On a conflict, the requesting transaction waits if it has 
higher priority than transactions in the queue, otherwise the 
requesting transaction self-aborts
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Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in 
the cycle
No-Wait: A transaction self-aborts when encountering a conflict
Wait-Die: On a conflict, the requesting transaction waits if it has 
higher priority than transactions in the queue, otherwise the 
requesting transaction self-aborts
Wound-Wait: On a conflict, the requesting transaction preemptively 
aborts current owners if it has higher priority, otherwise the 
requesting transaction waits
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Serializability
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Concurrent execution of transactions produces the same results as 
some serial execution 

– Intuitive and easy to reason about



Two-Phase Locking (2PL)
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Two-phase locking (2PL) ensures serializability 
– Growing phase: acquiring locks (no release) 
– Shrinking phase: releasing locks (no acquire)
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Two-phase locking (2PL) ensures serializability 
– Growing phase: acquiring locks (no release) 
– Shrinking phase: releasing locks (no acquire)
– Serialization point: after all locks are acquired but before any release
– The equivalent serial order = order of transactions’ serialization points



Two-Phase Locking (2PL)
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Two-phase locking (2PL) ensures serializability 
– Growing phase: acquiring locks (no release) 
– Shrinking phase: releasing locks (no acquire)
– Serialization point: after all locks are acquired but before any release
– The equivalent serial order = order of transactions’ serialization points

Strict 2PL: 2PL + all exclusive locks released after transaction 
commits

– Widely used scheme in practice



Degree of Consistency (Isolation)
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Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes 
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Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes 

Degree 2: Read Committed
– Two-phase with respect to writes 
– Short read locks 
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Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes 

Degree 2: Read Committed
– Two-phase with respect to writes 
– Short read locks 

Degree 1: Read Uncommitted
– Two-phase with respect to writes 
– No read locks (may observe dirty data)



Degree of Consistency (Isolation)
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Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes 

Degree 2: Read Committed
– Two-phase with respect to writes 
– Short read locks 

Degree 1: Read Uncommitted
– Two-phase with respect to writes 
– No read locks (may observe dirty data)

Degree 0: 
– Short write locks
– No read locks



Degree of Consistency (Isolation)
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Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes 

Degree 2: Read Committed
– Two-phase with respect to writes 
– Short read locks 

Degree 1: Read Uncommitted
– Two-phase with respect to writes 
– No read locks (may observe dirty data)

Degree 0: 
– Short write locks
– No read locks

Increasing concurrency 

Weaker guarantees



Q/A – Granularity of Locks
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Optimal schedule based on knowledge of the workload? 
Intention locks used today? 
Phantom effect?
Paper hard to follow… 



Before Next Lecture
Submit review for

– Hal Berenson, et al., A Critique of ANSI SQL Isolation Levels. SIGMOD 
Record, 1995
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http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/isolation.pdf

