
Xiangyao Yu
10/4/2020

CS 764: Topics in Database Management Systems
Lecture 8: Granularity of Locks

1

Announcement
List of project topics updated on course website

– Please contract the instructor if you want to discuss project topics

Proposal due on Oct. 25

2

Today’s Paper: Granularity of Locks

Modelling in Data Base Management Systems 1976 3

Agenda

4

Transaction basics
Locking granularity
Two-phase locking
Degree of consistency

ACID Properties in Transactions

5

A sequence of many actions considered to be one atomic unit of work

Atomicity: Either all operations occur, or nothing occurs (all or nothing)
Consistency: Integrity constraints are satisfied
Isolation: How operations of transactions interleave
Durability: A transaction’s updates persist when system fails

This lecture touches A, C, and I

Locking Granularity

6

Use locks to prevent conflicts

Locking Granularity

7

Use locks to prevent conflicts
Choosing a locking granularity

– Entire database
– Relation
– Records …

Locking Granularity

8

Use locks to prevent conflicts
Choosing a locking granularity

– Entire database
– Relation
– Records …

Goal: high concurrency and low cost

Increasing concurrency
Increasing overhead when many records are accessed

Locking Granularity

9

Use locks to prevent conflicts
Choosing a locking granularity

– Entire database
– Relation
– Records …

Goal: high concurrency and low cost
Solution: Hierarchical locks

Increasing concurrency
Increasing overhead when many records are accessed

Hierarchical Locks

10

DB
|

Areas
|

Files
|

Records

DB
|

Areas
/ \

Files Indices
\ /

Records

Lock a high-level node if a large number of records are accessed
• All descendants are implicitly locked in the same mode

Hierarchical Locks

11

DB
|

Areas
|

Files
|

Records

DB
|

Areas
/ \

Files Indices
\ /

Records

Lock a high-level node if a large number of records are accessed
• All descendants are implicitly locked in the same mode
• Intention lock to avoid conflict with implicit locks

Locking Modes

12

Basic locking modes
– S: Shared lock
– X: Exclusive lock

Locking Modes

13

Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Locking Modes

14

Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Example: read record
DB

|
Areas

|
Files

|Records

IS

IS

IS

S

Locking Modes

15

Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Example: read record update record
DB

|
Areas

|
Files

|Records

IS

IS

IS

S

IX

IX

IX

X

Locking Modes

16

Basic locking modes
– S: Shared lock
– X: Exclusive lock

Intention modes:
– IS: Intention to share
– IX: Intention to acquire X lock below the lock hierarchy
– SIX: Read large portions and update a few parts

Example: read record update record scan + occasional updates
DB

|
Areas

|
Files

|Records

IS

IS

IS

S

IX

IX

IX

X

IX

IX

SIX

lock specific records in X mode

Example

17

Example

18

IX

IX

XS

Example

19

IX

IX

XS

IX

SIX

XNL

Lock Compatibility

IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

20

Increasing lock strength
X
|

SIX
/ \

S IX
\ /IS

|
NL

Most privileged

least privileged

Lock Compatibility

IS IX S SIX X

IS Y Y Y Y N
IX Y Y N N N
S Y N Y N N
SIX Y N N N N
X N N N N N

21

Increasing lock strength
X
|

SIX
/ \

S IX
\ /IS

|
NL

Most privileged

least privileged

Rules for Lock Requests

22

• Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

Rules for Lock Requests

23

• Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

• Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

Rules for Lock Requests

24

• Before requesting S or IS on a node, all ancestor nodes of the
requested node must be held in IS or IX

• Before requesting X, SIX, or IX on a node, all ancestor nodes of the
requesting node must be held in SIX or IX

• Locks requested root to leaf
• Locks released leaf to root or any order at the end of the

transaction (as an atomic operation)

Extension – Semantic Locking
A system can introduce new
lock types based on the
operation semantics

25

Extension – Semantic Locking
A system can introduce new
lock types based on the
operation semantics

Example:
– Increment and decrement

values

26

S INC X

S Y N N

INC N Y N

X N N N

Example: increment lock

Extension – Semantic Locking
A system can introduce new
lock types based on the
operation semantics

Example:
– Increment and decrement

values
– Test value is greater than X

27

S INC X
S Y N N

INC N Y N

X N N N

Example: increment lock

S COMP X
S Y Y N

COMP Y Y depends

X N depends N

Example: compare with constant

Schedule and Granting Requests
Queue of requests
IS — IX — IS — IS — IS —S — IS— X — IS —IX

To avoid starvation (where a transaction is delayed indefinitely), each
request waits its turn in the queue

28

granted group waiting requests

Deadlock
tuple A
T1.S — T2.X # T2 waits for T1

tuple B
T2.S — T1.X # T1 waits for T2

29

Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle

30

Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle
No-Wait: A transaction self-aborts when encountering a conflict

31

Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle
No-Wait: A transaction self-aborts when encountering a conflict
Wait-Die: On a conflict, the requesting transaction waits if it has
higher priority than transactions in the queue, otherwise the
requesting transaction self-aborts

32

Deadlocks Solutions
Deadlock detection: Once a cycle is detected, abort a transaction in
the cycle
No-Wait: A transaction self-aborts when encountering a conflict
Wait-Die: On a conflict, the requesting transaction waits if it has
higher priority than transactions in the queue, otherwise the
requesting transaction self-aborts
Wound-Wait: On a conflict, the requesting transaction preemptively
aborts current owners if it has higher priority, otherwise the
requesting transaction waits

33

Serializability

34

Concurrent execution of transactions produces the same results as
some serial execution

– Intuitive and easy to reason about

Two-Phase Locking (2PL)

35

Two-phase locking (2PL) ensures serializability
– Growing phase: acquiring locks (no release)
– Shrinking phase: releasing locks (no acquire)

Two-Phase Locking (2PL)

36

Two-phase locking (2PL) ensures serializability
– Growing phase: acquiring locks (no release)
– Shrinking phase: releasing locks (no acquire)
– Serialization point: after all locks are acquired but before any release
– The equivalent serial order = order of transactions’ serialization points

Two-Phase Locking (2PL)

37

Two-phase locking (2PL) ensures serializability
– Growing phase: acquiring locks (no release)
– Shrinking phase: releasing locks (no acquire)
– Serialization point: after all locks are acquired but before any release
– The equivalent serial order = order of transactions’ serialization points

Strict 2PL: 2PL + all exclusive locks released after transaction
commits

– Widely used scheme in practice

Degree of Consistency (Isolation)

38

Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes

Degree of Consistency (Isolation)

39

Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes

Degree 2: Read Committed
– Two-phase with respect to writes
– Short read locks

Degree of Consistency (Isolation)

40

Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes

Degree 2: Read Committed
– Two-phase with respect to writes
– Short read locks

Degree 1: Read Uncommitted
– Two-phase with respect to writes
– No read locks (may observe dirty data)

Degree of Consistency (Isolation)

41

Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes

Degree 2: Read Committed
– Two-phase with respect to writes
– Short read locks

Degree 1: Read Uncommitted
– Two-phase with respect to writes
– No read locks (may observe dirty data)

Degree 0:
– Short write locks
– No read locks

Degree of Consistency (Isolation)

42

Degree 3: Serializability (assuming no phantom effect)
– Two-phase with respective to both reads and writes

Degree 2: Read Committed
– Two-phase with respect to writes
– Short read locks

Degree 1: Read Uncommitted
– Two-phase with respect to writes
– No read locks (may observe dirty data)

Degree 0:
– Short write locks
– No read locks

Increasing concurrency

Weaker guarantees

Q/A – Granularity of Locks

43

Optimal schedule based on knowledge of the workload?
Intention locks used today?
Phantom effect?
Paper hard to follow…

Before Next Lecture
Submit review for

– Hal Berenson, et al., A Critique of ANSI SQL Isolation Levels. SIGMOD
Record, 1995

44

http://pages.cs.wisc.edu/~yxy/cs764-f21/papers/isolation.pdf

